4 research outputs found

    The Anatomical Society core embryology syllabus for undergraduate medicine

    Get PDF
    A modified Delphi methodology was used to develop a consensus regarding a series of learning outcome statements to act as the foundation of an undergraduate medical core embryology syllabus. A Delphi panel was formed by recruiting stakeholders with experience in leading undergraduate teaching of medical students. The panel (n = 18), including anatomists, embryologists and practising clinicians, were nominated by members of Council and/or the Education Committee of the Anatomical Society. Following development of an a priori set of learning outcome statements (n = 62) by the authors, panel members were asked in the first of a two‐stage process to ‘accept’, ‘reject’ or ‘modify’ each learning outcome, to propose additional outcomes if desired. In the second stage, the panel was asked to either accept or reject 16 statements which had either been modified, or had failed to reach consensus, during the first Delphi round. Overall, 61 of 62 learning outcome statements, each linked to examples of clinical conditions to provide context, achieved an 80% level of agreement following the modified Delphi process and were therefore deemed accepted for inclusion within the syllabus. The proposed syllabus allows for flexibility within individual curricula, while still prioritising and focusing on the core level of knowledge of embryological processes by presenting the essential elements to all newly qualified doctors, regardless of their subsequent chosen specialty

    The anatomical society core embryology syllabus for undergraduate medicine

    No full text
    A modified Delphi methodology was used to develop a consensus regarding a series of learning outcome statements to act as the foundation of an undergraduate medical core embryology syllabus. A Delphi panel was formed by recruiting stakeholders with experience in leading undergraduate teaching of medical students. The panel (n = 18), including anatomists, embryologists and practising clinicians, were nominated by members of Council and/or the Education Committee of the Anatomical Society. Following development of an a priori set of learning outcome statements (n = 62) by the authors, panel members were asked in the first of a two-stage process to 'accept', 'reject' or 'modify' each learning outcome, to propose additional outcomes if desired. In the second stage, the panel was asked to either accept or reject 16 statements which had either been modified, or had failed to reach consensus, during the first Delphi round. Overall, 61 of 62 learning outcome statements, each linked to examples of clinical conditions to provide context, achieved an 80% level of agreement following the modified Delphi process and were therefore deemed accepted for inclusion within the syllabus. The proposed syllabus allows for flexibility within individual curricula, while still prioritising and focusing on the core level of knowledge of embryological processes by presenting the essential elements to all newly qualified doctors, regardless of their subsequent chosen specialty </p

    Transcription Factor Redundancy Ensures Induction of the Antiviral State*

    No full text
    The transcriptional response to virus infection is thought to be predominantly induced by interferon (IFN) signaling. Here we demonstrate that, in the absence of IFN signaling, an IFN-like transcriptome is still maintained. This transcriptional activity is mediated from IFN-stimulated response elements (ISREs) that bind to both the IFN-stimulated gene factor 3 (ISGF3) as well as to IFN response factor 7 (IRF7). Through a combination of both in vitro biochemistry and in vivo transcriptional profiling, we have dissected what constitutes IRF-specific, ISGF3-specific, or universal ISREs. Taken together, the data presented here suggest that IRF7 can induce an IFN-like transcriptome in the absence of type-I or -III signaling and therefore provides a level of redundancy to cells to ensure the induction of the antiviral state

    microRNA control of interferons and interferon induced anti-viral activity

    No full text
    corecore