157 research outputs found

    Effect of acute exercise on postprandial lipemia and endothelial function in men with peripheral arterial disease

    Get PDF
    Introduction: Postprandial lipidemia (PPL), defined as an increase in plasma levels of triglyceride-rich lipoproteins following the consumption of a high fat meal (HFM) is associated with endothelial dysfunction. Acute exercise reduces PPL and maintains endothelial function (EF) in healthy adults. The effect of acute exercise on PPL and endothelial function has not been studied in patients with peripheral arterial disease (PAD). Purpose: To examine the effect of an acute bout of exercise on PPL, vascular inflammation and endothelial function in men with PAD. Methods: Men (n=8) with PAD underwent two oral fat tolerance tests (OFTT). On the evening prior to each OFTT, participants rested (control), or exercised until they expended 200 Kcal. Blood samples were obtained at baseline and 30 min, 1, 2, 3 and 4 h postprandial. Endothelial-dependent dilation (EDD) and endothelial-independent dilation (EID) were measured in the brachial artery using ultrasonography at baseline, 2 h and 4 h postprandial. Results: Postprandial TG increased significantly and EDD decreased significantly following the OFTT. An acute bout of discontinuous exercise that resulted in a 200 Kcal expenditure did not significantly attenuate the post prandial TG response or significantly ameliorate the decrease in endothelial vasomotor function. Compared to baseline values, circulating leukocytes, and TNF-α increased (p<0.05) in both conditions 4 h postprandial. There were no changes in C-Reactive Protein (CRP). Conclusion: Prior exercise has no effect on PPL or EDD following an OFTT in men with PAD

    A genotyping protocol for multiple tissue types from the polyploid tree species Sequoia sempervirens (Cupressaceae).

    Get PDF
    Premise of the studyIdentifying clonal lineages in asexually reproducing plants using microsatellite markers is complicated by the possibility of nonidentical genotypes from the same clonal lineage due to somatic mutations, null alleles, and scoring errors. We developed and tested a clonal identification protocol that is robust to these issues for the asexually reproducing hexaploid tree species coast redwood (Sequoia sempervirens).MethodsMicrosatellite data from four previously published and two newly developed primers were scored using a modified protocol, and clones were identified using Bruvo genetic distances. The effectiveness of this clonal identification protocol was assessed using simulations and by genotyping a test set of paired samples of different tissue types from the same trees.ResultsData from simulations showed that our protocol allowed us to accurately identify clonal lineages. Multiple test samples from the same trees were identified correctly, although certain tissue type pairs had larger genetic distances on average.DiscussionThe methods described in this paper will allow for the accurate identification of coast redwood clones, facilitating future studies of the reproductive ecology of this species. The techniques used in this paper can be applied to studies of other clonal organisms as well

    Assessment of a non-invasive high-throughput classifier for behaviours associated with sleep and wake in mice

    Get PDF
    This work presents a non-invasive high-throughput system for automatically detecting characteristic behaviours in mice over extended periods of time, useful for phenotyping experiments. The system classifies time intervals on the order of 2 to 4 seconds as corresponding to motions consistent with either active wake or inactivity associated with sleep. A single Polyvinylidine Difluoride (PVDF) sensor on the cage floor generates signals from motion resulting in pressure. This paper develops a linear classifier based on robust features extracted from normalized power spectra and autocorrelation functions, as well as novel features from the collapsed average (autocorrelation of complex spectrum), which characterize transient and periodic properties of the signal envelope. Performance is analyzed through an experiment comparing results from direct human observation and classification of the different behaviours with an automatic classifier used in conjunction with this system. Experimental results from over 28.5 hours of data from 4 mice indicate a 94% classification rate relative to the human observations. Examples of sequential classifications (2 second increments) over transition regions between sleep and wake behaviour are also presented to demonstrate robust performance to signal variation and explain performance limitations

    Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    Get PDF
    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification

    CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that copy number variations (CNVs) are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist.</p> <p>Results</p> <p>We developed a suite of software tools and resources (CNV Workshop) for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV.</p> <p>Conclusions</p> <p>To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and is an ideal platform for coordinating multiple associated projects.</p> <p>Availability and Implementation</p> <p>Available on the web at: <url>http://sourceforge.net/projects/cnv</url></p

    A molecular map of murine lymph node blood vascular endothelium at single cell resolution

    Get PDF
    Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature. We identify multiple subsets, including a medullary venous population whose gene signature predicts a selective role in myeloid cell (vs lymphocyte) recruitment to the medulla, confirmed by videomicroscopy. We define five capillary subsets, including a capillary resident precursor (CRP) that displays stem cell and migratory gene signatures, and contributes to homeostatic BEC turnover and to neogenesis of high endothelium after immunization. Cell alignments show retention of developmental programs along trajectories from CRP to mature venous and arterial populations. Our single cell atlas provides a molecular roadmap of the lymph node blood vasculature and defines subset specialization for leukocyte recruitment and vascular homeostasis

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    A high fat breakfast attenuates the suppression of appetite and acylated ghrelin during exercise at simulated altitude.

    Get PDF
    High-altitude exposure induces a negative energy balance by increasing resting energy expenditure and decreasing energy intake. This diminished energy intake is likely caused by altitude-induced anorexia and can have detrimental effects for those travelling to high-altitude. We aimed to investigate whether altering the macronutrient composition of breakfast could attenuate altitude-induced anorexia and augment energy intake at high-altitude. Twelve healthy men (aged 26 (8) years, body mass index 23.9 (2.7) kg·m(-2)) completed two, 305min experimental trials at 4300m simulated altitude (~11.7% O2). After an overnight fast, participants entered a normobaric hypoxic chamber and rested for one hour, before receiving either a high fat (HF; 60% fat, 25% carbohydrate) or an isocaloric high carbohydrate (HC; 60% carbohydrate, 25% fat) breakfast. One hour after breakfast, participants performed 60min of treadmill walking at 50% of relative V̇O2max. An ad-libitum buffet meal was consumed 1h 30min after exercise. Appetite perceptions, blood samples and substrate oxidation rates were measured throughout. A significantly higher area under the curve for composite appetite score was observed during exercise in HF (40 (12) mm·h(-1)) compared with HC (30 (17) mm·h(-1), P=0.036). During exercise, lower insulin concentrations (P=0.013) and elevated acylated ghrelin concentrations (P=0.048) were observed in HF compared with HC. After exercise there was no significant difference in composite appetite score (P=0.356), acylated ghrelin (P=0.229) or insulin (P=0.513) between conditions. Energy intake at the buffet did not significantly differ between conditions (P=0.384). A HF breakfast attenuated appetite suppression during exercise at 4300m simulated altitude, however ad-libitum energy intake did not increase
    corecore