438 research outputs found

    Modeling the Measurements of Cochlear Microcirculation and Hearing Function after Loud Noise

    Get PDF
    Objective: Recent findings support the crucial role of microcirculatory disturbance and ischemia for hearing impairment especially after noise-induced hearing loss (NIHL). The aim of this study was to establish an animal model for in vivo analysis of cochlear microcirculation and hearing function after a loud noise to allow precise measurements of both parameters in vivo. Study Design: Randomized controlled trial. Setting: Animal study. Subjects and Methods: After assessment of normacusis (0 minutes) using evoked auditory brainstem responses (ABRs), noise (106-dB sound pressure level [SPL]) was applied to both ears in 6 guinea pigs for 30 minutes while unexposed animals served as controls. In vivo fluorescence microscopy of the stria vascularis capillaries was performed after surgical exposure of 1 cochlea. ABR measurements were derived from the contralateral ear. Results: After noise exposure, red blood cell velocity was reduced significantly by 24.3% (120 minutes) and further decreased to 44.5% at the end of the observation (210 minutes) in contrast to stable control measurements. Vessel diameters were not affected in both groups. A gradual decrease of segmental blood flow became significant (38.1%) after 150 minutes compared with controls. Hearing thresholds shifted significantly from 20.0 ± 5.5 dB SPL (0 minutes) to 32.5 ± 4.2dB SPL (60 minutes) only in animals exposed to loud noise. Conclusion: With regard to novel treatments targeting the stria vascularis in NIHL, this standardized model allows us to analyze in detail cochlear microcirculation and hearing function in vivo

    Minimal basilar membrane motion in low-frequency hearing

    Get PDF
    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea

    Some classical multiple orthogonal polynomials

    Get PDF
    Recently there has been a renewed interest in an extension of the notion of orthogonal polynomials known as multiple orthogonal polynomials. This notion comes from simultaneous rational approximation (Hermite-Pade approximation) of a system of several functions. We describe seven families of multiple orthogonal polynomials which have he same flavor as the very classical orthogonal polynomials of Jacobi, Laguerre and Hermite. We also mention some open research problems and some applications

    Interleukin-17 regulates matrix metalloproteinase activity in human pulmonary tuberculosis.

    Get PDF
    Tuberculosis (TB) is characterized by extensive pulmonary matrix breakdown. Interleukin-17 (IL-17) is key in host defence in TB but its role in TB-driven tissue damage is unknown. We investigated the hypothesis that respiratory stromal cell matrix metalloproteinase (MMP) production in TB is regulated by T-helper 17 (TH -17) cytokines. Biopsies of patients with pulmonary TB were analysed by immunohistochemistry (IHC), and patient bronchoalveolar lavage fluid (BALF) MMP and cytokine concentrations were measured by Luminex assays. Primary human airway epithelial cells were stimulated with conditioned medium from human monocytes infected with Mycobacterium tuberculosis (Mtb) and TH -17 cytokines. MMP secretion, activity, and gene expression were determined by ELISA, Luminex assay, zymography, RT-qPCR, and dual luciferase reporter assays. Signalling pathways were examined using phospho-western analysis and siRNA. IL-17 is expressed in TB patient granulomas and MMP-3 is expressed in adjacent pulmonary epithelial cells. IL-17 had a divergent, concentration-dependent effect on MMP secretion, increasing epithelial secretion of MMP-3 (p < 0.001) over 72 h, whilst decreasing that of MMP-9 (p < 0.0001); mRNA levels were similarly affected. Both IL-17 and IL-22 increased fibroblast Mtb-dependent MMP-3 secretion but IL-22 did not modulate epithelial MMP-3 expression. Both IL-17 and IL-22, but not IL-23, were significantly up-regulated in BALF from TB patients. IL-17-driven MMP-3 was dependent on p38 MAP kinase and the PI3K p110α subunit. In summary, IL-17 drives airway stromal cell-derived MMP-3, a mediator of tissue destruction in TB, alone and with monocyte-dependent networks in TB. This is regulated by p38 MAP kinase and PI3K pathways. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    A telephone survey of cancer awareness among frontline staff: informing training needs

    Get PDF
    Background: Studies have shown limited awareness about cancer risk factors among hospital-based staff. Less is known about general cancer awareness among community frontline National Health Service and social care staff. Methods: A cross-sectional computer-assisted telephone survey of 4664 frontline community-based health and social care staff in North West England. Results: A total of 671 out of 4664 (14.4%) potentially eligible subjects agreed to take part. Over 92% of staff recognised most warning signs, except an unexplained pain (88.8%, n=596), cough or hoarseness (86.9%, n=583) and a sore that does not heal (77.3%, n=519). The bowel cancer-screening programme was recognised by 61.8% (n=415) of staff. Most staff agreed that smoking and passive smoking ‘increased the chance of getting cancer.’ Fewer agreed about getting sunburnt more than once as a child (78.0%, n=523), being overweight (73.5%, n=493), drinking more than one unit of alcohol per day (50.2%, n=337) or doing less than 30 min of moderate physical exercise five times a week (41.1%, n=276). Conclusion: Cancer awareness is generally good among frontline staff, but important gaps exist, which might be improved by targeted education and training and through developing clearer messages about cancer risk factors

    Analysis of the binding loops configuration and surface adaptation of different crystallized single‐domain antibodies in response to various antigens

    Get PDF
    Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single-domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes

    In Vivo Outer Hair Cell Length Changes Expose the Active Process in the Cochlea

    Get PDF
    BACKGROUND: Mammalian hearing is refined by amplification of the sound-evoked vibration of the cochlear partition. This amplification is at least partly due to forces produced by protein motors residing in the cylindrical body of the outer hair cell. To transmit power to the cochlear partition, it is required that the outer hair cells dynamically change their length, in addition to generating force. These length changes, which have not previously been measured in vivo, must be correctly timed with the acoustic stimulus to produce amplification. METHODOLOGY/PRINCIPAL FINDINGS: Using in vivo optical coherence tomography, we demonstrate that outer hair cells in living guinea pigs have length changes with unexpected timing and magnitudes that depend on the stimulus level in the sensitive cochlea. CONCLUSIONS/SIGNIFICANCE: The level-dependent length change is a necessary condition for directly validating that power is expended by the active process presumed to underlie normal hearing

    Na+/K+-ATPase α1 Identified as an Abundant Protein in the Blood-Labyrinth Barrier That Plays an Essential Role in the Barrier Integrity

    Get PDF
    BACKGROUND:The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+)/K(+)-ATPase α1 (ATP1A1) with protein kinase C eta (PKCη) and occludin is one of the mechanisms of loud sound-induced vascular permeability increase. METHODOLOGY/PRINCIPAL FINDINGS:Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma. CONCLUSIONS/SIGNIFICANCE:The results presented here provide a novel method for capillary isolation from the inner ear and the first database on protein components in the blood-labyrinth-barrier. Additionally, we found that ATP1A1 interaction with PKCη and occludin was involved in the integrity of the blood-labyrinth-barrier

    Localization of the Cochlear Amplifier in Living Sensitive Ears

    Get PDF
    BACKGROUND: To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally. METHODOLOGY AND PRINCIPAL FINDINGS: Using a sensitive laser interferometer to measure sub-nanometer vibrations at two locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases. CONCLUSIONS AND SIGNIFICANCE: We conclude that the cochlea amplifier resides at a small longitudinal region basal to the response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range
    corecore