1,737 research outputs found

    Magnetic moment suppression in Ba3CoRu2O9: hybridization effect

    Full text link
    An unusual orbital state was recently proposed to explain the magnetic and transport properties of Ba3_3CoRu2_2O9_9 [Phys. Rev. B. {\bf 85}, 041201 (2012)]. We show that this state contradicts to the first Hund's rule and does not realize in the system under consideration because of a too small crystal-field splitting in the t2gt_{2g} shell. A strong suppression of the local magnetic moment in Ba3_3CoRu2_2O9_9 is attributed to a strong hybridization between the Ru 4dd and O 2pp states.Comment: 5 pages, 5 figure

    How does an interacting many-body system tunnel through a potential barrier to open space?

    Get PDF
    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of alpha-decay, fusion and fission in nuclear physics, photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constitutent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a more transparent and controllable physical system, in an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schr\"odinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: the overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wavefunction in the respective processes.Comment: 18 pages, 4 figures (7 pages, 2 figures supplementary information

    Jahn-Teller distortions and charge, orbital and magnetic orders in NaMn7O12

    Full text link
    With the use of the band structure calculations we demonstrate that previously reported [Nat. Materials {\bf 3}, 48 (2004)] experimental crystal and magnetic structures for NaMn7_7O12_{12} are inconsistent with each other. The optimization of the crystal lattice allows us to predict a new crystal structure for the low temperature phase, which is qualitatively different from the one presented before. The AFM-CE type of the magnetic order stabilizes the structure with the elongated, not compressed MnB3+^{3+}_BO6_6 octahedra, striking NaMn7_7O12_{12} out of the list of the anomalous Jahn-Teller systems. The orbital correlations were shown to exist even in the cubic phase, while the charge order appears only in the low temperature distorted phase.Comment: 5 page

    Time-dependent multi-orbital mean-field for fragmented Bose-Einstein condensates

    Full text link
    The evolution of Bose-Einstein condensates is usually described by the famous time-dependent Gross-Pitaevskii equation, which assumes all bosons to reside in a single time-dependent orbital. In the present work we address the evolution of fragmented condensates, for which two (or more) orbitals are occupied, and derive a corresponding time-dependent multi-orbital mean-field theory. We call our theory TDMF(nn), where nn stands for the number of evolving fragments. Working equations for a general two-body interaction between the bosons are explicitly presented along with an illustrative numerical example.Comment: 16 pages, 1 figur

    Rates of multi-partite entanglement transformations and applications in quantum networks

    Full text link
    The theory of the asymptotic manipulation of pure bipartite quantum systems can be considered completely understood: The rates at which bipartite entangled states can be asymptotically transformed into each other are fully determined by a single number each, the respective entanglement entropy. In the multi-partite setting, similar questions of the optimally achievable rates of transforming one pure state into another are notoriously open. This seems particularly unfortunate in the light of the revived interest in such questions due to the perspective of experimentally realizing multi-partite quantum networks. In this work, we report substantial progress by deriving surprisingly simple upper and lower bounds on the rates that can be achieved in asymptotic multi-partite entanglement transformations. These bounds are based on ideas of entanglement combing and state merging. We identify cases where the bounds coincide and hence provide the exact rates. As an example, we bound rates at which resource states for the cryptographic scheme of quantum secret sharing can be distilled from arbitrary pure tripartite quantum states, providing further scope for quantum internet applications beyond point-to-point.Comment: 4+7 pages, 1 figure, v2 is significantly extended in its results and presents a general statement providing bounds for achievable asymptotic rates for an arbitrary number of partie
    corecore