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Abstract 18 

Monoclonal antibodies have revolutionised the biomedical field through their 19 

ubiquitous utilisation in different diagnostics and therapeutic applications. Despite 20 

this widespread use, their large size and structural complexity have limited their 21 

versatility in specific applications. The antibody variable region that is responsible for 22 

binding antigen is embodied within domains that can be rescued individually as 23 

single-domain antibody (sdAb) fragments. Due to the unique characteristics of 24 

sdAbs, such as low molecular weight, high physico-chemical stability, and the ability 25 

to bind antigens inaccessible to conventional antibodies, they represent a viable 26 

alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, 27 

originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved 28 

from the Protein Data Bank, and their structures were compared. The three types of 29 

sdAbs displayed complementarity determining regions (CDRs) with different lengths 30 

and configurations. CDR3 of the VHH and VNAR domains were dominated by 31 

pleated and extended orientations, respectively. While VNAR showed the smallest 32 

average molecular weight and Molecular Surface Area (MSA) compared to VHH and 33 

VH antibodies. However, the Solvent Accessible Surface Area (SASA) 34 

measurements of the three tested sdAbs types were very similar. All the anti-hapten 35 

VHH antibodies showed pleated CDR3, which were sufficient to create a binding 36 

pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and 37 

electrostatic potential. Whereas the sdAbs that recognised lysozyme, showed more 38 

diversity in their CDR3 orientation to enable them to recognise various topographies 39 

of lysozyme. Subsequently, the three sdAbs classes were different in size and 40 

surface area, and have shown distinguishable ability to optimise their CDRs length 41 

and orientation to recognise different antigen classes.  42 
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Introduction 43 

Antibodies are widely used in numerous research and medical applications. Structurally, an 44 

antibody consists of two heavy and two light polypeptide chains, based on their sizes [1]. The 45 

light chains are either of a lambda (λ) or kappa (k) subtype, which can be linked to any of the 46 

nine heavy chain subtypes that creates different antibody classes in humans (IgM, IgD, IgG1-47 

4, IgA1-2, and IgE). However, about 85% of the total immunoglobulins (Igs) in human serum 48 

are known to be IgG antibodies [2]. The IgG antibody is composed of three fragments, two 49 

identical fragment antigen-binding (Fabs) that each contain the first two domains of the 50 

heavy and light chains, and one fragment crystallisable region (Fc) [3,4]. The variable region 51 

responsible for antigen binding is formed by amino acids located at the tip of the antibody 52 

molecule [5]. Each of the variable heavy (VH) or light (VL) domains consist of three 53 

complementarity determining regions (CDRs), which are alternatively distributed across four 54 

framework (FW) regions, and are accountable for antigen recognition [6]. These domains are 55 

the smallest part of the conventional antibody that preserve the original binding activity. In 56 

addition to conventional antibodies, heavy chain only antibodies can be naturally acquired 57 

from camelidae (camel, llama, and vicugna), or shark species (smooth dogfish, spotted 58 

catfish, wobbegong, banded houndshark, and bamboo shark), and are known as HCAb and 59 

IgNAR, respectively (reviewed in [7,8]). 60 

The attraction towards use of antibodies originates from the flexibility and modification-61 

tolerability of their structures to fit any bespoke application. Nevertheless, working with full 62 

length antibodies (molecular weight of ~150 kDa) can be associated with some impracticality 63 

such as their high cost of production, slow expression, weak tissue penetration, and 64 

unsuitable long half-life for imaging applications [9]. Therefore, the adaptation of sdAbs is 65 

considered a viable alternative in both industrial and research applications [10,11]. Although 66 
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sdAbs are small and stable, the absence of a Fc region from these domains can 67 

counterbalance these benefits due to the subsequent abolishment of cellular and complement 68 

activation, and reduction in serum half-life [12]. These effects are normally mediated by the Fc 69 

region of the antibody that binds to C1q, Fc receptor (FcR), and neonatal Fc receptor (FcRn) 70 

[13]. However, the half-life can still be restored by, for instance, fusing these sdAbs to human 71 

serum albumin (HSA) to increase the serum half-life without affecting the binding and 72 

activity of the fragments [14]. These VH or VL sdAbs (molecular weight of 12-15 kDa) can be 73 

successfully obtained by individual rescuing of the original dimeric VH and VL domains of 74 

conventional IgG, and expressing them as monomers [15,16]. Also, the HCAbs  or IgNAR are 75 

devoid of light chains, and their variable domains (VHH or VNAR) have been rescued as 76 

sdAbs utilising various established antibody engineering methodologies [17,18]. 77 

The VH, VHH, and VNAR domains represent the major types of sdAbs (Figure 1). The VH 78 

domain is composed of two anti-parallel β-sheets, one with six strands (A’, G, F, C, C’, and 79 

C’’) and the other with four strands (A, B, E, and D) [19]. A conserved disulphide bond, 80 

between two highly conserved cysteines (Cys), links the two sheets [20]. The inter-strand 81 

bridges between B-C, C’-C’’, and F-G strands normally form CDRs 1, 2, and 3, respectively. 82 

The VH and VL interface is mainly constructed through packing of strands C, C’, F, and G 83 

[21]. A high degree of sequence similarity (~80%) was observed between VH of family III and 84 

the variable domain (VHH) of HCAbs [22], and both can be superimposed precisely [23,24]. 85 

Despite the high sequence conservation, four positions are constitutively different between 86 

VH and VHH antibodies (V37F/Y, G44E/Q, L45R/C, and W47G/S/L/F) [19,25]. These four 87 

substitutions represent the hallmark of camelisation/humanisation strategies. The VHH 88 

domain displays a Cys residue either in the CDR1 or position 45 (FW region), and to 89 

establish a disulphide bond, a second Cys can be introduced in the CDR3 during the variable 90 

(V) - diverse (D) - joining (J) genes recombination of VHH domains [22]. The third type of 91 
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sdAb is VNAR protein that represents the smallest (~12 kDa) natural binding vertebrate 92 

domains [26]. Only a small sequence similarity (25-30%) to mammalian heavy chains was 93 

noticed, and the VNARs were more related to the V regions of T-cell receptor (TCR) or Ig 94 

kappa light chains [26,27]. Despite this low sequence similarity, the VNARs can still be folded 95 

and superimposed in a similar manner to classical VH or VL domains [28]. This can be 96 

attributed to classical canonical Cys residues (positions 35 and 107) that stabilise the standard 97 

Ig fold, along with an invariant tryptophan at position 36 [29]. Sequence analysis has permitted 98 

the classification of VNAR domains into five types based on the presence or absence of non-99 

canonical Cys at specific positions (reviewed by [7]. The availability of these Cys residues 100 

was reflected by the ability of these VNARs to create different paratopes [28,30–32].   101 

Previous research of the sdAbs field has comprehensively analysed individual domains 102 

obtained from human, camelidae, or shark species. Some of these studies have exclusively 103 

investigated their structures [33–37], while others have focused on their isolation and 104 

characterisation processes [14,38–43]. However, a collective structural analysis of the three types 105 

of sdAbs in terms of CDR lengths and binding site shapes has still not been fully elucidated, 106 

and is therefore the focus of this article. Consequently, this structural analysis uses highly 107 

reliable crystal structures, which can be obtained from the Protein Data Bank (PDB) [44]. 108 

Although the retrieved structures might not be a full representation of nature, since 109 

crystallisation can be dishearteningly limited by technical feasibility and cost, they can still 110 

provide high quality structural information, which can always be complemented by literature 111 

data to fulfil each criteria of the analysis. 112 

The correlation between the sdAbs’ molecular weight and surface area was investigated 113 

because different amino acids can fold into various three-dimensional structures of similar 114 

surface area. The Molecular Surface Area (MSA) indicates an envelope of solute-solvent 115 
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interface from which the solvent molecules are excluded [45]. MSA can be considered as the 116 

proper surface to be used for a quantitative evaluation of the hydrophobic effect [46].   On the 117 

other hand, the Solvent Accessible Surface Area (SASA) was originally proposed to 118 

represent the area of contact between protein and solvent, and to quantify hydrophobic burial 119 

[47]. It also demonstrates the area over which the centre of a solvent molecule can be placed 120 

while retaining van der Waals contacts with a specific atom and not penetrating others. 121 

Analysis of surface area has been used by researchers to evaluate their individual sdAb 122 

[35,41,48]. However, a collective analysis of this not fully explored parameter can provide key 123 

information about these three types of sdAbs, in terms of folding or binding conformational 124 

changes, as has been shown previously in other protein classes [49].  125 

With respect to antigen binding, sdAbs protruding binding sites can comfortably bind the 126 

cleft of many enzymes [50,51], but might not be expected to bind small antigens such as 127 

haptens that normally bind in a pocket at the VH–VL interface [52]. Nevertheless, several 128 

VHH domains have successfully detected different haptens including herbicides, 129 

trinitrotoluene, caffeine, mycotoxins, steroids and therapeutic drugs [53–60]. Consequently, 130 

different sdAbs crystal structures raised against two antigen classes, lysozyme and the 131 

haptens methotrexate (MTX) and azo dye were used as models to understand this interaction 132 

process.  133 

 134 

Methods 135 

Antibody selection 136 

The crystal structures of different sdAbs were retrieved from the PDB. The utilised search 137 

terms were "single domain antibody", "heavy chain antibody", "heavy chain only antibody", 138 
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"camel antibody", "VHH antibody", "llama antibody", "dromedary antibody", "shark 139 

antibody", "shark VNAR", or "shark IgNAR". Only structures with acceptable resolution (3 140 

Å or less) were included in the analysis to allow a confident determination of the molecular 141 

interactions and structures [61–63]. Using this search profile, a total of 123 VHH crystal 142 

structures were obtained from different species including camel (34), llama (82), and alpaca 143 

(7). Also, 16 VNAR structures were examined from nurse shark (6), spiny dogfish (8), and 144 

spotted wobbegong (2), whilst only 10 VH crustal structures were available in the PDB. 145 

Therefore, the total retrieved crystal structures have summed up to 149 crystal structures. 146 

 147 

CDRs length and binding shape analyses 148 

The sdAbs sequences acquired from the PDB, and analysed using BioEdit Sequence 149 

Alignment Editor, version 7.2.5 [64]. ClustalW Multiple alignment was used to align 150 

sequences of the same formats. The three CDRs of the VH fragments were defined using the 151 

standard Kabat numbering system [65]. CDRs of the VHH and VNAR domains were 152 

determined following standard definitions [28,39,66,67]. The MSA and SASA were calculated in 153 

square angstrom (Å²) using PyMOL (academic version). The surface topography of the 154 

sdAbs is majorly affected by the shape and length of CDR3 and, therefore, the paratope shape 155 

analysis was mainly based on the orientation of CDR3. Three types of CDR3 shapes were 156 

observed and denoted as extended, short/flat, or pleated CDR3. This classification was 157 

mainly based on whether any specific CDR3 was extended beyond the other CDRs 158 

(extended), or within the same boundaries of other CDRs (short/flat), or flipped to the side of 159 

the sdAbs (pleated).  The binding shape of one VHH crystal structure (1SJV) was excluded 160 

from binding shape (CDR3) analysis because it showed an abnormal extension of CDR3 and 161 
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FW4 (Supplementary Table 1). Two other structures (1VER and 1SHM) were also not 162 

included since they did not display CDR3 main chain orientation. 163 

Electrostatic potential and docking analysis 164 

Electrostatic potential of the selected crystal structures were calculated using Python 165 

Molecule Viewer (PMV) Version 1.5.6 [68]. The electrostatic potential was measured 166 

(Compute>Electrostatics>Compute Potential using APBS), in accordance with Adaptive 167 

Poisson-Boltzmann Solver (APBS) Version 0.5.1. The energy was mapped to the surface 168 

with medium surface quality and 1 Å distance from the surface 169 

(Compute>Electrostatics>Map Potential to Surface). The map colour was coded as white: 0 170 

kT/e, blue: 13.7 kT/e, red: -13.7 kT/e.  171 

The antibody-antigen docking analysis was performed using the molecular docking and 172 

visual screening program AutoDock Vina [69]. Both the antibodies and antigen (methotrexate) 173 

structures were retrieved from the PDB and saved in pdb format. Polar hydrogen atoms were 174 

added to the antibodies' models, and the produced models were saved as pdbqt files. A 175 

potential option within AutoDock Tools is the ability to determine the docking site of the 176 

antibody by setting the dimensions of the docking grid box (Grid>Grid box). This can be 177 

achieved by setting the x, y, and z axes of the grid box to cover the binding sites of the 178 

antibody. The docking process was commanded through the utilisation of the command 179 

prompt within Windows 8. The commands script has included (>cd "Desktop\(file name)"; 180 

>”\Program Files (x86)\The Scripps Research Institute\Vina\vina.exe" –help; >”\Program 181 

Files (x86)\The Scripps Research Institute\Vina\vina.exe" --config conf.txt --log log.txt). 182 

Upon completion of the docking process, the models were exported to the assigned 183 

destination file. The generated models, with a descending order of affinity and root-mean-184 

square deviation (RMSD) values, were subsequently analysed by PyMOL.  185 
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Statistical analysis 186 

The statistical analysis was conducted using GraphPad Prism® version 5. One-way ANOVA 187 

statistical test (with Bonferroni's Post-Test analysis) was used to compare the average MSA 188 

and SASA of the three sdAb types (Table 1). Statistical no significance (ns) was concluded 189 

with P > 0.05. While the statistical significance was denoted with one star (*) if P ≤ 0.05, and 190 

three stars (***) if P ≤ 0.001. 191 

 192 

Results 193 

CDRs Length and binding sites shape 194 

The analysis included crystal structures of sdAbs obtained from different species. The CDR 195 

length examination of each individual type of sdAb revealed conservation in lengths of 196 

CDR1 and CDR2, and expected high diversity in CDR3 lengths (Figure 2). The lengths of 197 

CDR1 were identical in each group of VH (6 amino acids) and VNAR (8 amino acids) 198 

domains, irrespective of binding specificity and type of antigen target (Figure 2A). The VHH 199 

fragments were dominated (92%) by 8 amino acid lengths, and were similar to CDR1 lengths 200 

of VNAR fragments. The longest CDR1 (19 amino acids) was displayed by VHH antibody 201 

(3K3Q), whereas 5 amino acid CDR1 were observed in four VHH crystal structures (4C58, 202 

4C59, 1OP9, and 3EBA). Examination of CDR2 lengths of VH domains revealed a single 203 

length of 16 amino acids (Figure 2A). The VHH domains were mainly represented by CDR2 204 

lengths of 10 (84 sequences) and 9 (26 sequences) amino acids (Figure 2B). The VNAR 205 

domains do not display CDR2 and, therefore, were not included in CDR2 length 206 

comparisons. CDR3 lengths of VHH domains reflected a normal distribution model with 207 

CDR3 lengths ranging from 7-26 amino acids (Figure 2C).  The more frequently adopted 208 
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CDR3 lengths were 17, 18, and 8 amino acids for VHH, VNAR, and VH crystal structures, 209 

respectively (Figure 2C). The VNAR crystal structure of 3MOQ possessed the longest CDR3 210 

represented by 29 amino acids, while the shortest CDR3 lengths (6 amino acids) were 211 

observed in two VH crystal structures, 2UZI and 2VH5. 212 

The examined sdAbs CDR3 have adopted either an extended, flat/short, or pleated 213 

configuration, as exemplified in Figure 3, and detailed in Supplementary Tables 1-3. These 214 

results were noticed by examining the main chain confirmation of the 146 sdAbs (121 VHH, 215 

15 VNAR, and 10 VH). Figure 4 illustrates the orientation of all these crystal structures, 216 

which are divided into 13 short/flat (6 VHH, 5 VH, and 2 VNAR), 28 extended (15 VHH, 10 217 

VNAR, and 3 VH), and 105 pleated (101 VH, 2 VNAR, and 2 VH) CDR3 of these domains.  218 

 219 

Surface Area and Molecular Weight   220 

The VNAR domains showed the smallest average molecular weight of ~12 kDa, followed by 221 

VH and VHH domains (Table 1). VHH crystal structure (3K3Q) presented the largest 222 

molecular weight of 14.47 kDa, in contrast to the smallest crystal structure (11.31 kDa) 223 

recorded by a VNAR structure (4HGM). The differences in the molecular weight among the 224 

examined sdAbs were reflected in their total MSA. The average MSA of VNAR crystal 225 

structures was ~1000 Å² less than for the VHH domains, and this difference was statistically 226 

significant (Table 1). Even with this large difference in MSA between VHH and VNAR, the 227 

average SASAs were surprisingly very close, with no statistical difference, with VNAR 228 

fragments slightly exceeding the VHH antibodies (Table 1). One of the VHH structures 229 

(5C2U) had the largest MSA, whilst the VNAR (1VER) domain was the smallest. In contrast, 230 

there was no statistical difference between the three sdAb types in terms of SASA (Table 1). 231 

A VNAR domain (2Z8W) had the largest exposed surface to solvent, and the VHH antibody 232 
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(4IOS) was the lowest (Table 1).  The VH domains were positioned in the middle, between 233 

VNAR and VHH, in terms of average MSA and molecular weight. Subsequently, the VHH 234 

domains showed the highest molecular weight and surface area, however, this was not 235 

reflected in their SASA that was slightly surpassed by VNAR domains. 236 

Binding mode against different antigen classes 237 

Anti-haptens sdAbs 238 

The analysed structures included eight llama VHH crystal structures that were developed 239 

against haptens (Supplementary Table 4), and half of these structures were crystallised in 240 

complex with the haptens, as summarised in Figure 5 (A-D). All eight VHH structures 241 

displayed pleated CDR3 of 17-18 amino acid lengths. Bending of CDR3 successfully created 242 

a pocket shape at the side of the antibodies as, for instance, displayed by 1QD0 and 1I3U in 243 

complex with azo dyes (Figures 5 A and B). Furthermore, the binding pockets of these two 244 

antibodies were positively charged to accommodate the azo dyes (Figures 6 A and B). 245 

Another interesting model of binding was represented by four VHH crystal structures (3QXT, 246 

3QXV, 3QXU, and 3QXW). The former two structures were crystallised in complex with 247 

MTX, and the latter two were their free forms (Supplementary Table 4). The positively 248 

charged side of MTX would be ideally expected to extend towards a negatively charged 249 

cluster within the CDR3 generated by three aspartate (Asp) residues. However, the two 250 

complexed VHH antibodies, 3QXT and 3QXV, showed MTX to be immersed into a tunnel-251 

shaped pocket below CDR1 (Fig 4 C and D). These pockets were neutral-slightly positively 252 

charged, and did not complement the immersed positively charged part of MTX (Figures 6 C 253 

and D).  In order to investigate this uncommon binding mode, docking of MTX to 3QXT and 254 

3QXV crystal structures were performed using Autodock vina. MTX displayed a polycyclic 255 
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structure containing five oxygen atoms clustered at one side of the structure, and eight 256 

nitrogen atoms, seven of which were located at the pteridine end. The 3QXT-MTX docking 257 

model showed a similar orientation at the pteridine end of MTX under CDR1, and the active 258 

groups of MTX bound to different amino acids including C24, R28, S30, R32, R74, N79, and 259 

T80 (Figure 5 E). The pteridine end of MTX, in the 3QXV-MTX model, was also inserted 260 

under CDR1 (Figure 5 F). Two main substitutions (N76K and Y79N) were crucially 261 

important in improving the binding affinity of 3QXV over 3QXT.    262 

Anti-lysozyme   263 

Nineteen crystallised sdAbs were reported against lysozyme, including 10 VHH, 3 VH, and 6 264 

VNAR crystal structures (Supplementary Table 5). The binding sites of these sdAbs were 265 

variable, and their CDR3 lengths ranged from 17-26, 17-18, and 11-12 amino acids for VHH, 266 

VNAR, and VH structures, respectively. The three VH domains displayed short CDR3 that 267 

were slightly extended to the side of these antibodies (Figure 7A). In addition, pleated CDR3 268 

configurations were found in all the 10 VHH structures and 2 type I VNARs, as shown in 269 

Figures 7B and C. The remaining four type II VNAR crystal structures showed α-helical 270 

extended CDR3 conformations (Figure 7D).  271 

These different binding site configurations provided an early indicator that the sdAbs might 272 

be recognising different sites of the enzyme and, therefore, it was necessary to investigate this 273 

further. Out of the nineteen sdAbs, 3 structures were crystallised as the free form (1OHQ, 274 

2I24, and 2I27), and 16 in complex with lysozyme (Supplementary Table 5). Consequently, it 275 

was possible to determine the binding sites of lysozyme-complexed structures by structural 276 

alignment, and these sdAbs were found to bind different sites of the enzyme, as shown in 277 

Figure 8A. Apart from 3 crystal structures (4IOC, 1OP9, and 3EBA), the majority of these 278 

sdAbs recognised different sites of a large groove within the lysozyme structure that 279 
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contained both positive, negative, and neutral patches, and made this location attractive for 280 

these antibodies (Figure 8B). Interestingly, two groups of sdAbs (coloured as cyan and 281 

magenta in Figures 8C and D) were able to share the same orientation of the middle part of 282 

their CDR3 (6 amino acid positions), despite being different sdAbs formats (VNAR and 283 

VHH) and configured distantly (Figure 8D). 284 

 285 

Discussion 286 

SdAbs are widely used in various biomedical applications [70]. Three widely used formats of 287 

sdAbs domains (VH, VHH, and VNAR) broadly share several features to be tagged as single 288 

domain binding fragments, such as their small size that is combined with high stability,  289 

expression yield, and nanomolar affinity [16,35,39,42,71,72]. However, a closer inspection of their 290 

structures can identify specific structural characteristics that are sufficient to explicitly 291 

maintain their individual identities. 292 

Determining the CDR lengths of antibodies is highly imperative, as the gross shape of 293 

antigen binding sites (pocket, groove, or flat surface) relies fundamentally on the lengths of 294 

these loops [73]. Despite this importance, CDR definition was associated with several 295 

challenges including different definition approaches, mainly by Kabat, Chothia, and IMGT 296 

[6,19,65,74–77].  The correlation process can also be hindered by the fact that different CDR 297 

lengths are likely to be developed against countless antigen targets. Since the examined 149 298 

crystal structures were raised against different antigens, it was important to examine whether 299 

these sdAb have generally fallen within the expected overall length spectrum and diversity of 300 

each species. CDR1 and CDR2 of the analysed VH and CDR1 of VNAR domains have 301 

shown relative restriction in length, when compared to the slightly variable VHH antibodies 302 
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(Figure 2). This length restriction was observed previously in CDR H1 and CDR H2 of 303 

conventional antibodies [78]. Comparably, CDR1 of VHH domains were found to be more 304 

variable than VH antibodies, and this phenomenon is attributed to somatic mutations of VHH 305 

germlines [79]. Another article has shown that CDR1 and CDR2 of VHH can display different 306 

canonical structures when compared to conventional VH domains [80].  307 

The unassembled VH and VL domains are generally characterised by their instability, and 308 

individual VH domains are notoriously known to be highly aggregated [81]. This aggregation 309 

tendency was previously attributed to the exposed hydrophobic patches located at the 310 

interface between the unassembled VH and VL domains. In the current study, the examined 311 

10 VH crystal structures were characterised by 8 amino acid CDR3 lengths (Figure 2). 312 

However, this length, is shorter than the anticipated 9-14 amino acids of human and mouse 313 

CDRH3 [82–84]. The four interface positions (37, 44, 45, and 47) within VH sdAb, which are 314 

different from VHH domains, were noticed to be hydrophobic, and can enhance the 315 

aggregation of VH domains. This aggregation-tendency might be augmented by the more 316 

frequent short CDR3 (8aa) of VH domains as observed in Figure 2C. In addition, two VH 317 

crystal structures, 2VYR and 3QYC, were noticed with long CDR3 of 15 and 16 aa, 318 

respectively. However, only 2VYR showed pleated CDR3 while 3QYC displayed 319 

exceptionally extended CDR3 (Figure 4).  Therefore, unlike VHH or VNAR domains, the 320 

short CDR3 did not provide VH domains with great ability to be extended beyond the other 321 

CDRs, or to bend across areas that are supposed to be covered by the VL domain (Figure 3). 322 

In comparison to VH antibodies, CDR3 lengths of the VHH and VNAR domains were 323 

longer, as represented by an average of 17 and 18 amino acids for VHH and VNAR 324 

structures, respectively (Figure 2). Generally, the VHH and VNAR average CDR3 lengths 325 

were in agreement with what has been observed by other researchers [22,38,85].  326 
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Despite the small length variance, between VHH and VNAR domains, their CDR3 327 

configurations were strikingly distinguishable. CDR3 represent a large proportion of the 328 

sdAbs and has an influence on their surface areas, while long CDR3s are generally required 329 

to generate extended or pleated shapes. The more frequent CDR3 lengths were observed to be 330 

17aa and 18aa for VHH domains and VNAR domains, respectively (Figure 2). Despite this 331 

similarity in the more frequent lengths, and the general tendency of VNAR and VHH to 332 

display long CDR3, pleated CDR3 were observed in a large proportion of VHH domains 333 

(~83%), whilst the extended CDR3 represented ~67% of the analysed VNAR domains 334 

(Figure 4). Therefore, long CDR3 are a crucial perquisite to generate either pleated or 335 

extended shapes, but might not govern the final CDR3 shape or surface area of the sdAbs per 336 

se.   The long and pleated CDR3 of VHH antibodies can reduce their aggregation, when 337 

compared to VHH antibodies, since they can potentially cover a large proportion of the VL 338 

dimerisation regions. This mechanism can also support the presence of hydrophilic residues 339 

at positions 37, 44, 45, and 47 of VHH domains in improving their solubility. The structural 340 

bending of CDR3 might not be vital for VNARs, because these domains can display more 341 

polar and charged residues at regions corresponding to the VH-VL interface [86]. These well 342 

distributed charged residues (Glu46, Lys82, Gln84, Arg101, and Lys104) can provide both a 343 

hydrophilic surface to the surrounding environment, and shield the conserved hydrophobic 344 

core residues [32]. Although only 2 out of the 16 VNAR structures showed pleated CDR3, the 345 

two disulphide bonds within these domains held their CDR3 loops into the direction of HV2 346 

[51]. This tightly packed (type I) VNAR was observed only in nurse shark [29]. Whilst 347 

extension of CDR3 can remarkably extend the binding sites of these VNAR domains to 348 

penetrate into active sites of different targets, especially enzymes [34]. 349 

An exclusive feature of the VNAR domain, which differentiated it from all the other 350 

domains, is the absence of CDR2 and the presence of two hypervariable regions (HV2 and 351 
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HV4). The lack of CDR2 originated from the absence of two strands (C’ and C’’) that are 352 

normally available within the conventional VH domains [32,51,87]. This structural property has 353 

caused a reduction in VNAR sequence lengths that are shorter than VH and VHH antibodies. 354 

Consequently, all these structural differences might result in decreasing the average 355 

molecular weight of VNAR fragments when compared to VH and VHH antibodies (Table 1). 356 

In addition, these features were reflected in the measured MSA, since the measured average 357 

MSA of VNAR domains was ~1000 Å² smaller than VHH antibodies. Despite the large 358 

difference in MSA between VNAR and VHH domains, their SASA values were very close 359 

(Table 1). The SASA similarity can be attributed to the fact that the number of amino acid 360 

residues that become buried when the chain folds increases with monomeric protein size [88]. 361 

This folding tendency can reduce the polypeptide chain surface in contact with solvent to 362 

replace solvent-solute interaction with solvent-solvent counterparts that are more favourable 363 

thermodynamically [89].  364 

Small haptens are not expected to be targeted efficiently by sdAbs since they possess a 365 

limited number of conformational epitopes suitable for recognition by protruding sdAbs 366 

paratopes. However, hapten-binding VHH domains have been successfully isolated using 367 

strong selection systems [53,56,90,91]. All the examined anti-hapten VHH domains showed 368 

pleated CDR3 (Supplementary Table 4). Despite the absence of a VL domain, the azo dyes 369 

RR1 and RR6 recognition mechanism by VHH domains (1I3U and 1QD0) closely mimics 370 

traditional VH/VL interfaces, where the hapten pocket is located at the former VL interface 371 

created by their pleated CDR3 (Figure 5). The binding pockets of these two antibodies were 372 

positively charged (Figures 6A and B), and have electrostatically complemented the negative 373 

charges of 11 (Azo dye RR6) and 7 (Azo dye RR1) oxygen atoms presented exposed to the 374 

binding pockets. The generated pockets electrostatic potential within these VHH domains 375 

have complemented the charges of the utilised haptens, as was shown in full-length 376 
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antibodies [78]. However, the binding pocket of 1QD0 was not large enough to accommodate 377 

the entire azo dye (RR6), and only accommodated parts of this antigen, and CDR1 loop 378 

provides a strong interaction for the azo dye Reactive Red 6 [90]. The availability of both RR1 379 

complexed (1L3U) and free (1L3V) VHH crystal structures can provide information on 380 

whether CDR3 is involved in an antigen-induced binding by displaying specific 381 

conformational changes. Spinelli et al., suggested major involvement of CDR3, followed by 382 

CDR2, and a framework residue in the binding process [92]. Also, the authors observed that 383 

there were movements of 2.0-3.5 Å of the CDR2 and CDR3 towards the RR1 hapten, which 384 

suggests a possible antigen-induced reorientation of CDR3. Another hapten-binding model 385 

involved two VHH crystal structures in conjugation with MTX.  Fanning and colleagues 386 

(2011) have shown, through CDRs grafting experiments, that changing five amino acids at 387 

positions 76-80, has resulted in improving the binding affinity by 1000 folds [93]. These 388 

results were confirmed by the docking analysis in the present study (Figurse 5 E and F), and 389 

positions 76 and 79 have dramatically improved the binding affinity of 3QXV. In addition, 390 

the reduced positive charge of 3QXV binding pocket has accommodated the positively 391 

charged ptredine end of MTX better than the slightly positive charged pocket of 3QXT 392 

(Figures 6 C and D). Haptens are not recognisable by the immune system unless conjugated 393 

to carrier molecules, and the design of hapten-carrier protein conjugates is key in the 394 

development of anti-hapten antibodies [78]. Fanning et al., used the oxygen rich end of MTX 395 

in the conjugation process. Generally, antibodies tend to recognise the outer epitopes of the 396 

conjugate, in this case the ptredine end, and if the conjugation process is inverted, the oxygen 397 

rich end will be more attractive for antibodies.  Also, MTX possess other antigenic groups 398 

that can be considered as potential epitopes, and other panels of antibodies might be active 399 

against other antigenic groups. Consequently, the proposed model was influenced by the 400 

conjugation process and CDRs grafting design and mutations at two key positions (N76K and 401 
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Y79N) that has favoured 3QXV over 3QXT, and dictated the favoured MTX orientation 402 

underneath CDR1. 403 

The second binding model was based on the structurally well-established human and hen 404 

egg-white lysozyme, with molecular weight of 14.7 and 14.3 kDa, respectively 405 

(Supplementary Table 5). Lysozyme is highly immunogenic, and the complete structure of 406 

the protein was determined and targeted by various antibodies [94]. In contrast to the anti-407 

hapten antibodies, lysozyme binders have displayed short, pleated, and extended CDR3 408 

(Figure 7). This diversity in binding site configurations might originate from the fact that 409 

these sdAbs (VHH, VH, and VNAR domains) have recognised different sites of the active 410 

pocket-shaped site of lysozyme (Figure 8A). This pocket was shown previously to attract 411 

various VHH antibodies, which was strikingly unfavourable to conventional murine 412 

antibodies that preferred planar surfaces located outside the active site of the enzyme [50]. 413 

Subsequently, the sdAbs have restrictively developed pleated CDR3 to accommodate 414 

haptens, and were more flexible in recognising lysozyme through different CDR3 415 

orientations. 416 

In conclusion, each of the VH, VHH, or VNAR domains has maintained a distinguishable 417 

level of surface area and molecular weight to maintain their structural stability. Despite the 418 

structural similarity within each class, the analysed sdAbs have shown remarkable ability to 419 

orientate their CDR3 in various conformations to recognise diverse range of antigens 420 

including proteins, glycoproteins, peptides, enzymes, and even haptens. This remarkable 421 

flexibility can extend their expediency beyond their distinct ability to bind enzyme clefts or 422 

cryptic epitopes as widely appreciated within this research field. Subsequently, this research 423 

suggests that there is potential for these sdAbs to be exploited in various immunodiagnostics, 424 

biosensors, photothermal therapies, and nanoparticles conjugation. 425 
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Tables 714 

Table 1: Measurements of MSA, SASA, and molecular weight 715 

 716 

    VHH VH VNAR 

Molecular 

Surface Area (Å²) 

Average 

(±SEM) 
12047.5  
(49.76) 

11563.3 (156.4) 11051.5 (150.33) 

Highest 5C2U: 13633 2VYR: 12435 3MOQ: 12367 

Lowest 1VHP: 10372 4PGJ: 10456 1VER: 10040 
Statistics VHH vs VH: * VH vs VNAR: ns VHH vs VNAR: *** 

Solvent 

Accessible 

Surface Area (Å²) 

Average 

(±SEM) 
6571.3  
(25.5) 

6454.7  
(98.91) 6587.8 (124.28) 

Highest 4B50: 7382 3QYC: 6976 2Z8W: 7434 
Lowest 4IOS: 5818 4PGJ: 6036 1VER: 5893 

Statistics VHH vs VH: ns VH vs VNAR: ns VHH vs VNAR: ns 

Molecular 

Weight (kDa) 

Average 

(±SEM) 
13.3  

(0.04) 
12.9  

(0.11) 
12.2  

(0.12) 
Highest 3K3Q: 14.47 2VYR: 13.74 3MOQ: 13.31 

Lowest 4X7F: 12.32 
3ZHD, 2VH5: 

12.64 
4HGM: 11.31 

 717 

 718 

  719 
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Figure legends 720 

Figure 1: Crystal structures of sdAbs 721 
Three sdAb types were analysed including A) VH (1OHQ), B) VHH (1BZQ), and VNAR 722 
(1VES) as examples from each type. The variable region within these domains are called 723 
complementarity determining region (CDR) and hypervariable region (HV). The CDR 724 
regions were colour coded for illustration as CDR1: red, CDR2: green, CDR3: blue, HV2 725 
(VNAR): yellow, and HV4(VNAR): magenta. These crystal structures were selected as 726 
examples. Structures were viewed by PyMOL 1.3 (academic version). 727 
 728 
 729 
Figure 2: CDRs length distribution of sdAbs 730 
Length illustration of A) CDR1, B) CDR2, and C) CDR3. The analysed sequences were 123, 731 
10, and 16 sequences for VHH, VH, and VNAR domains, respectively.  732 
 733 
Figure 3: Binding site analysis of different sdAbs 734 
CDRs orientation of VHH, VH, and VNAR domains. These domains characterised by either 735 
an extended, flat, or pleated CDR3. The CDR regions were colour coded as CDR1: red, 736 
CDR2: green, CDR3: blue, HV2 (VNAR): yellow, and HV4(VNAR): magenta. These crystal 737 
structures were selected as examples, and their PDB entry are depicted at the lower corner of 738 
each picture. Structures were viewed by PyMOL 1.3 (academic version). 739 
 740 
Figure 4: CDR3 backbone orientation of sdAbs 741 
The CDR3 backbone orientation of sdAbs were grouped into either flat, extended, or pleated 742 
CDR3. The CDR regions were colour coded as CDR1: red, CDR2: green, CDR3: blue. 743 
Structures were grouped and viewed by PyMOL 1.3 (academic version).  744 
 745 
Figure 5: VHH domains crystallised or docked with their hapten targets.   746 
The binding surfaces of VHH-hapten complexes are demonstrated in PDB entries A) 1QD0 747 
crystal structure  (VHH-azo dye Reactive Red (RR6)), B) 1l3U crystal structure  (VHH-azo 748 
dye Reactive Red (RR1)), C) 3QXT crystal structure (VHH-Methotrexate), D) 3QXV crystal 749 
structure (VHH-Methotrexate), E) 3QXT-Methotrexate docking model, F) 3QXV-750 
Methotrexate docking model. The CDR regions were colour coded as CDR1: red, CDR2: 751 
green, CDR3: blue, CDR4 (in E and F): yellow. Structures were viewed by PyMOL 1.3 752 
(academic version). 753 
 754 
Figure 6: Surface-mapped electrostatic potential of VHH domains crystallised with 755 
their hapten targets .  756 
The binding surfaces of four VHH-hapten complexes are demonstrated in four PDB entries 757 
A) 1QD0 (VHH-azo dye Reactive Red (RR6)), B) 1l3U (VHH-azo dye Reactive Red (RR1)), 758 
C) 3QXT (VHH-Methotrexate), and D) 3QXV (VHH-Methotrexate). Measurements were 759 
calculated utilising Python Molecule Viewer (PMV) Version 1.5.6. The produced energy was 760 
mapped to the surface with medium surface quality and 1 Å distance from the surface. The 761 
map colour was coded as white: 0 kT/e, Blue: 13.7 kT/e, Red: -13.7 kT/e.  762 
 763 
Figure 7: CDR3 backbone configuration of anti-lysozyme sdAbs 764 
The backbone configuration of anti-lysozyme A) VH, B) VHH, C) pleated type I VNAR 765 
(1SQ2 and 1T6V), D) Extended type II VNAR (2I24, 2I25, 2I26 and 2I27) domains. The 766 
CDR regions were colour coded as CDR1: red, CDR2: green, CDR3: blue, HV2 (VNAR): 767 
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yellow, and HV4 (VNAR): magenta. Structures were viewed by PyMOL 1.3 (academic 768 
version). 769 
 770 
Figure 8: Binding sites of anti-lysozyme sdAbs 771 
The anti-lysozyme crystal structures were grouped into seven groups. These groups were 772 
coloured as orange (4IOC), green (1OP9 and 3EBA), blue (1RI8 and 1RJC), yellow (4PGJ 773 
and 4U3X), magentas (1JTO, 1JTT, 1JTP, 1MEL, and1XFP), cyan (2I25 and 2I26), white 774 
(1SQ2 and 1T6V), and the lysozyme is red coloured.  A) Represent the binding sites of anti-775 
lysozyme sdAbs. B) electrostatic surface of lysozyme, which was configured in same 776 
orientation in image A. C) and D) illustrate the binding sites of two groups (cyan and 777 
magentas) to same binding site as side and top view, respectively. Structures were viewed by 778 
PyMOL 1.3 (academic version). 779 
 780 
 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 
 789 
 790 
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