34 research outputs found
A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families
Cardiac angiosarcoma (CAS) is a rare malignant tumour whose genetic basis is unknown. Here we show, by whole-exome sequencing of a TP53-negative Li-Fraumeni-like (LFL) family including CAS cases, that a missense variant (p.R117C) in POT1 (protection of telomeres 1) gene is responsible for CAS. The same gene alteration is found in two other LFL families with CAS, supporting the causal effect of the identified mutation. We extend the analysis to TP53-negative LFL families with no CAS and find the same mutation in a breast AS family. The mutation is recently found once in 121,324 studied alleles in ExAC server but it is not described in any other database or found in 1,520 Spanish controls. In silico structural analysis suggests how the mutation disrupts POT1 structure. Functional and in vitro studies demonstrate that carriers of the mutation show reduced telomere-bound POT1 levels, abnormally long telomeres and increased telomere fragility
Current clinical spectrum of common variable immunodeficiency in Spain: The multicentric nationwide GTEM-SEMI-CVID registry
Common variable immunodeficiency (CVID) constitutes a heterogenic group of primary immunodeficiency disorders with a wide-ranging clinical spectrum. CVID-associated non-infectious morbidity constitutes a major challenge requiring a full understanding of its pathophysiology and its clinical importance and global variability, especially considering the broad clinical, genetic, and regional heterogeneity of CVID disorders. This work aimed to develop a nationwide, multicenter, retrospective study over a 3-year period describing epidemiological, clinical, laboratory, therapeutic, and prognostic features of 250 CVID patients in Spain. The mean diagnostic delay was around 10 years and most patients initially presented with infectious complications followed by non-infectious immune disorders. However, infectious diseases were not the main cause of morbimortality. Non-infectious lung disease was extraordinarily frequent in our registry affecting approximately 60% of the patients. More than one-third of the patients in our cohort showed lymphadenopathies and splenomegaly in their follow-up, and more than 33% presented immune cytopenias, especially Evans' syndrome. Gastrointestinal disease was observed in more than 40% of the patients. Among biopsied organs in our cohort, benign lymphoproliferation was the principal histopathological alteration. Reaching 15.26%, the global prevalence of cancer in our registry was one of the highest reported to date, with non-Hodgkin B lymphoma being the most frequent. These data emphasize the importance of basic and translational research delving into the pathophysiological pathways involved in immune dysregulation and diffuse lymphocytic infiltration. This would reveal new tailored strategies to reduce immune complications, and the associated healthcare burden, and ensure a better quality of life for CVID patients
RET Fusion Testing in Patients With NSCLC: The RETING Study
Introduction: RET inhibitors with impressive overall response rates are now available for patients with NSCLC, yet the identi fication of RET fusions remains a dif ficult challenge. Most guidelines encourage the upfront use of next -generation sequencing (NGS), or alternatively, fluorescence in situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) when NGS is not possible or available. Taken together, the suboptimal performance of single-analyte assays to detect RET fusions, although consistent with the notion of encouraging universal NGS, is currently widening some of the clinical practice gaps in the implementation of predictive biomarkers in patients with advanced NSCLC. Methods: This situation prompted us to evaluate several RET assays in a large multicenter cohort of RET fusion -positive NSCLC (n 1 / 4 38) to obtain real -world data. In addition to RNA -based NGS (the criterion standard method), all positive specimens underwent break -apart RET FISH with two different assays and were also tested by an RT-PCR assay. Results: The most common RET partners were KIF5B (78.9%), followed by CCDC6 (15.8%). The two RET NGSpositive but FISH -negative samples contained a KIF5B(15)RET(12) fusion. The three RET fusions not identi fied with RT-PCR were AKAP13(35)-RET(12) , KIF5B(24)-RET(9) and KIF5B(24)-RET(11) . All three false -negative RT-PCR cases were FISH -positive, exhibited a typical break -apart pattern, and contained a very high number of positive tumor cells with both FISH assays. Signet ring cells, psammoma bodies, and pleomorphic features were frequently observed (in 34.2%, 39.5%, and 39.5% of tumors, respectively). Conclusions: In-depth knowledge of the advantages and disadvantages of the different RET testing methodologies could help clinical and molecular tumor boards implement and maintain sensible algorithms for the rapid and effective detection of RET fusions in patients with NSCLC. The likelihood of RET false -negative results with both FISH and RT-PCR reinforces the need for upfront NGS in patients with NSCLC. (c) 2024 The Authors. Published by Elsevier Inc. on behalf of the International Association for the Study of Lung Cancer. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice
The emerging SARS-CoV-2 variants of concern (VOCs) may display enhanced transmissibility, more severity and/or immune evasion; however, the pathogenesis of these new VOCs in experimental SARS-CoV-2 models or the potential infection of other animal species is not completely understood. Here we infected K18-hACE2 transgenic mice with B.1, B.1.351/Beta, B.1.617.2/Delta and BA.1.1/Omicron isolates and demonstrated heterogeneous infectivity and pathogenesis. B.1.351/Beta variant was the most pathogenic, while BA.1.1/Omicron led to lower viral RNA in the absence of major visible clinical signs. In parallel, we infected wildtype (WT) mice and confirmed that, contrary to B.1 and B.1.617.2/Delta, B.1.351/Beta and BA.1.1/Omicron can infect them. Infection in WT mice coursed without major clinical signs and viral RNA was transient and undetectable in the lungs by day 7 post-infection. In silico modeling supported these findings by predicting B.1.351/Beta receptor binding domain (RBD) mutations result in an increased affinity for both human and murine ACE2 receptors, while BA.1/Omicron RBD mutations only show increased affinity for murine ACE2.info:eu-repo/semantics/publishedVersio
Temperature dependence of plankton community metabolism in the subtropical and tropical oceans
Here we assess the temperature dependence of the metabolic rates (gross primary production
(GPP), community respiration (CR), and the ratio GPP/CR) of oceanic plankton communities. We compile
data from 133 stations of the Malaspina 2010 Expedition, distributed among the subtropical and tropical
Atlantic, Pacific, and Indian oceans. We used the in vitro technique to measured metabolic rates during 24 h
incubations at three different sampled depths: surface, 20%, and 1% of the photosynthetically active
radiation measured at surface. We also measured the % of ultraviolet B radiation (UVB) penetrating at surface
waters. GPP and CR rates increased with warming, albeit different responses were observed for each sampled
depth. The overall GPP/CR ratio declined with warming. Higher activation energies (Ea) were derived for
both processes (GPPChla = 0.97; CRChla = 1.26; CRHPA = 0.95 eV) compared to those previously reported. The
Indian Ocean showed the highest Ea (GPPChla = 1.70; CRChla = 1.48; CRHPA = 0.57 eV), while the Atlantic
Ocean showed the lowest (GPPChla = 0.86; CRChla = 0.77; CRHPA = 0.13 eV). We believe that the difference
between previous assessments and the ones presented here can be explained by the overrepresentation of
Atlantic communities in the previous data sets. We found that UVB radiation also affects the temperature
dependence of surface GPP, which decreased rather than increased under high levels of UVB. Ocean
warming, which causes stratification and oligotrophication of the subtropical and tropical oceans, may lead
to reduced surface GPP as a result of increased penetration of UVB radiation.En prens
Inverse Association between Dietary Iron Intake and Gastric Cancer: A Pooled Analysis of Case-Control Studies of the Stop Consortium
Background: Inconsistent findings have been reported regarding the relationship between dietary iron intake and the risk of gastric cancer (GC). Methods: We pooled data from 11 case-control studies from the Stomach Cancer Pooling (StoP) Project. Total dietary iron intake was derived from food frequency questionnaires combined with national nutritional tables. We derived the odds ratios (ORs) and 95% confidence intervals (CIs) for quartiles of dietary iron through multivariable unconditional logistic regression models. Secondary analyses stratified by sex, smoking status, caloric intake, anatomical subsite and histological type were performed. Results: Among 4658 cases and 12247 controls, dietary iron intake was inversely associated with GC (per quartile OR 0.88; 95% CI: 0.83-0.93). Results were similar between cardia (OR = 0.85, 95% CI = 0.77-0.94) and non-cardia GC (OR = 0.87, 95% CI = 0.81-0.94), and for diffuse (OR = 0.79, 95% CI = 0.69-0.89) and intestinal type (OR = 0.88, 95% CI = 0.79-0.98). Iron intake exerted an independent effect from that of smoking and salt intake. Additional adjustment by meat and fruit/vegetable intake did not alter the results. Conclusions: Dietary iron is inversely related to GC, with no difference by subsite or histological type. While the results should be interpreted with caution, they provide evidence against a direct effect of iron in gastric carcinogenesis
Coffee consumption and gastric cancer: a pooled analysis from the Stomach cancer Pooling Project consortium
Objective: This study aimed to evaluate and quantify the relationship between coffee and gastric cancer using a uniquely large dataset from an international consortium of observational studies on gastric cancer, including data from 18 studies, for a total of 8198 cases and 21 419 controls.
Methods: A two-stage approach was used to obtain the pooled odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) for coffee drinkers versus never or rare drinkers. A one-stage logistic mixed-effects model with a random intercept for each study was used to estimate the dose-response relationship. Estimates were adjusted for sex, age and the main recognized risk factors for gastric cancer.
Results: Compared to never or rare coffee drinkers, the estimated pooled OR for coffee drinkers was 1.03 (95% CI, 0.94-1.13). When the amount of coffee intake was considered, the pooled ORs were 0.91 (95% CI, 0.81-1.03) for drinkers of 1-2 cups per day, 0.95 (95% CI, 0.82-1.10) for 3-4 cups, and 0.95 (95% CI, 0.79-1.15) for five or more cups. An OR of 1.20 (95% CI, 0.91-1.58) was found for heavy coffee drinkers (seven or more cups of caffeinated coffee per day). A positive association emerged for high coffee intake (five or more cups per day) for gastric cardia cancer only.
Conclusions: These findings better quantify the previously available evidence of the absence of a relevant association between coffee consumption and gastric cancer
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia
BackgroundRecurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL.MethodsA total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation.ResultsWe identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed.DiscussionOur findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues