11 research outputs found
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%(1), much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factorSP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Recommended from our members
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Gliomas are the most common primary brain malignancies, with different
degrees of aggressiveness, variable prognosis and various heterogeneous
histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic
core, active and non-enhancing core. This intrinsic heterogeneity is also
portrayed in their radio-phenotype, as their sub-regions are depicted by
varying intensity profiles disseminated across multi-parametric magnetic
resonance imaging (mpMRI) scans, reflecting varying biological properties.
Their heterogeneous shape, extent, and location are some of the factors that
make these tumors difficult to resect, and in some cases inoperable. The amount
of resected tumor is a factor also considered in longitudinal scans, when
evaluating the apparent tumor for potential diagnosis of progression.
Furthermore, there is mounting evidence that accurate segmentation of the
various tumor sub-regions can offer the basis for quantitative image analysis
towards prediction of patient overall survival. This study assesses the
state-of-the-art machine learning (ML) methods used for brain tumor image
analysis in mpMRI scans, during the last seven instances of the International
Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we
focus on i) evaluating segmentations of the various glioma sub-regions in
pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue
of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO
criteria, and iii) predicting the overall survival from pre-operative mpMRI
scans of patients that underwent gross total resection. Finally, we investigate
the challenge of identifying the best ML algorithms for each of these tasks,
considering that apart from being diverse on each instance of the challenge,
the multi-institutional mpMRI BraTS dataset has also been a continuously
evolving/growing dataset
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Gliomas are the most common primary brain malignancies, with different
degrees of aggressiveness, variable prognosis and various heterogeneous
histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic
core, active and non-enhancing core. This intrinsic heterogeneity is also
portrayed in their radio-phenotype, as their sub-regions are depicted by
varying intensity profiles disseminated across multi-parametric magnetic
resonance imaging (mpMRI) scans, reflecting varying biological properties.
Their heterogeneous shape, extent, and location are some of the factors that
make these tumors difficult to resect, and in some cases inoperable. The amount
of resected tumor is a factor also considered in longitudinal scans, when
evaluating the apparent tumor for potential diagnosis of progression.
Furthermore, there is mounting evidence that accurate segmentation of the
various tumor sub-regions can offer the basis for quantitative image analysis
towards prediction of patient overall survival. This study assesses the
state-of-the-art machine learning (ML) methods used for brain tumor image
analysis in mpMRI scans, during the last seven instances of the International
Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we
focus on i) evaluating segmentations of the various glioma sub-regions in
pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue
of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO
criteria, and iii) predicting the overall survival from pre-operative mpMRI
scans of patients that underwent gross total resection. Finally, we investigate
the challenge of identifying the best ML algorithms for each of these tasks,
considering that apart from being diverse on each instance of the challenge,
the multi-institutional mpMRI BraTS dataset has also been a continuously
evolving/growing dataset
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.11Nsciescopu
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies