30 research outputs found

    Copy number variation burden does not predict severity of neurodevelopmental phenotype in children with a sex chromosome trisomy

    Get PDF
    Sex chromosome trisomies (SCTs) (XXX, XXY, and XYY karyotypes) are associated with an elevated risk of neurodevelopmental disorders. The range of severity of the phenotype is substantial. We considered whether this variable outcome was related to the presence of copy number variants (CNVs)—stretches of duplicated or deleted DNA. A sample of 125 children with an SCT were compared with 181 children of normal karyotype who had been given the same assessments. First, we compared the groups on measures of overall CNV burden: number of CNVs, total span of CNVs, and likely functional impact (probability of loss‐of‐function intolerance, pLI, summed over CNVs). Differences between groups were small relative to within‐group variance and not statistically significant on overall test. Next, we considered whether a measure of general neurodevelopmental impairment was predicted by pLI summed score, SCT versus comparison group, or the interaction between them. There was a substantial effect of SCT/comparison status but the pLI score was not predictive of outcomes in either group. We conclude that variable presence of CNVs is not a likely explanation for the wide phenotypic variation in children with SCTs. We discuss methodological challenges of testing whether CNVs are implicated in causing neurodevelopmental problems

    Stage 1 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: protocol for a test of the double hit hypothesis

    Get PDF
    Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. Group averages, however, obscure a wide range of outcomes. Hypothesis: The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. Neuroligin-4 genes are expressed from X and Y chromosomes; they play an important role in synaptic development and have been implicated in neurodevelopment. We predict that the impact of an additional sex chromosome on neurodevelopment will be correlated with common autosomal variants involved in related synaptic functions. We describe here an analysis plan for testing this hypothesis using existing data. The analysis of genotype-phenotype associations will be conducted after this plan is published and peer-reviewed. Methods: Neurodevelopmental data and DNA are available for 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Children from a twin study using the same phenotype measures will form two comparison groups (Ns = 184 and 186). Three indicators of a neurodevelopment disorder phenotype will be used: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Autosomal genes were identified by literature search on the basis of prior association with (a) speech/language/reading phenotypes and (b) synaptic function. Preselected regions of two genes scoring high on both criteria, CNTNAP2 and NRXN1, will be tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. We predict the association with one or both genes will be detectable in children with SCTs and stronger than in the comparison samples

    Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis [version 1; referees: 2 approved]

    Get PDF
    Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions.  Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.

    Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis

    Get PDF
    Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome

    Genome-wide screening for DNA variants associated with reading and language traits

    Get PDF
    This research was funded by: Max Planck Society, the University of St Andrews - Grant Number: 018696, US National Institutes of Health - Grant Number: P50 HD027802, Wellcome Trust - Grant Number: 090532/Z/09/Z, and Medical Research Council Hub Grant Grant Number: G0900747 91070Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome‐wide association scan (GWAS) meta‐analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading‐ and language‐related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P ≈ 10–7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on‐going international efforts to identify genes contributing to reading and language skills.Publisher PDFPeer reviewe

    Correction: Exome Sequencing in an Admixed Isolated Population IndicatesNFXL1 Variants Confer a Risk for Specific Language Impairment

    Get PDF
    Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10–4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Peer reviewe
    corecore