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Abstract

Sex chromosome trisomies (SCTs) (XXX, XXY, and XYY karyotypes) are associated with

an elevated risk of neurodevelopmental disorders. The range of severity of the pheno-

type is substantial. We considered whether this variable outcome was related to the

presence of copy number variants (CNVs)—stretches of duplicated or deleted DNA. A

sample of 125 children with an SCT were compared with 181 children of normal kar-

yotype who had been given the same assessments. First, we compared the groups on

measures of overall CNV burden: number of CNVs, total span of CNVs, and likely

functional impact (probability of loss-of-function intolerance, pLI, summed over CNVs).

Differences between groups were small relative to within-group variance and not sta-

tistically significant on overall test. Next, we considered whether a measure of general

neurodevelopmental impairment was predicted by pLI summed score, SCT versus com-

parison group, or the interaction between them. There was a substantial effect of

SCT/comparison status but the pLI score was not predictive of outcomes in either

group. We conclude that variable presence of CNVs is not a likely explanation for the

wide phenotypic variation in children with SCTs. We discuss methodological challenges

of testing whether CNVs are implicated in causing neurodevelopmental problems.
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1 | INTRODUCTION

Children who carry an extra X or Y chromosome do not have

any gross physical or mental abnormalities; however, there is a pro-

nounced increase in the risk of language disorders and autism (Bishop

et al., 2011). Investigation of the genetic correlates of language and

communication in children with sex chromosome trisomies (SCT) may

help understand the phenotypic variation seen in affected individuals

and could also lead to improved understanding of common neu-

rodevelopmental disorders in children with a typical karyotype. A

notable feature of SCT is the variability of the cognitive phenotype,

which is substantial in all three forms of SCT: trisomy X (47, XXX),

Klinefelter syndrome (47, XXY), and XYY karyotype also known as

Jacobs syndrome (47, XYY) (Bishop et al., 2011, 2019; Wilson, King &

Bishop, 2019). Some children have severe difficulties including intel-

lectual disability, behavioral problems, or autism spectrum disorder
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(ASD), while others have little or no evidence of neurodevelopmental

problems.

Such heterogeneity is a common feature of genetic neu-

rodevelopmental syndromes, even between individuals who carry the

same causative genetic variant. A range of explanations have been

proposed for this high level of phenotypic variability. Veltman and

Brunner (2010) suggested the “two-hit” hypothesis in which genetic

rearrangements can combine with a secondary variant to amplify the

impact of a microdeletion syndrome. Bishop and Scerif (2011)

extended this hypothesis to SCTs to develop a “double hit” model that

refers specifically to SCTs. In this particular case, the secondary vari-

ant is carried in a region that is common to both the X and Y chromo-

somes and maintains expression of both gene copies (gametologues).

They focused on a specific pathway which includes neurexin and

neuroligin genes, as this network has previously been associated with

synaptic formation and language disorders. Newbury, Simpson,

Thompson and Bishop (2018) tested the “double hit” hypothesis,

which maintains that the presence of an extra dose of neuroligin asso-

ciated with overexpression of NLGN4 on X and Y chromosomes could

amplify the impact of genetic variants (both on the sex chromosomes

and autosomes) that normally create only a minor risk for neu-

rodevelopmental abnormalities. They did not, however, find any sup-

port for that hypothesis from investigation of common variants in

either of the two candidate genes CNTNAP2 and NRXN1.

In the current article, we consider a possible “double hit” mechanism

in which an extra sex chromosome could amplify genetic risk, by inter-

acting with copy number variants (CNVs). The history of recognition of

CNVs is documented by Beckmann et al. (2007): these are deletions or

insertions affecting chunks of DNA 1 kb in length or larger, which were

first described in the 1960s and 1970s. It was a few decades later before

it was recognized that this kind of large-scale submicroscopic variation is

common across the genome and not necessarily pathological. Neverthe-

less, where CNVs are large and/or affect the function of key genes, they

are likely to be associated with neurodevelopmental disorders, notably

intellectual disability (Coe et al., 2014) and ASD (Sanders et al., 2015).

One study also found an association with severe developmental lan-

guage disorder (DLD) (Kalnak et al., 2018).

Because they are more likely to have pathogenic effects, large, dis-

ruptive CNVs tend to be relatively rare in populations. However, the

constraints upon smaller CNVs may be less pronounced and, as such,

these are more commonly observed. Simpson et al. (2015) found that

there was a slight increase in total CNV “burden” (i.e., cumulative size of

all CNVs across the genome) in cases of DLD and their relatives, com-

pared to a comparison sample. The fact that unaffected relatives showed

the increase as well as affected individuals suggested that an increased

number of CNVs may play a cumulative role in mediating an increased

risk of language disorder, but the precise impact may depend on the

location and extent of the CNV, and whether it disrupts gene function.

The specific combination of inherited events may also be important.

Here, we consider the role of CNVs in moderating neu-

rodevelopmental outcomes in children carrying SCTs. We explore two

hypotheses. The epistasis hypothesis predicts that the risk of neu-

rodevelopmental disorder associated with a CNV will be increased

when there is a trisomy, because of interactions between CNVs and

the overexpression of genes on the sex chromosomes. This relates to

the idea of a two-hit model (Veltman & Brunner, 2010), whereby the

effect of a microdeletion is not deterministic, but rather acts as a

risk factor that can increase the impact of deletions or duplications

elsewhere on the genome. This kind of mechanism is supported by

Girirajan et al. (2010) who found that individuals with severe neu-

rodevelopmental disorders associated with a deletion on chromosome

16p12.1 often had a second autosomal CNV. A genomic alteration

that may have little or no effect in an unaffected relative appeared to

have a particularly detrimental effect in combination with a second

“hit.” We extend this idea to encompass the notion that the impact

of a third copy of a sex chromosome may be amplified by a CNV

that might have little effect in a child with a normal complement of

chromosomes.

Alternatively, a quite different hypothesis—the burden hypothesis—

maintains there is an increased number of CNVs in individuals with

SCTs, across the entire genome. According to this hypothesis, the high

rate of neurodevelopmental problems could be a direct consequence of

an increased number of CNVs—perhaps because whatever mechanism

leads to a trisomy also disrupts CNV checkpoints.

The best source of evidence for an increased number of CNVs in

SCT cases comes from Rocca et al. (2016), who presented evidence

that men with Klinefelter syndrome (47, XXY) had an unusually high

number of X-chromosome CNVs. They compared CNVs on the X-

chromosome in 94 men with Klinefelter (47, XXY) syndrome to that in

85 controls (43 males and 42 females), and reported a higher number

of CNVs, especially duplications, in the Klinefelter group. Thirty-nine

of them (41.5%) carried CNVs, compared to 12/42, (28.6%) of control

females, and 8/43, (18.6%) of control males. As the authors noted, the

presence of additional CNVs (either in terms of burden, or specific

CNVs that “hit” complementary genetic pathways) in some individuals

could provide an explanation for the variable phenotype, but they did

not test for associations with phenotype in their sample. Their study

raised the further question of whether an increased rate of CNVs

might be seen in other SCTs—XXX and XYY—and whether these

might be found on the autosomes as well as the X-chromosome.

Further circumstantial evidence for the burden hypothesis and the

impact of CNVs in cases of SCT comes from Le Gall et al. (2017), who

focused on a group of 14 patients with SCTs in whom an additional

causative autosomal copy number event was suspected because of an

unusually severe phenotype involving intellectual disability or other

severe developmental disorder. They found seven patients carried a

pathogenic CNV (one with Williams–Beuren syndrome, one with

7q11.23 duplication, one with 17q12 duplication, three with 16p11.2

duplication and one with a 15q11.3 deletion). It is important to note

that the breakpoints of individual CNVs vary between cases, and that

for example the three 16p11.2 duplications will differ in their start and

stop point in the genome. They additionally reported that two further

cases carried likely pathogenic CNVs and five carried a CNV of uncer-

tain significance. Because their report focused only on cases with a

known additional micro-deletion or -duplication, the authors were not,

however, able to estimate the prevalence of additional pathogenic
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CNVs in cases of SCT, or to show that a CNV was specifically related

to the severity of the phenotype.

2 | METHODOLOGICAL CONSIDERATIONS

2.1 | Measurement of CNVs

The simplest approach to measuring CNV burden is to count the num-

ber of such events. However, each individual CNV event can vary

substantially in size, and we would expect the total extent of coverage

of all CNVs to also be important. Within the “burden” model, large

and rare CNVs have been shown to be related to the incidence

of neurodevelopmental disorder, presumably because larger events

have a higher likelihood of affecting important genes. Moreover,

larger events in the wider CNV literature are correlated with more

severe clinical presentation (Girirajan et al., 2010). Furthermore, the

impact of a CNV will depend on whether or not it affects the function

of a dosage sensitive gene. More recently, large population sequence

data have allowed the development of gene dosage-sensitivity mea-

sures such as the pLI score (probability of being loss-of-function intol-

erant) reported in the Exome Aggregation Consortium database

(ExAC: http://exac.broadinstitute.org/) (Lek et al., 2016). This metric

is based upon the observed frequency of loss-of-function variants in

population control data compared to that expected given the gene

size. A small event that disrupts a dosage sensitive gene could have

a much higher burden than a large event that affects a large number

of dosage-insensitive genes. A pLI score of ≥0.9 is indicative of

haploinsufficiency and, as such, the metric shows constraint of the

genetic sequence which, in turn, indicates that loss of function of that

gene will affect development.

Given all these considerations, it can be difficult to settle on a

measure for testing for the hypotheses outlined above. Given the

functional validity of the pLI measure, we decided a priori that our pri-

mary measure of burden should be the total pLI score of all the genes

affected by the CNV event.

2.2 | Selection of a study sample

Because many CNVs are found in asymptomatic individuals, we can only

interpret potential relevance of CNV burden for neurodevelopmental

disorders if we have a comparison sample without any disorder.

Although there are databases of medically relevant CNVs (DECIPHER,

ClinVar), these usually only represent extremely rare and pathogenic

changes. More recently, large (N > 14,000) population samples have

become available through gnomAD v3.0 (Collins et al., 2019). However,

neither SNP arrays nor genomic sequencing methods directly measure

the number of copies of a given genetic region. Information regarding

CNVs therefore has to be inferred from such data. It is often problem-

atic to compare samples assessed using whole genome sequencing

methods to the array-based methods applied here. Ideally, we need a

target group and a comparison sample processed together using the

same methods, to help establish whether the rate, extent, or functional

impact of CNVs is unusually high in the target group.

In the current study, a sample of twin children tested on the same

psychometric battery and genotyped in the same experimental data

set as the children with SCTs acted as a comparison sample. However,

this comparison was complicated by the fact that the twin children

had been selected to over-represent cases with DLD. Furthermore,

the SCT sample included some children whose trisomy was only dis-

covered when they were investigated for neurodevelopmental prob-

lems. Thus, the sampling method might have biased both samples in

the direction of finding high rates of CNVs. In practice, this proved

not to have an effect, but we present data for the subset with rela-

tively low bias (see below for definition), as well as the full sample, to

demonstrate that this potential confound did not affect our results.

2.3 | Measure of the phenotype

The “double hit” hypothesis predicts that CNV burden will have a dis-

proportionate impact on the phenotype in children with SCTs. In testing

this hypothesis, we focused on a measure of global neurodevelopmental

impairment, as this would be sensitive to the conditions that are usually

associated with CNVs: intellectual impairment and autism.

2.4 | Aims of the current study

The aims of this article were twofold; first, we aimed to test the “bur-

den” hypothesis. In doing so, we extend previous analyses by Rocca

et al. (2016) by including three subtypes of trisomy: 47, XXX, 47, XXY,

and 47,XYY. We investigated CNVs on the autosomes as well as the

X chromosome. Second, we consider the “epistasis” hypothesis, test-

ing the prediction that the severity of neurodevelopmental problems

will be related to an increased burden of CNV events affecting gene

function.

3 | MATERIALS (SUBJECTS) AND
METHODS

All methods were registered on Open Science Framework Preregistra-

tion (https://osf.io/u2j97). The participant phenotyping and genome-

wide SNP array data were generated for the companion study and are

described in detail in Newbury, Simpson, Thompson, and Bishop (2018).

3.1 | SCT group recruitment

SCT cases aged from 5 to 16 years were recruited from among partici-

pants in a previous study (Bishop et al., 2011) who had agreed to be

re-contacted. Additional participants were recruited via support groups

(Unique: the Rare Chromosome Support Group, and the Klinefelter

Syndrome Association), National Health Service Clinical Genetics
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Centers, and self-referred through the research project Facebook page

or website. In order to be eligible for the study, SCT group participants

had to have a genetic diagnosis of either XXX, XXY, or XYY, and be

fully aware of their genetic status.

Table 1 shows the numbers of children with SCTs in relation to

the type of trisomy and the reason for diagnosis. We distinguish here

between those diagnosed in the course of investigations for neu-

rodevelopmental disorder, who are referred to as “High bias”, and the

remainder, the “Low bias” group, who were diagnosed either in the

course of pre-natal screening, or during investigations for medical

conditions. Both groups combined can be used to test predictions

about CNV/phenotype associations, but the Low bias group is more

suitable for estimating the typical CNV burden associated with SCTs.

3.2 | Comparison group

The comparison group of twin children had been previously recruited

for a study of DLD and laterality (Wilson & Bishop, 2018) and had

undergone the same test battery as the SCT group. We aimed to

recruit a sample where around 75% pairs would include at least one

twin with DLD. This was achieved by selecting cases for inclusion on

the basis of parental response on a telephone interview: any mention

of language delay, history of speech and language therapy, current

language problems or dyslexia was coded as “parental concern.” This

sample therefore represents a DLD enriched group rather than a typi-

cally developing group. Some twin children had evidence of ASD

(N = 15) or intellectual disability (N = 3), and 12 failed a hearing screen

on the day of testing, although none of them had any known sensori-

neural hearing loss. For the current study, because we were interested

in a broader phenotype than pure DLD, these cases were retained in

the sample. One twin from each pair was randomly selected to ensure

independent observations. When comparing rates of CNV burden

with SCT cases, we distinguished between twins selected for having

language problems and those whose parents had not expressed any

concern about language development.

The number of cases that passed both genotyping and CNV call-

ing quality control (see below) are shown in Table 1, subdivided by

karyotype and whether or not they were recruited from a biased

source (i.e., either trisomy cases whose trisomy was discovered in the

course of investigations for neurodevelopmental/behavioral prob-

lems, or twins whose parents volunteered for the study because of

concerns about language development in one or both twins).

3.3 | Test battery

The test battery is described in detail by Newbury et al. (2018). The

battery was designed to provide a quantitative estimate of language,

literacy and communication ability in children aged 5–16 years. In addi-

tion, parents completed a telephone interview, and were invited to

complete two questionnaires and an online diagnostic interview. Our

primary phenotype outcome measure is a scale devised for the study

by Newbury et al. (2018), the global index of neurodevelopmental

impairment (GNI). GNI is an ad hoc measure that combines all available

information about a range of neurodevelopmental disorders affecting

language, attention, social communication and overall functioning (see

Table 2). Scores ranged from 0 (no impairment) to 6 (high impairment).

This was judged to be the most appropriate measure, given that CNVs

have previously been associated most strongly with severe problems

affecting behavior as well as language and cognitive functioning.

In response to reviewer request, we also report exploratory ana-

lyses of two more specific phenotypic measures in relation to CNV bur-

den: language factor scores and Performance IQ (PIQ). The language

factor is derived from tests of Oromotor Skills, Verbal Comprehension,

Vocabulary, and Sentence Repetition (see Newbury et al., 2018, for

details), where a lower score indicates lower language abilities. The PIQ

measure is based on the Wechsler Abbreviated Scale of Intelligence

(Wechsler, 1999).

3.4 | Genetic measures

Genomic DNA was collected and extracted from saliva samples (OG-

500, DNA Genotek) using the manufacturer recommended protocol.

Samples were genotyped using the genome-wide SNP array Infinium

TABLE 1 Numbers of children by karyotype and ascertainment bias

Variable

Comparison group Sex chromosome trisomy group

XY XX XXX XXY XYY

N 99 82 40 42 43

Mean (SD) age (months) 106.7 (19.9) 106 (18.6) 135.1 (47.9) 141.6 (43) 120.6 (40.9)

% White 93 95 88 79 98

% High biasa – – 30 55 58

% With language concernsb 42 20 – – –

Mean (SD) GNIc 1.5 (1.5) 0.8 (1.2) 2.9 (1.9) 2.5 (1.6) 3.0 (1.9)

aSCT cases where trisomy identified during investigations for neurodevelopmental/behavioral disorders.
bTwin from a pair that was recruited because one or both twins had language problems.
cIndex of global neurodevelopmental impairment (see Table 2).
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Global Screening Array-24(v1) targeting 692,824 common and rare

SNPs suitable for both genotyping and CNV analysis. Genotypes had

been previously called for Newbury et al. (2018) using Illumina

GenomeStudio v.2.03, and individual SNPs with a GenTrain (quality)

score of <0.5 and samples with <0.9 of SNPs called were excluded.

Beta allele frequencies and log2 ratio for each of the remaining SNPs

were exported to a .csv file. Autosomal CNV calling was performed

using two separate methods; QuantiSNP (Colella et al., 2007) and

PennCNV (Wang et al., 2007). PennCNV analysis required generation

of an array specific PFB file which was built using the gnomAD whole

genome Non-Finnish European frequency file (hg19) built for use in

Annovar (Wang, Li, & Hakonarson, 2010). This PFB file is available in

the study repository (https://osf.io/rgqwp/). Samples flagged by Penn-

CNV or QuantiSNP as having failed CNV calling quality control were

excluded from analysis.

CNV regions which overlap between the two methods by at least

50% were identified using bedtools v2.27.0 (Quinlan & Hall, 2010) and

retained for further analyses as “high-confidence” CNV calls. The over-

lapping regions were used as start and end positions for CNVs. Calls

that overlapped with highly repetitive immunoglobin, centromeric or

telomeric regions by ≥50% were excluded from analysis. Adjacent CNV

calls located within ≤20% of each other with matched CN state were

merged into one CNV call, accounting of the bias of the algorithms to

conservatively call multiple CNVs in place of one large CNV call.

Chromosome X required a different approach due to the technical

difficulty in accurately calling CNVs in XXX individuals. CNVs overlapping

with immunoglobin, centromeric, telomeric and pseudoautosomal

regions by ≥50% were excluded from analysis. CNVs on the X chromo-

some were called using the Illumina GenomeStudio v.2.03 CNV algo-

rithm, were visually inspected, and then cross referenced to the output

from PennCNV. Events of the X chromosome were called in XX and

XXY individuals (expected CN state = 2 and deletions are CN state = 1

and duplications CN state = 3), and in XY and XYY (expected CN state = 1,

and deletions are CN state = 0 and duplications CN state = 2) individuals.

CNV calls on the chromosome X were not included in the association

analyses due to inability to call duplications in XXX participants, and dele-

tions (CN state = 2) rendering them effectively wildtype at these sites.

Resulting CNV regions containing at least five consecutive

SNPs were annotated using ANNOVAR (2018Apr16 release) (Wang

et al., 2010). CNVs annotated as overlapping at least one gene, inclu-

sive of exons, introns, untranslated regions and non-coding genes,

were retained for further analysis. Sum of pLI (sum_pLI) scores from

each gene within a CNV region were calculated for each individual in

R (code available at https://osf.io/rgqwp/).

3.5 | Power analysis

Our study is constrained by the numbers we were able to recruit, with

further loss of cases which did not pass genotyping quality control. As

explained in our preregistration, the power to detect given effect

sizes in the current study was computed by simulation of correlated

datasets based on our existing sample size. With this sample we are

adequately powered to detect a correlation around .35 between CNV

burden and phenotype in the SCT group.

3.6 | Statistical methods and visualization

Burden metrics, in terms of the number of CNVs, cumulative CNV

span, and a pLI index were calculated for each individual and analyzed

for group differences (SCTs against comparison individuals). We had

pre-registered a Wilcoxon test for group comparisons, but this did not

allow computation of exact probabilities because there were a very

large number of ties. We therefore also calculated exact probabilities

using a permutation test. Empirical p-values were calculated using

10,000 permutations and adjustments for multiple testing used the

Benjamini–Yekutieli procedure. The analysis script is available on

Open Science Framework (https://osf.io/rgqwp/).

The odds ratio was calculated using MedCalc's Odds Ratio Calcu-

lator (www.medcalc.org/calc/).

3.7 | Reporting of pathogenic events

As a side-product of the calling of CNVs, necessary for the calculation

of burden metrics, we were able to identify putative pathogenic events

TABLE 2 Index of global neurodevelopmental impairment

All available information was used to create a single scale reflecting

global level of neurodevelopmental impairment ranging from 0 (no

impairment) to 6 (severe problems). Data from initial parental

telephone interview were available for all children. Data from

language testing were available for all but two very low-functioning

children, who were unable to attempt our tasks. Data from the

Social Responsiveness Scale (SRS) were available for 127 of 143

children with SCTs, and 316 of 388 comparison children. DSM5

diagnoses from the online Development and Well-being

Assessment (DAWBA; Goodman et al., 2000) were available for 89

children with SCTs and 276 comparison children. We used all

available data for each child to create a scale by adding points as

specified below, with maximum score of 6a. Note that some

categories are mutually exclusive (e.g., dyslexia and low PIQ).

• History of speech problems (assessed or treated by

speech-language therapist at preschool age) = 1

• Schooling: Current help in mainstream school (support or special

class or speech-language therapy) = 1; OR attends special

school = 2

• Dyslexia (at least two reading tests >1 SD below mean,

PIQ > 70) = 1

• DLD (Woodcock-Johnson comprehension + at least one other oral

language test >1 SD below mean, PIQ > 70) = 1

• ADHD (parental report or DAWBA diagnosis) = 1

• Behavior problems (DAWBA diagnosis of conduct disorder or clear

description on interview) = 1

• Autism: Report from interview of definite diagnosis, or SRS = 90,

or DAWBA diagnosis = 2

• Low IQ (PIQ < 70 or refusal/inability to do battery) = 1

aIn our previous report by Newbury et al. (2018), this scale was inverted

so a low score corresponded to impairment.
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that occurred in SCT probands and comparison individuals. These

events represent CNVs that have been reported previously in the liter-

ature to directly cause a micro-deletion/-duplication syndrome and

therefore may directly explain any neurodevelopmental difficulties

experienced by individuals, irrespective of their SCT status.

Individual autosomal CNVs with a sum_pLI score of ≥0.9, regard-

less of size, were reported as pathogenic if they either overlapped

by at least 50% (and in the same CN state) with known CNV Syn-

drome region as reported in DECIPHER (https://decipher.sanger.ac.

uk/disorders#syndromes/overview), or with similar sized events

reported in DECIPHER and/or ClinVar as either pathogenic or likely

pathogenic, in line with current American College of Medical Genetics

(ACMG) guidelines (Nowakowska, 2017; South et al., 2013). While

the DECIPHER database is not specific to neurological phenotypes, it

is enriched for neurodevelopmental difficulties as these are common

features of CNV syndromes.

4 | RESULTS

A total of 125 SCT cases, composed of XXX (N = 40), XXY (N = 42),

and XYY (N = 43), and 181 comparison group (twin) individuals passed

both genotyping and CNV calling quality control (GenomeStudio,

PennCNV, and QuantiSNP). In total, 1,489 high-quality (with ≥50%

overlap between both algorithms and at least five consecutive SNPs)

autosomal events were detected.

4.1 | X chromosome CNV burden

We found no evidence of an increase in the number of X chromosome

CNVs in the SCT group compared to the comparison group. In total

13 high-quality X chromosome events were detected, three deletions

and five duplications were found to occur in eight comparison individuals

(N = 8/181, 3.97%), while two duplications and a deletion were found in

three XYY individuals and two duplications in two XXY individuals

(N = 5/85, 5.9%) (OR = 1.35, 95% CI = 0.43–4.26, p = 0.61, z = 0.514).

The XXX individuals (N = 40) were excluded from this analysis.

4.2 | Autosomal CNV burden

Table 3 shows comparative data for SCT versus comparison indi-

viduals on CNV burden for three measures: total number of auto-

somal CNVs, cumulative span of autosomal CNVs (in kb), and

total pLI scores across all autosomal CNVs per individual. Individ-

ual data points for CNV span and number of CNVs are shown in

Figure 1. A suggestion of a marginal excess in number of CNVs in

the SCT group was not statistically reliable when correction was

made for multiple tests. Notably, the comparison on our primary

measure, total pLI score (see Figure 2), did not reveal a reliable

group difference, either with or without the High Bias cases

included.

4.3 | Enrichment of pathogenic CNVs

We next sought to investigate whether the identified CNVs incorpo-

rated known pathogenic copy number events, as suggested by Le

Gall et al. (2017). This analysis was not pre-registered but was

suggested by reviewers. All CNV events overlapping ≥50% with

previously reported pathogenic microdeletion and duplications

reported in the DECIPHER database (Table 4). CNVs were described

if previously reported as either pathogenic or likely pathogenic,

and therefore clinically relevant according to ACMG criteria

(Nowakowska, 2017; South et al., 2013). Pathogenic CNVs were

identified in 15 individuals in total. This consisted of six identified in

the Comparison groups (3 XX and 3 XY, N = 6/181, 3.31%) and nine

in the SCTs (4 XYY, 4 XXY, and 1 XXX. N = 9/85, 10.59%; OR = 2.26,

95% CI = 0.7845–6.53, p = .1308). While there appears to be a mod-

est enrichment of pathogenic CNVs in the SCT cases, 10.58% com-

pared to 3.31% in the comparison group, this was not statistically

robust due to small numbers.

To investigate if carrying a pathogenic CNV resulted in a more

severe phenotype, individuals in whom a pathogenic or likely patho-

genic CNV was identified are indicated (P) in Figure 2. There is no visi-

ble trend indicative of a clear association between increased GNI and

carrying a pathogenic CNV.

TABLE 3 Mean (SD) measures for
autosomal CNV events for SCT and
Comparison groups, both for whole
sample, and for subset with low
ascertainment bias

SCT Comparison

p values*

Wilcoxon Perm. BY-corrected

N: Whole sample 125 181

CNVs per individual 5.21 (3.60) 4.56 (2.54) .106 .031 .170

CNV span (total kb) 325.4 (567.5) 256.3 (266.8) .282 .089 .214

Total pLI score 0.87 (1.28) 0.71 (1.13) .131 .117 .214

N: Low bias subset 65 50

CNVs per individual 5.22 (3.60) 4.62 (2.88) .195 .174 .825

CNV span (total kb) 364.7 (731.5) 285.5 (288.6) .628 .298 .825

Total pLI score 0.73 (1.33) 0.80 (1.29) .545 .615 1

*p values shown for pre-registered Wilcoxon test, as well as for permutation test. The final column shown values for the permutation test, with

Benjamini–Yekutieli correction for multiple comparisons.
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4.4 | Predicting global neurodevelopmental
impairment (GNI) from pLI scores

We conducted a pre-registered analysis, to test the prediction that SCT

versus comparison status would mediate the relationship between CNV

burden and phenotype. The relevant data are shown in Figure 2. The

analysis was implemented in a Poisson regression, using the whole

sample, with global neurodevelopmental index (GNI) as the dependent

variable, and SCT versus comparison status and total pLI score as pre-

dictors. Results are shown in Table 5. As expected, there was a substan-

tial effect of SCT/Comparison status on GNI. However, the pLI measure

of CNV burden did not predict outcome, and there was no interaction

with SCT/Comparison status. We observed a number of individuals with

a high GNI and a low total pLI score (indicating that the genes hit by the

CNVs were not dosage sensitive) or a low GNI score with CNVs that hit

genes with a high pLI (see Figure 2).

4.5 | Additional exploratory analyses

In response to reviewer suggestions for more analyses, we report in

Supplementary Material data similar to Table 3 (Table S1) but for each

trisomy separately, and data similar to Table 5 for two further pheno-

types, Language Factor, and PIQ (Table S2).

5 | DISCUSSION

In this article, we aimed to test two alternative models of heterogene-

ity with regards to CNVs in individuals carrying SCT. The “burden”

hypothesis suggests that individuals with SCTs may be at an increased

risk of neurodevelopmental disorder due to an increased burden of

CNVs across the genome. This is supported by previous investigations

by Rocca et al. (2016) and Le Gall et al. (2017). Alternatively, the “epis-

tasis” hypothesis suggests that the severity of neurodevelopmental

problems in SCT cases will be related to an increased burden of CNV

events affecting gene function. We find that neither of these hypoth-

eses could account for the variation in neurodevelopmental pheno-

types seen across SCT cases. Although we observed a slight increase

in the number of rare pathogenic CNVs in the SCT cases, this was not

significant and did not predict the severity of neurodevelopmental dis-

order. Similarly, we did not observe an excess of CNV burden in SCT

cases, nor did we find a relationship between CNV load and neu-

rodevelopmental outcomes. We did not find an enrichment of CNVs

on the X chromosome in SCT (XXY and XYY) individuals, failing to rep-

licate the findings of Rocca et al. (2016). Interestingly, our method

identified considerably fewer CNVs on the X chromosomes than the

autosomes; 3.97% of comparison individuals and 5.9% of SCTs carried

a CNV on chromosome X, in stark contrast to rates of 41% (XXY),

28.6% (XX), and 18.6% (XY) reported by Rocca et al. (2016). This strik-

ing discrepancy may be explained by the use of two different algo-

rithms (PennCNV and GenomeStudio) to call X chromosome CNVs in

this study compared to just PennCNV in Rocca et al. study. This dou-

ble analysis approach decreases false positives and increases confi-

dence in the calls made but may increase Type II error. Our method

was extremely conservative, and we therefore may have missed genu-

ine CNVs. This emphasizes that cross study comparisons are made dif-

ficult by methodological differences.

We did not find a reliable increase in overall burden of mean

autosomal CNVs carried by the SCT group (mean = 5.21, SD = 3.60)

F IGURE 1 Scatterplot showing total CNVs and CNV span (log kB)
for individual SCT and comparison cases The total CNV data points
have been jittered for visualization only

F IGURE 2 Scatterplot showing total pLI score and global
neurodevelopmental impairment for individual SCT and comparison
cases. Individuals found to carry a pathogenic CNV are indicated by P.
The global neurodevelopmental impairment data points have been
jittered for visualization
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compared to the comparison group (mean = 4.56, SD = 2.54): the vari-

ance within each group was substantially greater than the variance

between groups. It is important to note that when within-group variabil-

ity is very high, small differences may be masked, so that very large sam-

ples are required to give adequate power to detect them. Simpson

et al. (2015) found that language impaired individuals and their relatives

carried, on average, one additional CNV compared to a non-language

impaired group. In the current study, power was inadequate to detect

such a small effect against a background of substantial within-group

variation.

Across the autosomal CNVs called, we found only a small number

of potentially pathogenic events (as annotated by DECIPHER); 15 events

were flagged in total including six in comparison cases (3 XX and 3XY,

N = 6/181, 3.31%) and nine in SCTs (4 XYY, 4 XXY, and 1 XXX.

N = 9/85, 10.59%) (OR = 2.26, 95% CI = 0.7845–6.53, p = .1308).

Although this represents an enrichment in pathogenic CNVs in the SCT

group, the overall number of identified pathogenic events is small, and

therefore not statistically robust. These findings do not support those

reported by Le Gall where nine of the 14 SCT cases (64%) carried a

secondary pathogenic or likely pathogenic event. These discrepancies

may reflect a selection bias in the Le Gall study (where SCT cases were

selected to have severe neurodevelopmental syndromes and therefore

more likely to carry a known CNV) that was not as marked within the

present study and underlines the effects that sample selection can have

upon results.

At an individual level, the presence of these pathogenic CNVs may

explain the neurodevelopmental difficulties present in an individual. It is,

however, important to note that the presence of pathogenic CNVs does

not necessarily always result in the manifestation of a phenotype. Sever-

ity of symptoms can vary substantially between individuals, and unaf-

fected carriers are reported in the literature. For example the 16p13.11

recurrent micro-deletion is considered to be susceptibility locus for ASD

and developmental delay often accompanied by language difficulties,

but the phenotype is highly variable and unaffected carriers have been

reported (Hannes et al., 2009).

Given these results, and absence of statistically robust findings, we

do not find evidence to support the role of the burden model in relation

to “double-hits” in SCTs. Furthermore, we did not detect any association

between total pLI score and severity of neurodevelopmental impair-

ment, indicating that the two-hit model of CNV action does not explain

the range in severity of neurodevelopmental and language disorders

seen in SCT individuals as would be expected under an “epistasis”

model.

One strength of this study is that it includes SCT cases across clin-

ical categories (XXX, XXY, and XYY) that were both prenatally and

postnatally diagnosed as well as individuals with a wide range of neu-

rodevelopmental function (as described in Bishop et al., 2011). This

range extends the focus of previous studies (Le Gall et al., 2017; Rocca

et al., 2016) and provides scope to detect genetic differences that may

underlie neurodevelopmental outcomes. However, this study design

also results in limitations and methodological constraints, as presented

in the introduction and the discussion above. The sample size within

each clinical category or outcome group was individually small,T
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especially when genetic effects are expected to be heterogeneous, a

characteristic of CNVs (Veltman & Brunner, 2010). This heterogeneity

was apparent within individuals who carried pathogenic CNVs, not

all of whom presented with neurodevelopmental syndromes (see

Table 4). Similarly, it means that we cannot rule out the presence of

epistatic effects at the individual level. Although no single copy num-

ber event occurred in all SCT cases, it remains possible that specific

CNVs, and genetic variants in the wider sense, may act in an epistatic

manner. The characterization of these effects would require a genome

wide approach that affords power to consider interactions between

multiple genetic factors and environmental effects and was beyond

the scope of the current study.

In summary, this analysis does not support the view that there is

an increased burden of CNVs in individuals with SCTs, nor that CNVs

have disproportionate impact on neurodevelopmental phenotypes in

this population. Rare, pathogenic CNVs may contribute to the pheno-

type in some individuals with severe neurodevelopmental problems,

as was observed by Le Gall et al. (2017) but these do not account for

all neurodevelopmental difficulties within this cohort. Our data, which

includes cases detected prenatally and with a wide range of pheno-

typic presentations, suggest that secondary pathogenic events are not

a common occurrence in cases of SCT. Similarly, the wide variation in

phenotypes seen in this population cannot be explained by either the

“burden” hypothesis associated with excess CNV burden or the “epis-

tasis” model where a disproportionate impact is observed when CNVs

co-occur with a trisomy of the sex chromosomes.
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