144 research outputs found

    Geodetic measurements of crustal deformation in the western Mediterranean and

    Get PDF
    Abstract -Geodetic measurements of crustal deformation over large areas deforming at slow rates (<5 mm/yr over more than 1000 km), such as the Western Mediterranean and Western Europe, are still a challenge because (1) these rates are close to the current resolution of the geodetic techniques, (2) inaccuracies in the reference frame implementation may be on the same order as the tectonic velocities. We present a new velocity field for Western Europe and the Western Mediterranean derived from a rigorous combination of (1) a selection of sites from the ITRF2000 solution, (2) a subset of sites from the European Permanent GPS Network solution, (3) a solution of the French national geodetic permanent GPS network (RGP), and (4) a solution of a permanent GPS network in the western Alps (REGAL). The resulting velocity field describes horizontal crustal motion at 64 sites in Western Europe with an accuracy on the order of 1 mm/yr or better. Its analysis shows that Central Europe behaves rigidly at a 0.4 mm/yr level and can therefore be used to define a stable Europe reference frame. In that reference frame, we find that most of Europe, including areas west of the Rhine graben, the Iberian peninsula, the Ligurian basin and the Corsica-Sardinian block behaves rigidly at a 0.5 mm/yr level. In a second step, we map recently published geodetic results in the reference frame previously defined. Geodetic data confirm a counterclockwise rotation of the Adriatic microplate with respect to stable Europe, that appears to control the strain pattern along its boundaries. Active deformation in the Alps, Apennines, and Dinarides is probably driven by the independent motion of the Adriatic plate rather than by the Africa-Eurasia convergence. The analysis of a global GPS solution and recently published new estimates for the African plate kinematics indicate that the Africa-Eurasia plate motion may be significantly different from the NUVEL1A values. In particular, geodetic solutions show that the convergence rate between Africa and stable Europe may be 30-60% slower than the NUVEL1A prediction and rotated 10-30°counterclockwise in the Mediterranean

    Triggered crustal earthquake swarm across subduction segment boundary after the 2016 Pedernales, Ecuador megathrust earthquake

    Get PDF
    Megathrust ruptures and the ensuing postseismic deformation cause stress changes that may induce seismicity on upper plate crustal faults far from the coseismic rupture area. In this study, we analyze seismic swarms that occurred in the north Ecuador area of Esmeraldas, beginning two months after the 2016 Mw_{w} 7.8 Pedernales, Ecuador megathrust earthquake. The Esmeraldas region is 70 km from the Pedernales rupture area in a separate segment of the subduction zone. We characterize the Esmeraldas sequence, relocating the events using manual arrival time picks and a local a-priori 3D velocity model. The earthquake locations from the Esmeraldas sequence outline an upper plate fault or shear zone. The sequence contains one major swarm and several smaller swarms. Moment tensor solutions of several events include normal and strike-slip motion and non-double-couple components. During the main swarm, earthquake hypocenters increase in distance from the first event over time, at a rate of a few hundred meters per day, consistent with fluid diffusion. Events with similar waveforms occur within the sequence, and a transient is seen in time series of nearby GPS stations concurrent with the seismicity. The events with similar waveforms and the transient in GPS time series suggest that slow aseismic slip took place along a crustal normal fault during the sequence. Coulomb stress calculations show a positive Coulomb stress change in the Esmeraldas region, consistent with seismicity being triggered by the Pedernales mainshock and large aftershocks. The characteristics of the seismicity indicate that postseismic deformation involving fluid flow and slow slip activated upper plate faults in the Esmeraldas area. These findings suggest the need for further investigation into the seismic hazard potential of shallow upper plate faults and the potential for megathrust earthquakes to trigger slow-slip and shallow seismicity across separate segments of subduction zones

    In-situ evidence for dextral active motion at the Arabia-India plate boundary

    No full text
    International audienceThe Arabia-India plate boundary--also called theOwen fracture zone--is perhaps the least-known boundary among large tectonic plates1-6. Although it was identified early on as an example of a transform fault converting the divergent motion along the Carlsberg Ridge to convergent motion in the Himalayas7, its structure and rate of motion remains poorly constrained. Here we present the first direct evidence for active dextral strike-slip motion along this fault, based on seafloor multibeam mapping of the Arabia-India-Somalia triple junction in the northwest Indian Ocean. There is evidence for 12km of apparent strike-slip motion along the mapped segment of the Owen fracture zone, which is terminated to the south by a 50-km-wide pull-apart basin bounded by active faults. By evaluating these new constraints within the context of geodetic models of global plate motions, we determine a robust angular velocity for the Arabian plate relative to the Indian plate that predicts 2-4mmyr−1 dextral motion along the Owen fracture zone. This transformfault was probably initiated around 8 million years ago in response to a regional reorganization of plate velocities and directions8-11, which induced a change in configuration of the triple junction. Infrequent earthquakes of magnitude 7 and greater may occur along the Arabia-India plate boundary, unless deformation is in the formof aseismic creep

    Finite Fault Analysis and Near Field Dynamic Strains and Rotations due to the 11/05/2011 (Mw5.2) Lorca Earthquake, South-Eastern Spain

    Full text link
    The 11/5/2011 Lorca, Spain earthquake (Mw5.2) and related seismicity produced extensive damage in the town of Lorca and vicinity. During these earthquakes, evidence of rotations and permanent deformations in structures were observed. To analyze these aspects and study the source properties from the near field, the displacement time histories were obtained including the static component at Lorca station. Displacement time histories were computed by an appropriate double time integration procedure of accelerograms. Using these data, the foreshock and mainshock slip distributions were calculated by means of a complete waveform kinematic inversion. To study the dynamic deformations, the 3D tensor of displacement gradients at Lorca station was first estimated by a single station method. Using the finite fault inversion results and by means of a first order finite difference approach, the dynamic deformations tensor at surface was calculated at the recording site. In order to estimate the distribution of the peak dynamic deformations, the calculation was extended to the close neighboring area of the town. The possible influence of the near-field deformations on the surface structures was analyzed.Comment: 29 pages, 8 figure

    Earthquake and People: The Maltese Experience of the 1908 Messina Earthquake

    Get PDF
    On December 28, 1908 at 5:20 a.m. local time, a devastating earthquake (Mw = 7.2) struck Southern Italy along the Messina Strait (Fig. 1). This event caused severe ground shaking throughout the region and triggered a local tsunami. As result the cities of Messina along Sicily’s coast and Reggio di Calabria were completely destroyed (Baratta, 1910) causing more than 120,000 fatalities and with many left without shelter. The effects of the earthquake were felt within a 300-kilometer radius. Rescuers searched through the rubble for weeks, and people were still being pulled out alive days later, but thousands remained buried there. The 1908 earthquake had a significant impact on buildings and people and local communities which were displaced. The Maltese experience of the Messina 1908 earthquake relied on communication which reached Malta after the event. The assessment of the Maltese experience of the Messina Earthquake has so far been carried out with reference to published newspaper reports and other brief accounts including Herbert Ganado’s Rajt Malta Tinbidel. Alfons Maria Galea a Maltese author and filanthropist published a book in Maltese on the earthquake and its devastating effects in the popular educational series il-Kotba tal-Mogħdija taż-Żmien just a few weeks after the event. The book is a vivid account of the destruction caused by the earthquake, the suffering of the survivors and the reaction of the population in reviving the city. The document presents first-hand accounts of the events in sufficient detail to give a clear picture of the severity of the event, extents of the damage and impact on the population. It is mostly based on accounts received by Galea from persons in institutions including religious orders in Sicily who he knew. Newspaper reports in Malta and other countries together with Galea’s book present clear first-hand accounts of this event and provide information on the building deficiencies and damage, limitations of communication infrastructure during that period, limits to timely emergency response to support the population and emergency action at the beginning of the 20th century.peer-reviewe

    Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation

    Get PDF
    International audienceQuantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ∼0.5 km/Ma since ∼14 Ma. A slightly accelerated rate (∼0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ∼14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ∼0.5 km/Ma paleoexhumation rate

    Neogene Uplift and Magmatism of Anatolia: Insights from Drainage Analysis and Basaltic Geochemistry

    Get PDF
    It is generally agreed that mantle dynamics have played a significant role in generating and maintaining the elevated topography of Anatolia during Neogene times. However, there is much debate about the relative importance of subduction zone and asthenospheric processes. Key issues concern onset and cause of regional uplift, thickness of the lithospheric plate, and the presence or absence of temperature and/or compositional anomalies within the convecting mantle. Here, we tackle these interlinked issues by analyzing and modeling two disparate suites of observations. First, a drainage inventory of 1,844 longitudinal river profiles is assembled. This geomorphic database is inverted to calculate the variation of Neogene regional uplift through time and space by minimizing the misfit between observed and calculated river profiles subject to independent calibration. Our results suggest that regional uplift commenced in the east at 20 Ma and propagated westward. Secondly, we have assembled a database of geochemical analyses of basaltic rocks. Two different approaches have been used to quantitatively model this database with a view to determining the depth and degree of asthenospheric melting across Anatolia. Our results suggest that melting occurs at depths as shallow as 60 km in the presence of mantle potential temperatures as high as 1400°C. There is evidence that potential temperatures are higher in the east, consistent with the pattern of sub-plate shear wave velocity anomalies. Our combined results are consistent with isostatic and admittance analyses and suggest that elevated asthenospheric temperatures beneath thinned Anatolian lithosphere have played a first order role in generating and maintaining regional dynamic topography and basaltic magmatism
    corecore