1,915 research outputs found

    Evaluation of existing control measures in reducing health and safety risks of engineered nanomaterials

    Get PDF
    While the risk management of engineered nanomaterials (ENMs) receives significant attention, there is still a limited understanding of how to select optimal risk management measures (RMMs) for controlling and mitigating the risks associated with exposure to ENMs. Clearly, there exists a need to expand current risk management practices to ensure safe production, handling and use of ENMs. Moreover, the performance of the existing RMMs should be re-evaluated for ENMs since control options that are proven to be effective for preventing or limiting risks associated with traditional particles might give unsatisfactory results in the case of nano-scale particles. This paper has brought together the evidence on the adequacy of traditional controls to minimize potential health and environmental risks resulting from exposure to ENMs. The aim here is to advance our understanding of the risk management approaches relevant for ENMs, and ultimately to support the selection of the most suitable RMMs when handling ENMs. To that end, evaluative evidence collected from the review of relevant literature and survey of nanotechnology institutions are combined and summarised to understand the level of protection offered by each control measure, as well as the relative costs of their implementation. The findings suggest that most relevant risk control options are based on isolating people from hazard through engineering measures (e.g. ventilation and chemical fume hoods) or personal protective equipment (PPE), rather than eliminating hazard at source (e.g. substitution). Although control measures related to the modification of ENMs have high efficiency in the occupational risk control hierarchy, they are not widely employed since there is currently a high degree of uncertainty regarding the impact of manipulating nano-characteristics on the performance of final product. Lastly, despite its low cost, PPE is the least effective category in the occupational risk control hierarchy and should not be used on its own when significant risk reduction is required. Clearly, further quantitative data is needed to fully assess the feasibility and cost-effectiveness of risk control options to prevent risks from exposure to ENMs. When there is little information on the efficiency of control measures specific to ENMs, the default efficiencies can be used for initial assessment purposes although it should not be considered exhaustive

    A new shock tube configuration for studying dust-lifting during the initiation of a coal dust explosion

    Get PDF
    The traditional defence against propagating coal dust explosions is the application of dry stone dust. This proven and effective safety measure is strictly regulated based on extensive international experience. While new products, such as foamed stone dust, offer significant practical benefits, no benchmark tests currently exist to certify their dust lifting performance in comparison to dry stone dust. This paper reviews the coal dust explosion mechanism, and argues that benchmark testing should focus on dust lifting during the initial development of the explosion, prior to arrival of the flame. In a practical context, this requires the generation of shock waves with Mach numbers ranging from 1.05 to 1.4, and test times of the order of 10’s to 100’s of milliseconds. These proposed test times are significantly longer than previous laboratory studies, however, for certification purposes, it is argued that the dust lifting behaviour should be examined over the full timescales of an actual explosion scenario. These conditions can be accurately targeted using a shock tube at length scales of approximately 50 m. It is further proposed that useful test time can be maximised if an appropriately sized orifice plate is fitted to the tube exit, an arrangement which also offers practical advantages for testing. The paper demonstrates this operating capability with proof-of-concept experiments using The University of Queensland’s X3 impulse facility

    Analysis of multivariate stochastic signals sampled by on-line particle analyzers: Application to the quantitative assessment of occupational exposure to NOAA in multisource industrial scenarios (MSIS)

    Get PDF
    In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzersin industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO2 by cold pressing was performed.Research carried out by projects SCAFFOLD and EHS Advance were made possible thanks to funding from European Commission through FP7 (GA 319092) and Basque Country Government through ETORTEK Programme

    Occupational exposure to nano-TiO2 in the life cycle steps of new depollutant mortars used in construction

    Get PDF
    The present work is focused on the measurement of workers exposure to nano-TiO2 in the life cycle steps of depollutant mortars. It has been done in the framework of the SCAFFOLD project, which aims at the management of potential risks arising from the use of manufactured nanomaterials in construction. Main findings can be summarized as follows: (1) The occupational exposure to nano- TiO2 is below 0.3 mg/m3 for all measured scenarios. The highest concentrations were measured during the cleaning task (in the nano- TiO2 manufacturing process) and during the application (spraying) of depollutant coatings on a wall. (2) It was found a high release of particles above the background in several tasks as expected due to the nature of the activities performed. The maximum concentration was measured during drilling and during adding powder materials (mean total particle concentration up to 5.591E+04 particles/cm3 and 5.69E+04 particles/cm3). However, considering data on total particle concentration released, no striking differences have been observed when tasks have been performed using conventional materials in the sector (control) and when using materials doped with nano-objects.European Commission's FP

    Respirator decision logic

    Get PDF
    "Prepared by a subcommittee of the NIOSH Respiratory Protection Committee"--P. iv."May 1987."Updated 2004 by NIOSH respirator selection logic published as NIOSH pub. no. 2005-100.Also available via the World Wide Web.Bibliography: p. 35-39

    Scientific Opinion on the re-evaluation of Quinoline Yellow (E 104) as a food additive:Question No EFSA-Q-2008-223

    Get PDF
    The Panel on Food Additives and Nutrient Sources added to Food provides a scientific opinion re-evaluating the safety of Quinoline Yellow (E 104). Quinoline Yellow has been previously evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1975, 1978 and 1984, and the EU Scientific Committee for Food (SCF) in 1984. Both committees established an Acceptable Daily Intake (ADI) of 0-10 mg/kg body weight (bw). Studies not evaluated by JECFA and the SCF included a chronic toxicity and carcinogenicity study with a reproductive toxicity phase in rats and a study on behaviour in children by McCann et al. from 2007. The latter study concluded that exposure to a mixture of colours including Quinoline Yellow resulted in increased hyperactivity in 8- to 9-years old children. The Panel concurs with the conclusion from a previous EFSA opinion on the McCann et al. study that the findings of the study cannot be used as a basis for altering the ADI. The Panel notes that Quinoline Yellow was negative in in vitro genotoxicity as well as in long term carcinogenicity studies. The Panel concludes that the currently available database on semi-chronic, reproductive, developmental and long-term toxicity of Quinoline Yellow, including a study in rats not apparently taken into consideration by JECFA or the SCF, provides a rationale for re-definition of the ADI. Using the NOAEL of 50 mg/kg bw/day provided by the chronic toxicity and carcinogenicity study with a reproductive toxicity phase carried out in rats and applying an uncertainty factor of 100 to this NOAEL, the Panel establishes an ADI of 0.5 mg/kg bw/day. The Panel notes that at the maximum levels of use of Quinoline Yellow, refined intake estimates are generally well over the ADI of 0.5 mg/kg bw/day

    Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus) : the effects of noise level and duration

    Get PDF
    Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 125 (2009): 1816-1826, doi:10.1121/1.3068456.Noise levels in the ocean are increasing and are expected to affect marine mammals. To examine the auditory effects of noise on odontocetes, a bottlenose dolphin (Tursiops truncatus) was exposed to octave-band noise (4–8 kHz) of varying durations (<2–30 min) and sound pressures (130–178 dB re 1 µPa). Temporary threshold shift (TTS) occurrence was quantified in an effort to (i) determine the sound exposure levels (SELs) (dB re 1 µPa2 s) that induce TTS and (ii) develop a model to predict TTS onset. Hearing thresholds were measured using auditory evoked potentials. If SEL was kept constant, significant shifts were induced by longer duration exposures but not for shorter exposures. Higher SELs were required to induce shifts in shorter duration exposures. The results did not support an equal-energy model to predict TTS onset. Rather, a logarithmic algorithm, which increased in sound energy as exposure duration decreased, was a better predictor of TTS. Recovery to baseline hearing thresholds was also logarithmic (approximately −1.8 dB/doubling of time) but indicated variability including faster recovery rates after greater shifts and longer recoveries necessary after longer duration exposures. The data reflected the complexity of TTS in mammals that should be taken into account when predicting odontocete TTS.This work was funded by the Office of Naval Research Grant No. 00014-098-1-687 to P.E.N. and the support of Bob Gisiner and Mardi Hasting is noted. Additional support came from SeaSpace to T.A.M

    Speciation of volatile organic compounds from poultry production

    Get PDF
    Volatile organic compounds (VOCs) emitted from poultry production are leading source of air quality problems. However, little is known about the speciation and levels of VOCs from poultry production. The objective of this study was the speciation of VOCs from a poultry facility using evacuated canisters and sorbent tubes. Samples were taken during active poultry production cycle and between production cycles. Levels of VOCs were highest in areas with birds and the compounds in those areas had a higher percentage of polar compounds (89%) compared to aliphatic hydrocarbons (2.2%). In areas without birds, levels of VOCs were 1/3 those with birds present and compounds had a higher total percentage of aliphatic hydrocarbons (25%). Of the VOCs quantified in this study, no single sampling method was capable of quantifying more than 55% of compounds and in several sections of the building each sampling method quantified less than 50% of the quantifiable VOCs. Key classes of chemicals quantified using evacuated canisters included both alcohols and ketones, while sorbent tube samples included volatile fatty acids and ketones. The top five compounds made up close to 70% of VOCs and included: 1) acetic acid (830.1 μg m−3); 2) 2,3-butanedione (680.6 μg m−3); 3) methanol (195.8 μg m−3); 4) acetone (104.6 μg m−3); and 5) ethanol (101.9 μg m−3). Location variations for top five compounds averaged 49.5% in each section of the building and averaged 87% for the entire building

    Ethics, Nanobiosensors and Elite Sport: The Need for a New Governance Framework

    Get PDF
    Individual athletes, coaches and sports teams seek continuously for ways to improve performance and accomplishment in elite competition. New techniques of performance analysis are a crucial part of the drive for athletic perfection. This paper discusses the ethical importance of one aspect of the future potential of performance analysis in sport, combining the field of biomedicine, sports engineering and nanotechnology in the form of ‘Nanobiosensors’. This innovative technology has the potential to revolutionise sport, enabling real time biological data to be collected from athletes that can be electronically distributed. Enabling precise real time performance analysis is not without ethical problems. Arguments concerning (1) data ownership and privacy; (2) data confidentiality; and (3) athlete welfare are presented alongside a discussion of the use of the Precautionary Principle in making ethical evaluations. We conclude, that although the future potential use of Nanobiosensors in sports analysis offers many potential benefits, there is also a fear that it could be abused at a sporting system level. Hence, it is essential for sporting bodies to consider the development of a robust ethically informed governance framework in advance of their proliferated use
    corecore