2,733 research outputs found

    Evaluation of the possibility of obtaining welded joints of plates from Al-Mg-Mn aluminum alloys, strengthened by the introduction of TiB2 particles

    Get PDF
    In the work, the possibility of obtaining strong welded joints of aluminum alloys modified with particles is demonstrated. For research, strengthened aluminum alloys of the Al-Mg-Mn system with the introduction of TiB2 particles were obtained. TiB2 particles in specially prepared Al-TiB master alloys obtained by self-propagating high-temperature synthesis were introduced ex situ into the melt according to an original technique using ultrasonic treatment. Plates from the studied cast alloys were butt-welded by one-sided welded joints of various depths. To obtain welded joints, the method of electron beam welding was used. Mechanical properties of the studied alloys and their welded joints under tension were studied. It was shown that the introduction of particles resulted in a change in the internal structure of the alloys, characterized by the formation of compact dendritic structures and a decrease in the average grain size from 155 to 95 ”m. The change in the internal structure due to the introduction of particles led to an increase in the tensile strength of the obtained alloys from 163 to 204 MPa. It was found that the obtained joints have sufficient relative strength values. Relative strength values reach 0.9 of the nominal strength of materials already at the ratio of the welded joint depth to the thickness of the welded plates, equal to 0.6 for the initial alloy and in the range of 0.67–0.8 for strengthened alloys

    Phase composition, structure and properties of the spark plasma sintered ceramics obtained from the Al12Mg17-B-Si powder mixtures

    Get PDF
    In this work, composite materials were obtained by spark plasma sintering of an Al12Mg17-B-Si powder mixture. The structure, phase composition, and mechanical properties of the obtained composites were studied. It was found that various compounds based on B12 icosahedrons, such as AlB12, B4Si, and B6Si, are formed during spark plasma sintering. Based on the SEM images and results of XRD analysis of the obtained specimens, a probable scheme for the formation of the phase composition of composite materials during spark plasma sintering was proposed. An increase in the Al12Mg17-B powder content in the initial mixture from 30 to 70 wt% leads to an increase in hardness from 16.55 to 21.24 GPa and a decrease in the friction coefficient and wear rate from 0.56 to 0.32 and 13.60 to 5.60 10−5 mm−3/(N/m), respectively

    Study of influence of aluminum nitride nanoparticles on the structure, phase composition and mechanical properties of AZ91 alloy

    Get PDF
    In this work, magnesium-based composites were obtained by shock-wave compaction of a powder mixture of Mg-5 wt.% AlN at a shock-wave pressure of 2 GPa. Their microstructure was investigated and the phase composition was determined, from which it follows that the nanoparticles retain their phase composition and are uniformly distributed in the magnesium matrix. The materials obtained by shock-wave compaction were used as master alloys for the production of magnesium alloys by die casting. The amount of aluminum nitride nanoparticles in the AZ91 magnesium alloy was 0.5 wt.%. Studies of the microstructure of the magnesium alloys showed a decrease in the average grain size of the magnesium matrix from 610 to 420 m. Studies of mechanical properties have shown that the introduction of aluminum nitride nanoparticles increases the yield strength from 55 to 119 MPa, the tensile strength from 122 to 171 MPa and the plasticity from 4 to 6.5%, respectively. The effect of nanoparticles on the fracture behavior of the magnesium alloy under tension was determine

    Pro-neural transcription factors as cancer markers.

    Get PDF
    BACKGROUND: The aberrant transcription in cancer of genes normally associated with embryonic tissue differentiation at various organ sites may be a hallmark of tumour progression. For example, neuroendocrine differentiation is found more commonly in cancers destined to progress, including prostate and lung. We sought to identify proteins which are involved in neuroendocrine differentiation and differentially expressed in aggressive/metastatic tumours. RESULTS: Expression arrays were used to identify up-regulated transcripts in a neuroendocrine (NE) transgenic mouse model of prostate cancer. Amongst these were several genes normally expressed in neural tissues, including the pro-neural transcription factors Ascl1 and Hes6. Using quantitative RT-PCR and immuno-histochemistry we showed that these same genes were highly expressed in castrate resistant, metastatic LNCaP cell-lines. Finally we performed a meta-analysis on expression array datasets from human clinical material. The expression of these pro-neural transcripts effectively segregates metastatic from localised prostate cancer and benign tissue as well as sub-clustering a variety of other human cancers. CONCLUSION: By focussing on transcription factors known to drive normal tissue development and comparing expression signatures for normal and malignant mouse tissues we have identified two transcription factors, Ascl1 and Hes6, which appear effective markers for an aggressive phenotype in all prostate models and tissues examined. We suggest that the aberrant initiation of differentiation programs may confer a selective advantage on cells in all contexts and this approach to identify biomarkers therefore has the potential to uncover proteins equally applicable to pre-clinical and clinical cancer biology.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    ĐĐœĐ°Đ»ĐžĐ· ĐșлючДĐČых ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžĐč ĐœĐžĐ·ĐșĐŸŃƒĐłĐ»Đ”Ń€ĐŸĐŽĐœĐŸĐč Ń‚Ń€Đ°ĐœŃŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž эĐșĐŸĐœĐŸĐŒĐžĐșĐž ĐœĐŸŃĐșĐČы ĐœĐ° ĐżĐ”Ń€ĐžĐŸĐŽ ĐŽĐŸ 2035 ĐłĐŸĐŽĐ°

    Get PDF
    ĐŸŃ€ĐžĐœŃŃ‚ĐžĐ” Ń„Đ”ĐŽĐ”Ń€Đ°Đ»ŃŒĐœĐŸĐč ХтратДгОО ŃĐŸŃ†ĐžĐ°Đ»ŃŒĐœĐŸ-эĐșĐŸĐœĐŸĐŒĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ разĐČотоя Đ ĐŸŃŃĐžĐčсĐșĐŸĐč ЀДЎДрацОО с ĐœĐžĐ·ĐșĐžĐŒ ŃƒŃ€ĐŸĐČĐœĐ”ĐŒ ĐČŃ‹Đ±Ń€ĐŸŃĐŸĐČ ĐżĐ°Ń€ĐœĐžĐșĐŸĐČых ĐłĐ°Đ·ĐŸĐČ ĐŽĐŸ 2050 ĐłĐŸĐŽĐ° ĐŸĐżŃ€Đ”ĐŽĐ”Đ»ŃĐ”Ń‚ ĐœĐ”ĐŸĐ±Ń…ĐŸĐŽĐžĐŒĐŸŃŃ‚ŃŒ ŃƒŃ‡Đ”Ń‚Đ° ĐșĐ»ĐžĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ аспДĐșта ĐČ ŃŃ‚Ń€Đ°Ń‚Đ”ĐłĐžŃ‡Đ”ŃĐșĐŸĐŒ ĐżĐ»Đ°ĐœĐžŃ€ĐŸĐČĐ°ĐœĐžĐž, ĐČ Ń‚ĐŸĐŒ чОслД ĐœĐ° ŃƒŃ€ĐŸĐČĐœĐ” ĐŸŃ‚ĐŽĐ”Đ»ŃŒĐœŃ‹Ń… Ń€Đ”ĐłĐžĐŸĐœĐŸĐČ Đž ĐłĐŸŃ€ĐŸĐŽĐŸĐČ. ĐŠĐ”Đ»ŃŒ статьо Đ·Đ°ĐșĐ»ŃŽŃ‡Đ°Đ”Ń‚ŃŃ ĐČ Đ°ĐœĐ°Đ»ĐžĐ·Đ” ĐșлючДĐČых Đž ĐœĐ°ĐžĐ±ĐŸĐ»Đ”Đ” ŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Ń… ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžĐč ĐœĐžĐ·ĐșĐŸŃƒĐłĐ»Đ”Ń€ĐŸĐŽĐœĐŸĐč Ń‚Ń€Đ°ĐœŃŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž эĐșĐŸĐœĐŸĐŒĐžĐșĐž ĐłĐŸŃ€ĐŸĐŽĐ° ĐœĐŸŃĐșĐČы. Đ˜ŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐ” ĐŸĐżĐžŃ€Đ°Đ”Ń‚ŃŃ ĐœĐ° ĐŒĐ”Ń‚ĐŸĐŽŃ‹ ĐŒĐ°Ń‚Đ”ĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ Đž ŃŃ†Đ”ĐœĐ°Ń€ĐœĐŸĐłĐŸ ĐżŃ€ĐŸĐłĐœĐŸĐ·ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ, ĐŒĐŸĐŽĐ”Đ»ŃŒĐœŃ‹Đč ĐžĐœŃŃ‚Ń€ŃƒĐŒĐ”ĐœŃ‚Đ°Ń€ĐžĐč Ń€Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚Đ°Đœ ĐŽĐ»Ń ĐŸŃ†Đ”ĐœĐșĐž ĐżŃ€ŃĐŒŃ‹Ń… ŃĐŒĐžŃŃĐžĐč ĐżĐ°Ń€ĐœĐžĐșĐŸĐČых ĐłĐ°Đ·ĐŸĐČ, ĐŸĐ±ŃƒŃĐ»ĐŸĐČĐ»Đ”ĐœĐœŃ‹Ń… ĐżĐŸŃ‚Ń€Đ”Đ±Đ»Đ”ĐœĐžĐ”ĐŒ Ń‚ĐŸĐżĐ»ĐžĐČĐœĐŸ-ŃĐœĐ”Ń€ĐłĐ”Ń‚ĐžŃ‡Đ”ŃĐșох Ń€Đ”ŃŃƒŃ€ŃĐŸĐČ. ĐœĐŸŃĐșĐČĐ° яĐČĐ»ŃĐ”Ń‚ŃŃ Ń€Đ”ĐłĐžĐŸĐœĐŸĐŒ-Đ»ĐžĐŽĐ”Ń€ĐŸĐŒ ĐČ Ń‡Đ°ŃŃ‚Đž ŃĐœĐžĐ¶Đ”ĐœĐžŃ ŃĐŒĐžŃŃĐžĐč ĐżĐ°Ń€ĐœĐžĐșĐŸĐČых ĐłĐ°Đ·ĐŸĐČ: Đ·Đ° 2012–2019 гг. ĐŸĐœĐž ŃĐŸĐșŃ€Đ°Ń‚ĐžĐ»ĐžŃŃŒ ĐœĐ° 9 % Đ±Đ»Đ°ĐłĐŸĐŽĐ°Ń€Ń ĐŒĐŸĐŽĐ”Ń€ĐœĐžĐ·Đ°Ń†ĐžĐž сДĐșŃ‚ĐŸŃ€Đ° ŃĐœĐ”Ń€ĐłĐŸŃĐœĐ°Đ±Đ¶Đ”ĐœĐžŃ, ĐżŃ€ĐžĐŸŃ€ĐžŃ‚Đ”Đ·Đ°Ń†ĐžĐž ĐșĐŸĐłĐ”ĐœĐ”Ń€Đ°Ń†ĐžĐž, разĐČотою ĐłĐŸŃ€ĐŸĐŽŃĐșĐŸĐłĐŸ Ń‚Ń€Đ°ĐœŃĐżĐŸŃ€Ń‚Đ°. На ĐżĐ”Ń€ĐžĐŸĐŽ ĐŽĐŸ 2035 Đł. Ń€Đ”Đ°Đ»ĐžŃŃ‚ĐžŃ‡ĐœĐŸĐč Đž ĐŽĐŸŃŃ‚ĐžĐ¶ĐžĐŒĐŸĐč яĐČĐ»ŃĐ”Ń‚ŃŃ Ń†Đ”Đ»ŃŒ ŃĐœĐžĐ¶Đ”ĐœĐžŃ ŃĐŒĐžŃŃĐžĐč ДщД ĐœĐ° 7–11 %. Đ”Đ»Ń ŃŃ‚ĐŸĐłĐŸ ĐœĐ”ĐŸĐ±Ń…ĐŸĐŽĐžĐŒĐŸ Đ°ĐșтоĐČĐžĐ·ĐžŃ€ĐŸĐČать ĐŒĐ”Ń€Ń‹ ĐżĐŸ ŃĐ»Đ”ĐŽŃƒŃŽŃ‰ĐžĐŒ ĐșлючДĐČŃ‹ĐŒ ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžŃĐŒ: ŃĐœĐ”Ń€ĐłĐŸŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Đ” ĐșĐ°ĐżĐžŃ‚Đ°Đ»ŃŒĐœŃ‹Đ” Ń€Đ”ĐŒĐŸĐœŃ‚Ń‹ Đž ĐœĐŸĐČĐŸĐ” ŃŃ‚Ń€ĐŸĐžŃ‚Đ”Đ»ŃŒŃŃ‚ĐČĐŸ (ĐČĐșĐ»ŃŽŃ‡Đ°Ń ĐżŃ€ĐŸĐłŃ€Đ°ĐŒĐŒŃƒ Ń€Đ”ĐœĐŸĐČацоо), Đ°ĐČŃ‚ĐŸĐŒĐ°Ń‚ĐžĐ·Đ°Ń†ĐžŃ Ń†Đ”ĐœŃ‚Ń€Đ°Đ»ŃŒĐœŃ‹Ń… Ń‚Đ”ĐżĐ»ĐŸĐČых ĐżŃƒĐœĐșŃ‚ĐŸĐČ Đž ŃƒĐ·Đ»ĐŸĐČ ŃƒĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžŃ ŃĐžŃŃ‚Đ”ĐŒĐ°ĐŒĐž Ń‚Đ”ĐżĐ»ĐŸŃĐœĐ°Đ±Đ¶Đ”ĐœĐžŃ ĐČ ŃŃ„Đ”Ń€Đ” Đ·ĐŽĐ°ĐœĐžĐč Đž ЖКЄ, ĐżĐŸĐ»ĐœĐ°Ń ŃĐ»Đ”ĐșтрофоĐșацоя ĐŸĐ±Ń‰Đ”ŃŃ‚ĐČĐ”ĐœĐœĐŸĐłĐŸ Ń‚Ń€Đ°ĐœŃĐżĐŸŃ€Ń‚Đ°, ŃŃ‚ĐžĐŒŃƒĐ»ĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” Ń‚ĐŸĐżĐ»ĐžĐČĐœĐŸĐč ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚Đž Đž ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžŃ ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŒĐŸĐ±ĐžĐ»Đ”Đč (Đ»ĐžŃ‡ĐœŃ‹Ń…, Đ° таĐșжД ĐČ ŃŃ„Đ”Ń€Đ” таĐșсО, ĐșĐ°Ń€ŃˆĐ”Ń€ĐžĐœĐłĐ°, ĐŽĐŸŃŃ‚Đ°ĐČĐșĐž, ĐșĐŸĐŒĐŒĐ”Ń€Ń‡Đ”ŃĐșох пДрДĐČĐŸĐ·ĐŸĐș) ĐČ ŃŃ„Đ”Ń€Đ” Ń‚Ń€Đ°ĐœŃĐżĐŸŃ€Ń‚Đ°. В сфДрД ŃĐœĐ”Ń€ĐłĐ”Ń‚ĐžĐșĐž ŃĐ»Đ”ĐŽŃƒĐ”Ń‚ ĐŸŃ‚ĐșĐ°Đ·Đ°Ń‚ŃŒŃŃ ĐŸŃ‚ Ń„ĐŸŃ€ŃĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐłĐŸ ĐœĐ°Ń€Đ°Ń‰ĐžĐČĐ°ĐœĐžŃ ŃĐŸĐ±ŃŃ‚ĐČĐ”ĐœĐœĐŸĐč ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐłĐ”ĐœĐ”Ń€Đ°Ń†ĐžĐž: Đ°Đ»ŃŒŃ‚Đ”Ń€ĐœĐ°Ń‚ĐžĐČĐŸĐč ĐŽĐŸĐ»Đ¶ĐœŃ‹ стать ĐżĐŸĐŽĐŽĐ”Ń€Đ¶Đ°ĐœĐžĐ” ŃŃƒŃ‰Đ”ŃŃ‚ĐČующох ŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Ń… ĐłĐ”ĐœĐ”Ń€ĐžŃ€ŃƒŃŽŃ‰ĐžŃ… ĐŒĐŸŃ‰ĐœĐŸŃŃ‚Đ”Đč Đž Đ·Đ°ĐșупĐșĐ° ĐœĐ”ĐŽĐŸŃŃ‚Đ°ŃŽŃ‰ĐžŃ… ĐŸĐ±ŃŠĐ”ĐŒĐŸĐČ ĐœĐ° ĐżŃ€ĐŸŃ„ĐžŃ†ĐžŃ‚ĐœĐŸĐŒ ĐŸĐżŃ‚ĐŸĐČĐŸĐŒ Ń€Ń‹ĐœĐșĐ” ŃĐ»Đ”ĐșŃ‚Ń€ĐŸŃĐœĐ”Ń€ĐłĐžĐž. Đ”Đ»Ń ĐŸĐ±Đ”ŃĐżĐ”Ń‡Đ”ĐœĐžŃ ŃƒŃĐ»ĐŸĐČĐžĐč ĐœĐžĐ·ĐșĐŸŃƒĐłĐ»Đ”Ń€ĐŸĐŽĐœĐŸĐč Ń‚Ń€Đ°ĐœŃŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž ĐœĐŸŃĐșĐČы Ń†Đ”Đ»Đ”ŃĐŸĐŸĐ±Ń€Đ°Đ·ĐœĐŸ ĐČĐœĐ”ĐŽŃ€ĐžŃ‚ŃŒ ĐșрОтДрОĐč ĐČĐ»ĐžŃĐœĐžŃ ĐżŃ€ĐžĐœĐžĐŒĐ°Đ”ĐŒŃ‹Ń… ĐŒĐ”Ń€ ĐœĐ° ĐŸĐ±ŃŠĐ”ĐŒ ŃĐŒĐžŃŃĐžĐč про ĐżĐ»Đ°ĐœĐžŃ€ĐŸĐČĐ°ĐœĐžĐž ĐČсДх ĐłĐŸŃ€ĐŸĐŽŃĐșох ĐżŃ€ĐŸĐłŃ€Đ°ĐŒĐŒ, ŃŃ…Đ”ĐŒ разĐČотоя Đž ĐžĐœĐČĐ”ŃŃ‚ĐžŃ†ĐžĐŸĐœĐœŃ‹Ń… ĐżŃ€ĐŸĐ”ĐșŃ‚ĐŸĐČ. Đ Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ Đž ĐČыĐČĐŸĐŽŃ‹ статьо ĐŒĐŸĐłŃƒŃ‚ Đ±Ń‹Ń‚ŃŒ ĐżĐŸĐ»Đ”Đ·ĐœŃ‹ про Ń€Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚ĐșĐ” ĐŽĐŸĐșŃƒĐŒĐ”ĐœŃ‚ĐŸĐČ ŃŃ‚Ń€Đ°Ń‚Đ”ĐłĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ ĐżĐ»Đ°ĐœĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐłĐŸŃ€ĐŸĐŽĐ° ĐœĐŸŃĐșĐČы

    ĐĐœĐ°Đ»ĐžĐ· ĐșлючДĐČых ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžĐč ĐœĐžĐ·ĐșĐŸŃƒĐłĐ»Đ”Ń€ĐŸĐŽĐœĐŸĐč Ń‚Ń€Đ°ĐœŃŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž эĐșĐŸĐœĐŸĐŒĐžĐșĐž ĐœĐŸŃĐșĐČы ĐœĐ° ĐżĐ”Ń€ĐžĐŸĐŽ ĐŽĐŸ 2035 ĐłĐŸĐŽĐ°

    Get PDF
    ĐŸŃ€ĐžĐœŃŃ‚ĐžĐ” Ń„Đ”ĐŽĐ”Ń€Đ°Đ»ŃŒĐœĐŸĐč ХтратДгОО ŃĐŸŃ†ĐžĐ°Đ»ŃŒĐœĐŸ-эĐșĐŸĐœĐŸĐŒĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ разĐČотоя Đ ĐŸŃŃĐžĐčсĐșĐŸĐč ЀДЎДрацОО с ĐœĐžĐ·ĐșĐžĐŒ ŃƒŃ€ĐŸĐČĐœĐ”ĐŒ ĐČŃ‹Đ±Ń€ĐŸŃĐŸĐČ ĐżĐ°Ń€ĐœĐžĐșĐŸĐČых ĐłĐ°Đ·ĐŸĐČ ĐŽĐŸ 2050 ĐłĐŸĐŽĐ° ĐŸĐżŃ€Đ”ĐŽĐ”Đ»ŃĐ”Ń‚ ĐœĐ”ĐŸĐ±Ń…ĐŸĐŽĐžĐŒĐŸŃŃ‚ŃŒ ŃƒŃ‡Đ”Ń‚Đ° ĐșĐ»ĐžĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ аспДĐșта ĐČ ŃŃ‚Ń€Đ°Ń‚Đ”ĐłĐžŃ‡Đ”ŃĐșĐŸĐŒ ĐżĐ»Đ°ĐœĐžŃ€ĐŸĐČĐ°ĐœĐžĐž, ĐČ Ń‚ĐŸĐŒ чОслД ĐœĐ° ŃƒŃ€ĐŸĐČĐœĐ” ĐŸŃ‚ĐŽĐ”Đ»ŃŒĐœŃ‹Ń… Ń€Đ”ĐłĐžĐŸĐœĐŸĐČ Đž ĐłĐŸŃ€ĐŸĐŽĐŸĐČ. ĐŠĐ”Đ»ŃŒ статьо Đ·Đ°ĐșĐ»ŃŽŃ‡Đ°Đ”Ń‚ŃŃ ĐČ Đ°ĐœĐ°Đ»ĐžĐ·Đ” ĐșлючДĐČых Đž ĐœĐ°ĐžĐ±ĐŸĐ»Đ”Đ” ŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Ń… ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžĐč ĐœĐžĐ·ĐșĐŸŃƒĐłĐ»Đ”Ń€ĐŸĐŽĐœĐŸĐč Ń‚Ń€Đ°ĐœŃŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž эĐșĐŸĐœĐŸĐŒĐžĐșĐž ĐłĐŸŃ€ĐŸĐŽĐ° ĐœĐŸŃĐșĐČы. Đ˜ŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐ” ĐŸĐżĐžŃ€Đ°Đ”Ń‚ŃŃ ĐœĐ° ĐŒĐ”Ń‚ĐŸĐŽŃ‹ ĐŒĐ°Ń‚Đ”ĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ Đž ŃŃ†Đ”ĐœĐ°Ń€ĐœĐŸĐłĐŸ ĐżŃ€ĐŸĐłĐœĐŸĐ·ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ, ĐŒĐŸĐŽĐ”Đ»ŃŒĐœŃ‹Đč ĐžĐœŃŃ‚Ń€ŃƒĐŒĐ”ĐœŃ‚Đ°Ń€ĐžĐč Ń€Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚Đ°Đœ ĐŽĐ»Ń ĐŸŃ†Đ”ĐœĐșĐž ĐżŃ€ŃĐŒŃ‹Ń… ŃĐŒĐžŃŃĐžĐč ĐżĐ°Ń€ĐœĐžĐșĐŸĐČых ĐłĐ°Đ·ĐŸĐČ, ĐŸĐ±ŃƒŃĐ»ĐŸĐČĐ»Đ”ĐœĐœŃ‹Ń… ĐżĐŸŃ‚Ń€Đ”Đ±Đ»Đ”ĐœĐžĐ”ĐŒ Ń‚ĐŸĐżĐ»ĐžĐČĐœĐŸ-ŃĐœĐ”Ń€ĐłĐ”Ń‚ĐžŃ‡Đ”ŃĐșох Ń€Đ”ŃŃƒŃ€ŃĐŸĐČ. ĐœĐŸŃĐșĐČĐ° яĐČĐ»ŃĐ”Ń‚ŃŃ Ń€Đ”ĐłĐžĐŸĐœĐŸĐŒ-Đ»ĐžĐŽĐ”Ń€ĐŸĐŒ ĐČ Ń‡Đ°ŃŃ‚Đž ŃĐœĐžĐ¶Đ”ĐœĐžŃ ŃĐŒĐžŃŃĐžĐč ĐżĐ°Ń€ĐœĐžĐșĐŸĐČых ĐłĐ°Đ·ĐŸĐČ: Đ·Đ° 2012–2019 гг. ĐŸĐœĐž ŃĐŸĐșŃ€Đ°Ń‚ĐžĐ»ĐžŃŃŒ ĐœĐ° 9 % Đ±Đ»Đ°ĐłĐŸĐŽĐ°Ń€Ń ĐŒĐŸĐŽĐ”Ń€ĐœĐžĐ·Đ°Ń†ĐžĐž сДĐșŃ‚ĐŸŃ€Đ° ŃĐœĐ”Ń€ĐłĐŸŃĐœĐ°Đ±Đ¶Đ”ĐœĐžŃ, ĐżŃ€ĐžĐŸŃ€ĐžŃ‚Đ”Đ·Đ°Ń†ĐžĐž ĐșĐŸĐłĐ”ĐœĐ”Ń€Đ°Ń†ĐžĐž, разĐČотою ĐłĐŸŃ€ĐŸĐŽŃĐșĐŸĐłĐŸ Ń‚Ń€Đ°ĐœŃĐżĐŸŃ€Ń‚Đ°. На ĐżĐ”Ń€ĐžĐŸĐŽ ĐŽĐŸ 2035 Đł. Ń€Đ”Đ°Đ»ĐžŃŃ‚ĐžŃ‡ĐœĐŸĐč Đž ĐŽĐŸŃŃ‚ĐžĐ¶ĐžĐŒĐŸĐč яĐČĐ»ŃĐ”Ń‚ŃŃ Ń†Đ”Đ»ŃŒ ŃĐœĐžĐ¶Đ”ĐœĐžŃ ŃĐŒĐžŃŃĐžĐč ДщД ĐœĐ° 7–11 %. Đ”Đ»Ń ŃŃ‚ĐŸĐłĐŸ ĐœĐ”ĐŸĐ±Ń…ĐŸĐŽĐžĐŒĐŸ Đ°ĐșтоĐČĐžĐ·ĐžŃ€ĐŸĐČать ĐŒĐ”Ń€Ń‹ ĐżĐŸ ŃĐ»Đ”ĐŽŃƒŃŽŃ‰ĐžĐŒ ĐșлючДĐČŃ‹ĐŒ ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžŃĐŒ: ŃĐœĐ”Ń€ĐłĐŸŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Đ” ĐșĐ°ĐżĐžŃ‚Đ°Đ»ŃŒĐœŃ‹Đ” Ń€Đ”ĐŒĐŸĐœŃ‚Ń‹ Đž ĐœĐŸĐČĐŸĐ” ŃŃ‚Ń€ĐŸĐžŃ‚Đ”Đ»ŃŒŃŃ‚ĐČĐŸ (ĐČĐșĐ»ŃŽŃ‡Đ°Ń ĐżŃ€ĐŸĐłŃ€Đ°ĐŒĐŒŃƒ Ń€Đ”ĐœĐŸĐČацоо), Đ°ĐČŃ‚ĐŸĐŒĐ°Ń‚ĐžĐ·Đ°Ń†ĐžŃ Ń†Đ”ĐœŃ‚Ń€Đ°Đ»ŃŒĐœŃ‹Ń… Ń‚Đ”ĐżĐ»ĐŸĐČых ĐżŃƒĐœĐșŃ‚ĐŸĐČ Đž ŃƒĐ·Đ»ĐŸĐČ ŃƒĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžŃ ŃĐžŃŃ‚Đ”ĐŒĐ°ĐŒĐž Ń‚Đ”ĐżĐ»ĐŸŃĐœĐ°Đ±Đ¶Đ”ĐœĐžŃ ĐČ ŃŃ„Đ”Ń€Đ” Đ·ĐŽĐ°ĐœĐžĐč Đž ЖКЄ, ĐżĐŸĐ»ĐœĐ°Ń ŃĐ»Đ”ĐșтрофоĐșацоя ĐŸĐ±Ń‰Đ”ŃŃ‚ĐČĐ”ĐœĐœĐŸĐłĐŸ Ń‚Ń€Đ°ĐœŃĐżĐŸŃ€Ń‚Đ°, ŃŃ‚ĐžĐŒŃƒĐ»ĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” Ń‚ĐŸĐżĐ»ĐžĐČĐœĐŸĐč ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚Đž Đž ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžŃ ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŒĐŸĐ±ĐžĐ»Đ”Đč (Đ»ĐžŃ‡ĐœŃ‹Ń…, Đ° таĐșжД ĐČ ŃŃ„Đ”Ń€Đ” таĐșсО, ĐșĐ°Ń€ŃˆĐ”Ń€ĐžĐœĐłĐ°, ĐŽĐŸŃŃ‚Đ°ĐČĐșĐž, ĐșĐŸĐŒĐŒĐ”Ń€Ń‡Đ”ŃĐșох пДрДĐČĐŸĐ·ĐŸĐș) ĐČ ŃŃ„Đ”Ń€Đ” Ń‚Ń€Đ°ĐœŃĐżĐŸŃ€Ń‚Đ°. В сфДрД ŃĐœĐ”Ń€ĐłĐ”Ń‚ĐžĐșĐž ŃĐ»Đ”ĐŽŃƒĐ”Ń‚ ĐŸŃ‚ĐșĐ°Đ·Đ°Ń‚ŃŒŃŃ ĐŸŃ‚ Ń„ĐŸŃ€ŃĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐłĐŸ ĐœĐ°Ń€Đ°Ń‰ĐžĐČĐ°ĐœĐžŃ ŃĐŸĐ±ŃŃ‚ĐČĐ”ĐœĐœĐŸĐč ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐłĐ”ĐœĐ”Ń€Đ°Ń†ĐžĐž: Đ°Đ»ŃŒŃ‚Đ”Ń€ĐœĐ°Ń‚ĐžĐČĐŸĐč ĐŽĐŸĐ»Đ¶ĐœŃ‹ стать ĐżĐŸĐŽĐŽĐ”Ń€Đ¶Đ°ĐœĐžĐ” ŃŃƒŃ‰Đ”ŃŃ‚ĐČующох ŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Ń… ĐłĐ”ĐœĐ”Ń€ĐžŃ€ŃƒŃŽŃ‰ĐžŃ… ĐŒĐŸŃ‰ĐœĐŸŃŃ‚Đ”Đč Đž Đ·Đ°ĐșупĐșĐ° ĐœĐ”ĐŽĐŸŃŃ‚Đ°ŃŽŃ‰ĐžŃ… ĐŸĐ±ŃŠĐ”ĐŒĐŸĐČ ĐœĐ° ĐżŃ€ĐŸŃ„ĐžŃ†ĐžŃ‚ĐœĐŸĐŒ ĐŸĐżŃ‚ĐŸĐČĐŸĐŒ Ń€Ń‹ĐœĐșĐ” ŃĐ»Đ”ĐșŃ‚Ń€ĐŸŃĐœĐ”Ń€ĐłĐžĐž. Đ”Đ»Ń ĐŸĐ±Đ”ŃĐżĐ”Ń‡Đ”ĐœĐžŃ ŃƒŃĐ»ĐŸĐČĐžĐč ĐœĐžĐ·ĐșĐŸŃƒĐłĐ»Đ”Ń€ĐŸĐŽĐœĐŸĐč Ń‚Ń€Đ°ĐœŃŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž ĐœĐŸŃĐșĐČы Ń†Đ”Đ»Đ”ŃĐŸĐŸĐ±Ń€Đ°Đ·ĐœĐŸ ĐČĐœĐ”ĐŽŃ€ĐžŃ‚ŃŒ ĐșрОтДрОĐč ĐČĐ»ĐžŃĐœĐžŃ ĐżŃ€ĐžĐœĐžĐŒĐ°Đ”ĐŒŃ‹Ń… ĐŒĐ”Ń€ ĐœĐ° ĐŸĐ±ŃŠĐ”ĐŒ ŃĐŒĐžŃŃĐžĐč про ĐżĐ»Đ°ĐœĐžŃ€ĐŸĐČĐ°ĐœĐžĐž ĐČсДх ĐłĐŸŃ€ĐŸĐŽŃĐșох ĐżŃ€ĐŸĐłŃ€Đ°ĐŒĐŒ, ŃŃ…Đ”ĐŒ разĐČотоя Đž ĐžĐœĐČĐ”ŃŃ‚ĐžŃ†ĐžĐŸĐœĐœŃ‹Ń… ĐżŃ€ĐŸĐ”ĐșŃ‚ĐŸĐČ. Đ Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ Đž ĐČыĐČĐŸĐŽŃ‹ статьо ĐŒĐŸĐłŃƒŃ‚ Đ±Ń‹Ń‚ŃŒ ĐżĐŸĐ»Đ”Đ·ĐœŃ‹ про Ń€Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚ĐșĐ” ĐŽĐŸĐșŃƒĐŒĐ”ĐœŃ‚ĐŸĐČ ŃŃ‚Ń€Đ°Ń‚Đ”ĐłĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ ĐżĐ»Đ°ĐœĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐłĐŸŃ€ĐŸĐŽĐ° ĐœĐŸŃĐșĐČы

    Differential branching fraction and angular analysis of the decay B0→K∗0ÎŒ+Ό−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 ÎŒ + ÎŒ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− ÎŒ + ΜΌ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date
    • 

    corecore