50 research outputs found

    Circulation and Oxygen Distribution in the Tropical Atlantic Cruise No. 80, Leg 1; October 26 to November 23, 2009 Mindelo (Cape Verde) to Mindelo (Cape Verde)

    Get PDF
    METEOR cruise 80/1 was a contribution to the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”. Shipboard, glider and moored observations are used to study the temporal and spatial variability of physical and biogeochemical parameters within the oxygen minimum zone (OMZ) of the tropical North Atlantic. As part of the BMBF “Nordatlantik” project, it further focuses on the equatorial current system including the Equatorial Undercurrent (EUC) and intermediate currents below. During the cruise, hydrographic station observations were performed using a CTD/O2 rosette, including water sampling for salinity, oxygen, nutrients and other biogeochemical tracers. Underway current measurements were successfully carried out with the 75 kHz ADCP borrowed from R/V POSEIDON during the first part of the cruise, and R/V METEOR’s 38 kHz ADCP during the second part. During M80/1, an intensive mooring program was carried out with 8 mooring recoveries and 8 mooring deployments. Right at the beginning of the cruise, a multidisciplinary mooring near the Cape Verde Islands was recovered and redeployed. Within the framework of SFB 754, two moorings with CTD/O2 profilers were recovered and redeployed with other instrumentation in the center and at the southern rim of the OMZ of the tropical North Atlantic. The equatorial mooring array as part of BMBF “North Atlantic” project consists of 5 current meter moorings along 23°W between 2°S and 2°N. It is aimed at quantifying the variability of the thermocline water supply toward the equatorial cold tongue which develops east of 10°W during boreal summer. Several glider missions were performed during the cruise. One glider was recovered that was deployed two months earlier. Another glider was deployed for two short term missions, near the equator for about 8 days and near 8°N for one day. This glider was equipped with a new microstructure probe in addition to standard sensors, i.e. CTD/O2, chlorophyll and turbidity

    PopDel identifies medium-size deletions simultaneously in tens of thousands of genomes

    Get PDF
    Thousands of genomic structural variants (SVs) segregate in the human population and can impact phenotypic traits and diseases. Their identification in whole-genome sequence data of large cohorts is a major computational challenge. Most current approaches identify SVs in single genomes and afterwards merge the identified variants into a joint call set across many genomes. We describe the approach PopDel, which directly identifies deletions of about 500 to at least 10,000 bp in length in data of many genomes jointly, eliminating the need for subsequent variant merging. PopDel scales to tens of thousands of genomes as we demonstrate in evaluations on up to 49,962 genomes. We show that PopDel reliably reports common, rare and de novo deletions. On genomes with available high-confidence reference call sets PopDel shows excellent recall and precision. Genotype inheritance patterns in up to 6794 trios indicate that genotypes predicted by PopDel are more reliable than those of previous SV callers. Furthermore, PopDel’s running time is competitive with the fastest tested previous tools. The demonstrated scalability and accuracy of PopDel enables routine scans for deletions in large-scale sequencing studies

    Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori

    Get PDF
    Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen

    Practical considerations for measuring the effective reproductive number, Rt.

    Get PDF
    Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation

    Multi-Sample Approaches and Applications for Structural Variant Detection

    Get PDF
    In recent years, advances in the field of sequencing technologies have enabled the field of population-scale sequencing studies. These studies aim to sequence and analyze a large set of individuals from one or multiple populations, with the aim of gaining insight into underlying genetic structure, similarities and differences. Collections of genetic variation and possible connections to various disease are some of the products of this area of research. The potential of population studies is widely considered to be huge and many more endeavors of this kind are expected in the near future. This opportunity comes with a big challenge because many computational tools that are used for the analysis of sequencing data were not designed for cohorts of this size and may suffer from limited scalability. It is therefore vital that the computational tools required for the analysis of population-scale data keep up with the quickly growing amounts of data. This thesis contributes to the field of population-scale genetics in the development and application of a novel approach for structural variant detection. It has explicitly been designed with the large amounts of population-scale sequencing data in mind. The presented approach is capable of analyzing tens of thousands of whole-genome short-read sequencing samples jointly. This joint analysis is driven by a tailored joint likelihood ratio model that integrates information from many genomes. The efficient approach does not only save computational resources but also allows to combine the data across all samples to make sensitive and specific predictions about the presence and genotypes of structural variation present within the analyzed population. This thesis demonstrates that this approach and the computational tool PopDel that implements it compare favorably to current state-of-the-art structural variant callers that have been used in previous population-scale studies. Extensive benchmarks on simulated and real world sequencing data are provided to show the performance of the presented approach. Further, a first finding of medical relevance that directly stems from the application of PopDel on the genomes of almost 50,000 Icelanders is presented. This thesis therefore provides a novel tool and new ideas to further push the boundaries of the analysis of massive amounts of next generation sequencing data and to deepen our understanding of structural variation and their implications for human health

    Development of genetic model of host-pathogen interactions between an obligate intracellular parasite, the microsporidian Tubulinosema ratisbonensis and the model organism Drosophila melanogaster

    No full text
    Plus de 150 années de recherches sur les Microsporidies ont conduit à une connaissance relativement basique de divers aspect de leur biologie. Malgré cela, peut d’informations existent concernant la génétique et les mécanismes moléculaire des interactions hôte-pathogène qui gouvernent les infections aux Microsporidies.Dans un premier temps, je décris comment détecter, traiter et éradiquer les infections microsporidiales avec Tubulinosema ratisbonensis dans des lignées de Drosophila melanogaster. Jusqu’à présent, les connaissances concernant les défenses de l’hôte chez la drosophile contre les parasites intracellulaire obligatoires restent incomplète due au manque d’un bon modèle d’infection. De ce fait, j’ai développé des modèles d’infection de D. melanogaster par la microsporidie T.ratisbonensis, à la fois en culture cellulaire et drosophiles adultes. Mes travaux sur le modèle d’infection cellulaire englobent des approchent en transcriptomique et métabolomique qui analysent les deux cotées de cette relation hôte-pathogène. En fin, je présente les fonctions biologiques des glycosylphosphatidyl inositoles de Toxoplasma gondii.More than 150 years of Microsporidia research led to a basic understanding of many aspects of microsporidial biology, yet little is known about the genetic basis and molecular mechanisms of the intimate host-parasite relationship that govern Microsporidia infections.Here, I first report on the detection, prophylaxis, and eradication measures against microsporidial infestations with Tubulinosema ratisbonensis, infecting cultures of Drosophila melanogaster. To date,knowledge about Drosophila host defense against obligate intracellular parasites remained incomplete for lack of good infection models.To this end, I have developed infection models of Drosophila by the microsporidian T. ratisbonensis,both in cell lines and in adults. The work on the cellular infection model encompasses transcriptomics and metabolomics approaches, which aim to attempt both sides of the host-pathogen equation. Finally, I report on the biological roles of glycosylphosphatidyl inositols of Toxoplasma gondii

    Development of genetic model of host-pathogen interactions between an obligate intracellular parasite, the microsporidian Tubulinosema ratisbonensis and the model organism Drosophila melanogaster

    No full text
    Plus de 150 années de recherches sur les Microsporidies ont conduit à une connaissance relativement basique de divers aspect de leur biologie. Malgré cela, peut d’informations existent concernant la génétique et les mécanismes moléculaire des interactions hôte-pathogène qui gouvernent les infections aux Microsporidies.Dans un premier temps, je décris comment détecter, traiter et éradiquer les infections microsporidiales avec Tubulinosema ratisbonensis dans des lignées de Drosophila melanogaster. Jusqu’à présent, les connaissances concernant les défenses de l’hôte chez la drosophile contre les parasites intracellulaire obligatoires restent incomplète due au manque d’un bon modèle d’infection. De ce fait, j’ai développé des modèles d’infection de D. melanogaster par la microsporidie T.ratisbonensis, à la fois en culture cellulaire et drosophiles adultes. Mes travaux sur le modèle d’infection cellulaire englobent des approchent en transcriptomique et métabolomique qui analysent les deux cotées de cette relation hôte-pathogène. En fin, je présente les fonctions biologiques des glycosylphosphatidyl inositoles de Toxoplasma gondii.More than 150 years of Microsporidia research led to a basic understanding of many aspects of microsporidial biology, yet little is known about the genetic basis and molecular mechanisms of the intimate host-parasite relationship that govern Microsporidia infections.Here, I first report on the detection, prophylaxis, and eradication measures against microsporidial infestations with Tubulinosema ratisbonensis, infecting cultures of Drosophila melanogaster. To date,knowledge about Drosophila host defense against obligate intracellular parasites remained incomplete for lack of good infection models.To this end, I have developed infection models of Drosophila by the microsporidian T. ratisbonensis,both in cell lines and in adults. The work on the cellular infection model encompasses transcriptomics and metabolomics approaches, which aim to attempt both sides of the host-pathogen equation. Finally, I report on the biological roles of glycosylphosphatidyl inositols of Toxoplasma gondii

    Virulent and avirulent strains of Toxoplasma gondii which differ in their glycosylphosphatidylinositol content induce similar biological functions in macrophages

    Get PDF
    Glycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH). The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ~34% of the protein-free GPIs as well as ~70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages. FiguresPublisher PDFPeer reviewe

    Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in Drosophila flies

    Get PDF
    International audienceMicrosporidia are located at the base of the fungal evolutionary tree. They are obligate intracellular parasites and harness host metabolism to fuel their growth and proliferation. However, how the infestation of cells affects the whole organism and how the organism contributes to parasite proliferation remain poorly understood. Here, we have developed a Tubulinosema ratisbonensis systemic infection model in the genetically amenable Drosophila melanogaster host, in which parasite spores obtained in a mammalian cell culture infection system are injected into adult flies. The parasites proliferate within flies and ultimately kill their hosts. As commonly observed for microsporidia infecting insects, T. ratisbonensis preferentially grows in the fat body and ultimately depletes the host metabolic stores. We find that supplementing the fly diet with yeast does not benefit the host but the parasite, which increases its proliferation. Unexpectedly, fatty acids and not carbohydrates or amino acids are the critical components responsible for this phenomenon. Our genetic dissection of host lipid metabolism identifies a crucial compound hijacked by T. ratisbonensis: phosphatidic acid. We propose that phosphatidic acid is a limiting precursor for the synthesis of the parasite membranes and, hence, of its proliferation

    Phagocytosis Is the Sole Arm of Drosophila melanogaster Known Host Defenses That Provides Some Protection Against Microsporidia Infection

    No full text
    International audienceMicrosporidia are obligate intracellular parasites able to infest specifically a large range of species, including insects. The knowledge about the biology of microsporidial infections remains confined to mostly descriptive studies, including molecular approaches such as transcriptomics or proteomics. Thus, functional data to understand insect host defenses are currently lacking. Here, we have undertaken a genetic analysis of known host defenses of the Drosophila melanogaster using an infection model whereby Tubulinosema ratisbonensis spores are directly injected in this insect. We find that phagocytosis does confer some protection in this infection model. In contrast, the systemic immune response, extracellular reactive oxygen species, thioester proteins, xenophagy, and intracellular antiviral response pathways do not appear to be involved in the resistance against this parasite. Unexpectedly, several genes such as PGRP-LE seem to promote this infection. The prophenol oxidases that mediate melanization have different functions; PPO1 presents a phenotype similar to that of PGRP-LE whereas that of PPO2 suggests a function in the resilience to infection. Similarly, eiger and Unpaired3 , which encode two cytokines secreted by hemocytes display a resilience phenotype with a strong susceptibility to T. ratisbonensis
    corecore