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Abstract

In recent years, advances in the �eld of sequencing technologies have enabled the �eld of

population-scale sequencing studies. These studies aim to sequence and analyze a large set

of individuals from one or multiple populations, with the aim of gaining insight into un-

derlying genetic structure, similarities and di�erences. Collections of genetic variation and

possible connections to various disease are some of the products of this area of research.

The potential of population studies is widely considered to be huge and many more en-

deavors of this kind are expected in the near future. This opportunity comes with a big

challenge because many computational tools that are used for the analysis of sequencing

data were not designed for cohorts of this size and may su�er from limited scalability. It

is therefore vital that the computational tools required for the analysis of population-scale

data keep up with the quickly growing amounts of data.

This thesis contributes to the �eld of population-scale genetics in the development and

application of a novel approach for structural variant detection. It has explicitly been de-

signed with the large amounts of population-scale sequencing data in mind. The presented

approach is capable of analyzing tens of thousands of whole-genome short-read sequencing

samples jointly. This joint analysis is driven by a tailored joint likelihood ratio model

that integrates information from many genomes. The e�cient approach does not only save

computational resources but also allows to combine the data across all samples to make

sensitive and speci�c predictions about the presence and genotypes of structural variation

present within the analyzed population. This thesis demonstrates that this approach and

the computational tool PopDel that implements it compare favorably to current state-of-

the-art structural variant callers that have been used in previous population-scale studies.

Extensive benchmarks on simulated and real world sequencing data are provided to show

the performance of the presented approach. Further, a �rst �nding of medical relevance

that directly stems from the application of PopDel on the genomes of almost 50,000 Ice-

landers is presented.

This thesis therefore provides a novel tool and new ideas to further push the boundaries

of the analysis of massive amounts of next generation sequencing data and to deepen our

understanding of structural variation and their implications for human health.
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Zusammenfassung

Die Fortschritte im Bereich der Sequenziertechnologien gestatteten die Verbreitung von

Sequenzierstudien auf Populationsniveau. Diese Studien zielen darauf ab, eine groÿe Zahl

an Individuen aus einer oder mehreren Populationen zu sequenzieren und zu analysieren,

um Einblicke in zugrundeliegende genetische Strukturen, Gemeinsamkeiten sowie Unter-

schiede zu gewinnen. Sammlungen genetischer Varianten und deren mögliche Verbindun-

gen zu einer Vielzahl an Krankheiten sind nur eines der Ergebnisse dieses Forschungsfeldes.

Das Potential der Populationsstudien wird weithin als groÿ angesehen und viele weitere

Anstrengungen dieser Art können in naher Zukunft erwartet werden. Dies stellt eine groÿe

Gelegenheit dar, die jedoch auch eine groÿe Herausforderung mit sich bringt, da viele Com-

puterprogramme, welche für die Analyse für Sequenzierdaten verwendet werden, nicht für

Kohorten in der Gröÿenordnung von Populationen entworfen wurden und folglich einen

Mangel an Skalierbarkeit auf groÿe Datensätze aufweisen können. Daher ist es für die

Zukunft wichtig, dass die für die Analyse auf Populationsniveau notwendigen Computer-

programme mit den rasant wachsenden Datenmengen mithalten können.

Die vorliegende Dissertation leistet einen Beitrag zum Feld der Populationsgenetik durch

die Entwicklung und Implementierung eines neues Ansatzes zum Au�nden von Struktur-

varianten, der explizit im Hinblick auf die riesigen Mengen an Sequenzierdaten der Popu-

lationsstudien entworfen wurde. Dieser Ansatz ermöglicht es, zehntausende Genome aus

whole-genome short-read sequencing Experimenten gemeinsam zu analysieren. Im Zen-

trum dieser Analyse steht ein Likelihood-Quotienten-Modell, welches Informationen aus

vielen Genomene integriert. Der präsentierte Ansatz schont nicht nur Rechenressourcen,

sondern ermöglich es zudem die Daten aller analysierten Genome zu kombinieren, um sen-

sitive wie zuverlässige Aussagen über das Vorhandensein von Strutkturvarianten und deren

Genotypen in der analysierten Population zu tre�en. Diese Dissertation zeigt, dass dieser

Ansatz, welcher in Form des Computerprogramms PopDel implementiert wurde, im Ver-

gleich mit anderen dem Stand der Technik entsprechenden Programmen zum Au�nden

von Strukturvarianten, die bereits in Studien auf Populationsniveau Anwendung fanden,

gut abschneidet. Ausführliche Benchmarks auf simulierten wie auch realen Sequenzdaten

belegen die Leistungsfähigkeit des dargelegten Ansatzes. Des Weiteren wird ein erster

Fund von medizinischer Relevanz, welcher direkt durch die Anwendung von PopDel auf

den Genomen von nahezu 50,000 Isländern zustande kam, präsentiert.

Folglich bietet diese Dissertation ein neuartiges Computerprogramm sowie Ideen, um die

derzeitigen Grenzen der Analyse enormer Mengen an next generation sequencing Daten

zu überwinden und unsere Einsicht sowie unser Verständnis der Strukturvarianten inlusive

ihrer Bedeutung für die menschliche Gesundheit zu erweitern.
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Chapter 1

Introduction

Variation of the (human) genome drives phenotypic di�erences between individuals and

populations. In 2015, the 1000 Genomes Project (G1k) established a list of more than

88 million variants from 2,504 human genomes [17]. Genetic variation can be divided into

di�erent types: Single nucleotide variants (SNVs), insertions and deletions (indels) of

genetic sequence a�ecting up to 50 base pairs (bp) and structural variants (SVs), typically

de�ned as non-substitution variants a�ecting more than 50 bp [37]. While SVs seem to be

much rarer in the human genome when compared to SNVs and indels [17;37;82], they are

playing a key role in the development of our genome and have an important in�uence

on healthy as well as deleterious phenotypic traits and various disease [17;74]. Due to the

size and complexity of SVs, their phenotypic in�uence is often stronger than that of the

smaller SNVs and indels [54], making a thorough understanding of SVs and their associated

mechanisms vital for the understanding of human development and health.

This endeavor is complicated by the size and complex nature of SVs, which is why the

current knowledge of SVs is far behind that of SNVs [54]. New methods are needed for the

detection and genotyping of SVs for closing this gap. This thesis contributes to the solution

of the SV detection problem by presenting a new approach, PopDel, that was developed

to draw information from thousands to tens of thousands of genomes simultaneously to

enable a robust detection of SVs in population-scale data, making it especially suited

for increasing amounts of sequencing data and the growing number of population-scale

sequencing projects [16;37].

1.1 The Human Genome and its Function

Humans, like all living organisms, are to a very big portion de�ned by their genomes.

The genome is the collection of genetic information about an organism and is encoded
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in deoxyribonucleic acid molecules, the DNA. A single DNA molecule has the structure

of a double helix. Phosphates and deoxyribose make up the backbone and nucleobases

encode for genetic information [2;86]. The nucleobases making up the DNA are adenine,

guanine, thymine and cytosine, often encoded as single letters A,G,T and C. One building

block of DNA consisting of the backbone and one nucleobase is called nucleotide. As the

nucleobases of the two DNA helix strands are always paired via hydrogen bonds, they are

often referred to as base pairs (bp). Under normal conditions, A is always paired with T

and C is paired with G. The consecutive sequence of A,T,G and C in the DNA is referred

to as genetic sequence and is commonly visualized as a sequence of these letters.

The sequence of the human genome comprises 3.2 billion bp. It is organized into 22 auto-

somes and 2 gonosomes [2]. Autosomes and gonosomes are chromosomes, single molecules

of DNA packed into a dense organizational unit. In the healthy human genome, the auto-

somes are present in two copies each, whereas the gonosomes are present as two copies of

the X chromosome for typical females and as one copy of the X chromosome accompanied

by one copy of the Y chromosome for typical males. One copy of the chromosomes is

inherited from the father and one copy from the mother. The presence of two copies of

each autosome makes the human genome diploid . The two copies of a chromosome are

not identical, but can di�er in multiple positions. The alternative states of a gene (or any

other locus) are called alleles [2]. Consequently, in the diploid human genome each locus is

represented by two alleles.

The sections of the genome that encode for functional agents of the organism, e.g. proteins,

are called genes [2]. A gene can be divided into introns and exons. Introns are the parts of

a gene that do not encode for the sequence of the gene product and exons are the coding

parts.

Almost all cells of the human body carry a complete and identical copy of the individual's

genome in their nucleus, the core compartment of the cell. During a process called protein

biosynthesis, the genes that are relevant for the function of the cell are �read� by a complex

called ribonucleic acid (RNA) polymerase and transcribed into so called pre-messenger

RNA (pre-mRNA). Like DNA, RNA is a polymer consisting of a sequence of nucleotides [2].

The main di�erences are that RNA contains the nucleobase uracil (U) instead of thymine,

and that RNA does not contain deoxyribose but plain ribose. This makes RNA less stable

than DNA. Further, it is typically present in single stranded form. mRNA is a piece of

RNA that encodes for a protein. pre-mRNA still contains the introns of a gene and by

removing them in a process called splicing , the mRNA is created.

The mRNA is transported outside of the nucleus and serves as a blueprint for a protein [2].

The ribosomes connect to the mRNA and translate its sequence into a sequence of amino

acids, the building blocks of proteins. The translation scheme for this process follows a
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set genetic code, where each amino acid is encoded by one or more codons. One codon

consists of the combination of three mRNA bases.

Following the translation, the amino acid polymers fold into proteins and additional post

translational modi�cations are performed. After this, the proteins can commence their

designated functions in the organism [2].

This process demonstrates how the genome encodes for the shape and function of all parts

of the human body. Variation in the genetic sequence of the genome can therefore have a

substantial impact on how the whole organism looks and operates, i.e. the phenotype. The

e�ect of genetic variation also depends on the type of cell it �rst occurs in. Especially, one

has to distinguish between variation in somaticand germline cells. Somatic cells are cells

that make up the organisms and are not directly responsible for promoting genetic infor-

mation to the o�spring [2]. Germline cells are cells that later develop into eggs or sperms

and whose primary task is the promotion of genetic information to the o�spring [2]. If vari-

ation occurs in somatic cells, for example due to environmental in�uences like radiation

or errors during the replication process of the cell, this change is typically local and can

lead to the death of the cell. In case all control mechanisms of the body fail and more and

more genes are a�ected, this can ultimately lead to the formation of tumors [2]. If variation

occurs in germline cells it can be given to the o�spring. Here it does not only a�ect a

single cell, but the whole development of the organism and consequentially its appearance

and function [2]. While germline variation has many mechanisms and is necessary for the

evolution of the species, it can also lead to disease, disability and prenatal death of the

developing organism. When speaking of variation in the context of this thesis, this always

refers to germline variation if not stated otherwise.

Another important factor for the e�ect of a variant is its zygosity . If a variant is only

present on one chromosomal copy, it is called heterozygous. If it is present on both copies

of a chromosome, it is called homozygous. Depending on the location and type of variant,

homozygous variants can have a stronger impact than heterozygous variants. The genotype

of an individual describes the collection of alleles in the individuals genome. It therefore

also describes the zygosity of variants in the genome. When speaking of a speci�c variant

in an individual, the genotype or zygosity of the variant are often encoded as 0/0 (two

reference alleles - non carrier), 0/1 (one reference allele and one variant allele - heterozygous

carrier), or 1/1 (two variant alleles - homozygous carrier). The genotype that describes

the sequence of a single chromosome is called haploid genotype or just haplotype. Variants

from the same haplotype are often inherited together from a parent to its o�spring unless

a recombination, between the two homologous chromosomes of the parent occurs.

Given how our genome and its variation de�nes us and our lives, it is easy to see why it

has been in the focus of research for many years and, considering how much there is still
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to learn about it, will continue to be so.

1.2 Variation of DNA Sequence: Small and Structural Vari-

ation

Variation of the genome is always de�ned as di�erence between one or more sequenced

genomes and a de�ned reference genome, often only called the reference. Throughout this

thesis, the expression sample will be used to refer to a sequenced DNA sample that has

been taken from one distinct individual, whose genome is also referred to as sample genome.

For most human studies of the last years this has been the Genome Reference Consortium

Human Build 37 [15] (GRCh37), also called hg19, released in 2009. The most recent release

GRCh38 [78], also called hg38, which improved over GRCh37 by resolving about 1,000

di�erent shortcomings, like the closing of gaps and the correction of coordinates [78], has

seen increased application since its release in 2013. Both GRCh37 and 38 are not the

genomes of a single donor, but an admixture of multiple donors with varying proportions

of contribution.

Variation of the genomic sequence can be categorized into di�erent types:

Single Nucleotide Variants (SNVs) are variants that alter a single base of the ge-

nomic sequence. Given the reference DNA sequence r = 'ACT', and the sample sequence

from the same genomic position s = 'AAT', then the change from C to A in s is an SNV.

An example schematic for a single base pair substitution is shown in Figure 1.1.

Small Insertions and Deletions (indels) are short (typically de�ned as a�ecting

less than 50 bp) insertions or deletions of sequence. Given the reference DNA sequence

r = 'ACGT' and the sample sequence from the same genomic position sd = 'AT'. The

lack of the bases G and T in sd is classi�ed as a small deletion. If instead si = 'ACCGT'

the additional C would show an insertion. In this example, it is not possible to judge

if the insertion occurred before or after the originally present C in the sequence. The

same ambiguities can be observed for deletions as well, making it often hard to give the

true coordinates of an indel, especially in the presence of repetitive sequence. Another

important point about insertions is that they do not necessarily always represent sequence

that has actually been inserted in the sample sequence, but rather indicate a deletion in

the reference genome [41]. This is underlined by the presence of the insertions in genomes

of chimpanzees and other primates. Examples for indels are given in Figure 1.1.
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Figure 1.1: Schematics of small variants. Vertical lines between complementary bases indi-
cate the hydrogen bonds between the DNA strands. Changes when comparing the reference
sequence to sample sequence are highlighted. Examples are given for single base pair sub-
stitutions (left), small deletions (center) and small insertions (right). Please note that the
highlighting for the insertion could also be moved one column to the left because it cannot be
determined if the insertion occurred before or after the second column.

Structural Variants (SVs) are variants that a�ect many (typically de�ned as 50 bp

and more) bases of the DNA sequence. They can be further broken down into di�erent

types. For visualizations of some SV types, please see Figure 1.2.

Deletions are de�ned as described for indels above, with the only di�erence being their

larger size.

Insertions, also being larger than their indel counterpart, can be further distinguished: If

a piece of sequence is copied and inserted directly after (or before) the original sequence

this is called a tandem duplication. If the copied piece is inserted somewhere else in the

genome, it is called a dispersed or interspersed duplication. Duplications of the same piece

of sequence can further be repeated more than once. If the inserted sequence has not been

part of the genome so far, it is called a non-reference sequence (NRS) insertion .

Inversions describe that a piece of the DNA double strand has been inverted. For the

nucleotide sequence this means that the a�ected piece of the sequence is replaced by its

reverse complement. The reverse complement of a DNA sequence is gained by reversing

the sequence and replacing each letter of the sequence with its complement as determined

by the typical pairing of the nucleotides in the DNA. Given the reference DNA sequence

r = r0,r1, r2, r3 = 'ACTT', then the derived sequence gained by inverting substring r1,r2

would be s = 'AAGT'.

Translocations are de�ned as a piece of sequence being moved from its original position to

another position. If the new position is on the same chromosome as the original position,

this is called an intrachromosomal translocation. If the sequence is translocated to another

chromosome, it is called an interchromosomal translocation. Interchromosomal transloca-

tions can be reciprocal , meaning that one involved chromosome loses a piece of sequence to

the other chromosome, but gains a piece of sequence from the other one instead, basically

making this event an exchange. If a reciprocal translocation does not result in gain or loss
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of any sequence it is called balanced . A translocation is unbalanced if sequence is lost or

gained in the process.

Deletions and insertions a�ect the number of copies of the DNA sequence an individual

carries at the a�ected positions. They are therefore also called copy number variants

(CNVs). Variants like inversions and balanced translocations that do not result in gain or

loss of sequence are referred to as copy number neutral variants.

Complex SVs can be described by a combination of the mentioned canonical SV types. For

example, an inversion can be accompanied by the deletion of a piece of �anking sequence,

or a translocated piece of sequence can be inverted and duplicated before its insertion into

the target chromosome, as shown in Figure 1.2.

There are multiple mechanisms and events that can result in the formation of SVs. They

range from failures of DNA repair mechanisms, over replication errors induced by regions

with low sequence complexity or high homology, to catastrophic events like the shatter-

ing and reassembly of whole chromosomes (chromothripsis) [11]. Some relevant formation

mechanisms will be further presented in Section 2.1, together with more details on speci�c

SV types.

Variation of the genomic sequence, both small and structural, does not always lead to

phenotypic changes. The consequences of a variant heavily depend on its location in the

genome and they type of the variant. If a variant only a�ects intronic sequence, it is

less likely to have an e�ect than a variant a�ecting an exon, because the exons are later

translated and transcribed into protein sequence. Variation may alter the codons that are

translated into a protein sequence, causing other amino acids to be added to a protein or

causing a premature stop of the translation process, called a stop gain.

The 1000 Genomes Project found that each individual di�ers in 4.1 to 5 million sites from

the reference genome [17]. In their study, small variants (SNVs and indels) make up more

than 99.9% of the variants in a typical human genome. Nevertheless, SVs have been found

to a�ect more bases due to their size. The G1k estimated that a human genome contains

about 2,100 - 2,500 SVs that together a�ect roughly 20 million bases. Most of these SVs

are large deletions (1000 variants) and insertions of Alu elements (951 variants), a family of

transposable elements in the human genome. Other more recent studies that apply more

advanced sequencing technologies, now frequently detect between 10,000 and 35,000 SVs

per human genome [37], underlining the importance of SVs for human health.
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Figure 1.2: Examples for types of SVs. Colored blocks indicate pieces of sequence being
modi�ed from reference to sequenced genome. Arrows within the sequence indicate sequence
direction. a Deletion, b Insertion, c Inversion, d Translocation, e-f Duplication, g a complex
SV involving a piece of sequence being duplicated, inverted and translocated from one chro-
mosome to another, while the target chromosome loses a piece of sequence.

1.3 Genome Sequencing

Genome sequencing is the basis for many modern methods for the analysis of genomes or

the detection of genetic variation. Genome sequencing is the process of translating the

chemical sequence of the DNA molecules into a human and machine readable format.

The cornerstone for DNA sequencing was laid with the invention of Sanger sequencing in

the 1970s [76]. Sanger and his colleagues later received a Noble Prize in Chemistry for their

work. Sanger sequencing works by taking a DNA fragment template and synthesizing a

growing complementary DNA strand consisting of �uorescently (orignally: radioactively)

labeled nucleotides. The sequencing is performed in four phases. In each phase another



8 1.3. GENOME SEQUENCING

type of nucleotide (A,C,G or T) is labeled. By adding didesoxynukleosidtriphosphates

(ddNTPs), the strand synthesis is stopped, resulting in fragments of di�erent lengths. The

fragments are sorted by their length via gel electrophoresis and the nucleotide sequence

can be inferred from the radioactive labels.

The sequenced parts of the DNA fragments, or rather the sequence gained from them,

are called reads. Also more recent techniques produce many short reads. Neither Sanger

sequencing nor modern methods can process one human chromosome in one go.

The manual and slow process of Sanger sequencing was later automated and enabled the

sequencing of the �rst human genome, that �nished in the early 2000s.

Technical and computational advances in the 2000s brought second generation sequencing,

also called next generation sequencing (NGS), which is still widely applied. NGS has a much

higher throughput than Sanger sequencing and is mostly automated. One popular protocol

for modern NGS is Illumina paired-end sequencing. In Illumina paired-end sequencing the

DNA is fragmented and special adapters are attached to the fragments. The adapters allow

the fragments to bind the �ow cell, a device that carries the sequencing material in multiple

lanes. The fragments are ampli�ed in clusters in a process called bridge ampli�cation with

the aim of enhancing the later read out signal. The �ow cell then undergoes multiple

sequencing cycles where, similar to Sanger sequencing, single nucleotides are added to a

newly synthesized DNA strand that is complementary to the original fragments. The bases

used for the synthesis of the new DNA strands are labeled with �uorescence and after each

addition phase the �uorescence signal is captured via a photo sensor. From this signal

the added bases of the growing strand can be inferred. The process occurs in hundreds of

millions of clusters on the �ow cells in parallel, allowing for a high sequencing depth and

speed. A special property of paired-end sequencing is that reads are generated starting

from both ends of the DNA fragments. The reads typically have a size between 100 - 150 bp.

Two reads from of the same fragment make up a read pair. The space between the outer

ends of a read pair (without adapters) is called the insert . The length of the insert is called

insert size. Depending on the protocol, a read pair does not necessarily cover the whole

DNA fragment it originates from. The pairing of the reads allows for easier placement

on the reference genome or assembly of the read pairs into larger contiguous sequences

(contigs) because the two reads of a pair are expected to follow a certain distribution

regarding their distance to each other. Read pairs also provide the information necessary

for most SV detection protocols. Details on those signatures will be further elaborated in

Section 2.1.

In the last years, a new generation of sequencing methods has emerged, called third gen-

eration sequencing, or long-read sequencing (LRS). While the exact techniques vary, they
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are capable of producing increasingly long reads. For example, Oxford Nanopore Ultra-

Long Read technology can produce single reads that cover more than 1,500,000 bp, albeit

their median length is much lower [60]. The increased read length comes at the cost of an

increased error rate of the reads and lower sequence coverage. Further, LRS is still sub-

stantially more expensive then NGS, but as technology advances the costs are declining.

Due to their size, long reads o�er a substantial advantage in repeat rich regions of the

genome. Also, it is often much easier to detect SVs from LRS data compared to NGS data.

This is underlined by the much higher detection rate of SVs in studies involving LRS [16].

This thesis focuses on the currently wider applied NGS data and SV detection methods

working with this type of data. Therefore, if not stated otherwise, subsequently mentioned

read data is always assumed to be derived from NGS experiments.

1.4 Sequence Alignment and Read Mapping

A basic step in the analysis of NGS (and LRS) data after the sequencing process is the

mapping of the reads to the reference genome [6]. The raw reads provide no information

about their location on the reference genome, therefore a read mapper has to be applied to

�nd the best location for all sequenced reads. Given the small alphabet size of the DNA,

small length of the reads (about 150 bp) and repetitive nature of the human genome, this

is a challenging task that does not always have unique solutions for all reads for all regions

of the genome.

The problem of comparing a read sequence to the reference sequence can be seen as an

instance of the sequence alignment problem. In a pairwise sequence alignment, the two

compared sequences are typically visualized in rows. The columns of the alignment place

identical positions of the sequences on top of each other. Depending on the application,

di�erent additional operations are allowed: Gaps may be inserted into the sequences to

account for bases that are missing in one of the sequences, or bases that are not identical

are allowed to align with each other which is called amismatch. By maximizing the number

of matching positions and minimizing the number of gaps and mismatches (more precisely:

optimizing a score calculated from all of the above operations and further context), one

can get a representation of how the two sequences compare to each other like demonstrated

in Figure 1.3. There are multiple approaches to solving the alignment problem, each with

their own applications. Dynamic programming algorithms like the Needleman-Wunsch [66]

or Smith-Waterman [80] algorithm for example can be used to �nd an optimal alignment

of two sequences. However, both algorithms' running times scale with the product of the

sequence lengths and the number of sequences. This makes them too slow for mapping the

hundreds of millions of short reads to the 3.2 billion bp long reference genome. Today this is

solved by applying mostly heuristic approaches. Established approaches like Bowtie [51;52]
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or BWA [57] use su�x arrays for indexing the reference genome and quickly �nding positions

of portions of the reads. These seeds are then extended to get the �nal mapping positions.

Once the reads are mapped to the reference genome their alignment representations and

the information on how the two reads of a pair are placed relatively to each other can be

used to gain insight into di�erences between the reference and the sequenced genome, i.e.

detect variation. This process will be described in the next section (1.5) more closely.

It is important to keep in mind that the resulting alignments of the mapping process can

contain errors. Therefore, in 2008, Li et al. introduced the concept ofmapping quality along

with their read mapping software MAQ [59]. The mapping quality serves as a measure of

con�dence that a read truly originates from the assigned position. This can become an

important information when later deciding to trust the alignment of a speci�c read when

further downstream analyses like the detection of variants are performed.

Mapped reads of a sequenced genome are typically stored in the sequence alignment/map

(SAM) format or its binary representation, the binary alignment/map (BAM) format.

Figure 1.3: Example of a pairwise sequence alignment for the top sequence AGTAGATC
and the bottom sequence ACTGATGC. Vertical lines indicates matches, while gray highlights
mismatches and gaps that are further indicated by a dash in one of the sequences.

1.5 Basics of Variant Calling

Variant calling is the process of detecting di�erences between a sequenced genome and

the reference genome. After the mapping of the NGS reads to the reference genome, each

mapped read is represented as sequence alignment to the reference genome, thereby con-

taining information on how the single positions of the read compare to the reference. If the

genetic sequence of a sequenced genome di�ers from the sequence of the reference genome,

for example due to the presence of an SNV, the mismatch will show in the alignments.

Since reads can contain sequencing errors or the reads can be mapped incorrectly it is

important that the examined position is not only covered by a single read but many [55].

The number of reads that cover on positions is called coverage or read depth. A typical

average coverage for recent whole-genome sequencing (WGS) experiments is 30x coverage.

The coverage also depends on the aim of the experiment [44;47]. In presence of real variation

one expects to observe the deviation in the alignment for a substantial fraction of the reads
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that cover the examined position. Reads not containing the variant may originate from a

non-variant haplotype in case of a heterozygous variant.

While SNVs can be detected from single short reads, SV detection requires additional

signals that are encoded in the read pairs and their orientation relative to each other. NGS

reads have an orientation on the DNA fragments they were derived from and therefore have

an orientation or direction on the reference genome. This is due to the directionality of

DNA molecules which are always synthesized from 5'-end to 3'-end. Some SVs can lead to

the orientation of one or both reads of a pair being switched. SVs can further in�uence the

distance between two reads of a pair that are mapped to the reference genome. A more

detailed description of the signals that can be used to detect the di�erent SV types is given

in Section 2.1.

There are many ways one can detect small and structural variation from the mapped

reads. Most modern methods involve a sophisticated statistical process that allows them

to weight the probabilities that stem from the sequencing and alignment process against

the probabilities of observing potential variants at di�erent zygosity. An often applied

approach is to calculate the posterior probability that an examined position is true variant

in a Bayesian framework, like done by the well established tool GATK [63]:

p (G|D) =
p (G)

∏
b∈P p (b|G)

p (D)
(1.1)

with D representing the alignment data at the examined position and G indicating the

Genotype. p (G) is the prior probability of observing Genotype G, while b represents a

single base from the pileup P at the inspected position. A pileup is the collection of all

read bases covering the relevant position including information about their quality and

how they are matching the reference. What priors are used and how the probabilities for

the single bases and genotypes are calculated depends on the speci�c tool.

Genotyping describes the process of determining the genotype of one or more genomes

for a set of variants. It is done by examining the reads in the region a�ected by the

variant and comparing how many reads show evidence of the variant and how many reads

contradict it, as show in Equation 1.1. If a variant is present in a homozygous state,

virtually all reads are expected to show evidence of the variant (not considering sequencing

and alignment errors). For heterozygous variants and under the assumption that the reads

are sampled equally from both haplotypes one would expect ideally 50% of the reads to

show evidence of the variant. Of course, these are purely theoretical assumption, especially

considering sequencing and alignment errors. Consequently, algorithms for genotyping have

to apply various thresholds or apply statistical models for �nding the most likely genotype.

Genotyping is often performed by the variant caller, but special tools for genotyping of
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known variants in set of many genomes like SVTyper [14], or GraphTyper [22] also exist.

Another possibility for genotyping known variants in a genome are k-mer based approaches.

A k-mer is a substring of length k. By dividing the read data into overlapping k-mers

and comparing the counts of them to the k-mers one expects to observed in presence of

absence of a speci�c variant, it is possible to infer the genotype of the variant in the

sequenced genome without the need for performing the computationally intensive read

mapping for the sequenced genome [79]. The tool BayesTyper [79] is one example for k-mer

based genotyping.

Small variants can be detected and genotyped with very high reliability. A 2019 study

by Chen et al. [12] reported F1 scores (see Equation 4.6 in Subsection 4.1.2) consistently

above 0.975 for all compared small variant calling pipelines (GATK4 [63], Strelka2 [45] and

Samtools-Varscan [48;58]) on di�erent data sets when evaluating SNV calls. For indels, the

observed F1 score was always above 0.85 for two of the three compared tools.

The detection of SVs can also be performed in a probabilistic framework. Many early

SV callers were limited in their detection rates because they relied on only one type of

signal [16]. By integrating multiple SV signals, modern SV callers like Delly [74], Lumpy [54]

and Manta [13] can achieve higher accuracy.

Small and structural variants can also be detected in assembly approaches. The reads of the

sequenced genome are assembled into longer contigs or whole genomes before comparing

the assembly to the reference genome. This is especially useful for the detection of SVs [37]

because it allows to detect the SVs directly from the alignment of the two genomes like

one would do for small variants. A considerable drawback of this approach is that a full

assembly requires very high coverage of the sequenced genome and a vast computational

e�ort, making this approach un�t for general application. A locally limited assembly for

the validation and characterization of a candidate SV is however often feasible and applied

by some modern SV callers, e.g. Manta and GRIDSS [10].

Called variants are typically reported using the variant call format (VCF), which has

been developed for the 1000 Genomes Project [18]. VCF is a tab separated format that

describes each variant in a single line. It can further contain genome wise information

regarding the presence of a variant in the last columns. Additional information tags can

be de�ned in the header and reported in the INFO or FORMAT �elds. An example of

two variants represented in VCF is given in Figure 1.4. The �rst line describes a simple

SNV in the 20th base of chromosome 1. The reference sequence contains a C as the 20th

base of the sequence, while the variant genome contains an A. SAMPLE1 is heterozygous

for this variant while SAMPLE2 does not carry the variant. The second lines shows how

a SV can be described in VCF. Here, a deletion starts after position 132 on chromosome
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21, which contains a G, and ends at position 232, e�ectively deleting the 100 bases in

between. SAMPLE1 carries the SV on both haplotypes, making it a homozygous carrier,

while SAMPLE2 is genotyped as a heterozygous carrier.

Figure 1.4: Example of two variants represented in the variant call format. Lines starting
with '#' indicate header lines. Each variant is described in the columns of one line: CHROM
and POS hold the chromosome and position of the variant in the reference genome. The ID
�eld can contain a unique identi�er of the variant, for example a database accession number.
The REF �eld contains the base(s) of the reference genome at the position of the variant and
the ALT �eld contains the bases observed in the variant genome in presence of the variant. The
QUAL �eld is used for reporting a con�dence measure for the variant; higher QUAL values
indicate a higher con�dence. The FILTER �eld can contain information about �ltered variants.
The INFO �eld gives additional information, for example the variant type or the position where
the variant ends. The FORMAT �eld is used for de�ning the �elds of the subsequent columns:
'GT:GQ' indicates that the following columns, each containing information on one analyzed
genome, contain the genotype before the colon and the genotype quality (a con�dence measure
for the correctness of the genotype) after the colon.

1.6 Population-Scale Genomics and Joint Variant Calling

NGS technologies have seen a steady decrease in costs and increased in throughput during

the last years [37]. This development has made the whole-genome sequencing of increas-

ingly large cohorts possible. Projects like Genome of the Netherlands [29] (GoNL), the UK

Biobank [9] or endeavors by deCODE genetics [31], have sequenced thousands to hundreds of

thousands of whole genomes of single populations and provided insight into demographics

changes, rare alleles and genomic variation in general. Just at the end of 2021, the newest

data of the UK Biobank has been released for researchers worldwide. It contains 5PB of

WGS data of 200,000 individuals across the United Kingdom, making it the largest single

release of WGS data [84].

Population genomics are not limited to the analysis of single populations but often also aim

at comparing the genomic makeup of two or more populations. For example, Mallick et

al. sequenced 300 genomes from 142 diverse populations in the Simons Genome Diversity

Project (SGDP) [62]. They provided insights into human ancestry and evolution and created

a catalog of 34.4 million SNVs and 2.1 million indels.

Especially for the detection of rare variants with an allele frequency below 1% in the

general population, it is important to sequence many individuals because otherwise many

rare alleles will not be carried by any of the sequenced individuals. The chances of observing

variants of special interest can be enhanced by focusing the study on a cohort of individuals

that are a�ected by a speci�c phenotype or disease, like done for asthma [61] or autism [89].
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By using the catalogs of variants gained from such studies and correlating them to pheno-

type information in genome-wide association studies (GWAS), it is possible to learn what

genes and variants are associated with diseases and possibly even �nd new therapeutic

targets [89].

Joint variant calling describes the process of detecting variants from multiple genomes

together. The variant calls are generated by integrating information across all genomes

of the cohort and all genomes are genotyped for this set of jointly determined variants.

This comes with the bene�t of increased sensitivity. For example, assume two genomes

that both lack su�cient evidence for the same variant such that no reliable variant call

can be made when considering the genomes individually. When considering both genomes

together, the combined evidence can be enough to be con�dent about the variant call at

that position. Because of this, joint calling is a desirable approach for the analysis of

population-scale data. It also eliminates the need to merge variant calls into single records

after they have been made on a per genome basis, which can be ambiguous for SVs and

also result in missing genotypes for genomes that were not genotyped at the respective

location.

For small variation, approaches for the joint analysis of cohorts at population-scale have

already been established. One well-known example is the GATK HaplotypeCaller [70]. Al-

though its work�ow does not constitute a joint calling in the classical sense because it

still performs the initial detection of variants on a per genome basis, it allows the e�cient

joint genotyping for small variants in large cohorts. By analyzing small variants in all

genomes of a cohort together, the accuracy can be increased. The approach of the GATK

HaplotypeCaller is explained in more detail in Section 2.2.

Joint calling for the detection of SVs in hundreds of genomes has also been shown to work

successfully [32;82]. For larger cohorts however, joint calling is still challenged by a lack of

scalability and huge �le input/output (I/O) loads [30]. This is why most pipelines rely on

a sample-wise detection phase, followed by a merging of the variants and a sample-wise

regenotyping step against the list of all merged variants [1;39;53]. The approaches of some

established SV callers are presented in Section 2.3.

SVs are often detected with diverging positional estimates in di�erent samples, making the

merging process reliant on arbitrary size and distance thresholds [64;90]. A scalable joint

calling approach would therefore not only provide an improved accuracy, but also a simpler

pipeline that eliminates the uncertainty of the merging step.
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1.7 Thesis Outline

This thesis contributes to the �eld of structural variant detection, joint calling and population-

scale genomics in di�erent aspects.

Firstly, it presents a new joint calling approach for SVs called PopDel (Population-wide

Deletion calling). PopDel has been shown to scale to tens of thousands of human WGS

samples and can reliably detect as well as genotype SVs. Originally developed for the

detection and genotyping of deletions in population-scale data, its approach has been

generalized and prototypes for inversions and tandem duplications have been implemented.

The thesis also introduces a new �le format for the sparse representation of alignment data,

the PopDel read pair pro�le. The PopDel pro�les are binary representations of the most

relevant alignment information for PopDel's downstream SV calling. The information is

extracted from the original alignment �les and are used by PopDel for the preprocessing

of the data and reduction of the I/O load during the joint calling.

The benchmarks performed for the evaluation of PopDel is the third contribution of this

thesis. It compares PopDel and the established SV callers Delly, GRIDSS, Lumpy and

Manta on di�erent simulated and real data sets with up to 1,000 simulated or 150 real

samples to draw a comprehensive picture of the performance of the di�erent approaches.

The benchmark focuses on the scaling to many samples and underlines the bene�ts of joint

calling. It further provides approaches as well as variant call sets for future research and

benchmarking e�orts.

A fourth point is the contribution to the detection of a novel deletion variant in the gene

encoding for the low-density lipoprotein receptor [8]. The deletion was detected by applying

PopDel on WGS data of 43,202 Icelanders. The shown correlation of the variant with a

lifelong reduction of low-density cholesterol blood levels makes it a �nding of high medical

interest for future research concerning cardiovascular diseases. This �nding was made in

cooperation with deCODE genetics.

The remainder of the current chapter presents and discusses all publications that have

arisen from this thesis or cooperation while working on topics related to this thesis. The

aforementioned �nding of the novel deletion in the low-density lipoprotein receptor gene is

also presented here.

Chapter 2 introduces the technical background for the detection of SVs from NGS data. It

further discusses the current methods for the joint calling of short and structural variants.

Chapter 3 describes the PopDel read pair pro�les and the complete approach applied in

PopDel for the joint detection and genotyping of SVs.
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Chapter 4 presents the setup of the benchmarks and the results for all compared SV callers

on the di�erent data sets.

Finally, Chapter 5 concludes this thesis with a summary of all results and contributions,

as well as a discussion of potentials and a future outlook.

1.8 Publications

The work on this thesis and in the �eld of structural variant calling has resulted in con-

tributions and (co-)authorship in the following publications. A brief description of the

publications' contents and my personal contributions will be presented in the subsequent

subsections.

Bjornsson, E., Gunnarsdottir, K., Halldorsson, G. H., Sigurdsson, A., Ar-

nadottir, G. A., Jonsson, H., Olafsdottir, E. F., Niehus, S., Kehr, B., Svein-

björnsson, G., et al. (2021). Lifelong reduction in LDL (low-density lipopro-

tein) cholesterol due to a gain-of-function mutation in LDLR. Circulation: Ge-

nomic and Precision Medicine, 14(1):e003029. [8]

Krannich, T., White, W. T. J.,Niehus, S., Holley, G., Halldorsson, B., and

Kehr, B. (2022). Population-scale detection of non-reference sequence variants

using colored de Bruijn graphs. Bioinformatics, 38(3):604-611. [50]

Niehus, S., Jónsson, H., Schönberger, J., Björnsson, E., Beyter, D., Eg-

gertsson, H. P., Sulem, P., Stefánsson, K., Halldórsson, B. V., and Kehr, B.

(2021). PopDel identi�es medium-size deletions simultaneously in tens of thou-

sands of genomes. Nature communications, 12(1):110. [67]

Sarwal, V., Niehus, S., Ayyala, R., Chang, S., Lu, A., Darci-Maher, N.,

Littman, R., Chhugani, K., Soylev, A., Comarova, Z., et al. (2020). A compre-

hensive benchmarking of WGS-based structural variant callers. bioRxiv. [77].

Accepted for publication in Brie�ngs in Bioinformatics.

Lifelong reduction in LDL (low-density lipoprotein) cholesterol due to a gain-

of-function mutation in LDLR. The publication reports and discusses the discovery

of the �rst known gain-of-function variant in the 3'-UTR of the low-density lipoprotein

receptor (LDLR) gene causing a reduction of mean blood low-density lipoprotein (LDL)

cholesterol levels. High levels of blood cholesterol have previously been linked to a variety

of cardiovascular diseases, making the �nding a variant of potential medical interest. The

discovered deletion of 2.5 kb (Del2.5) could be linked to a signi�cant (74%) reduction of
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mean blood LDL cholesterol levels in carriers (Figure 1.5 C). Further analyses strongly

suggest a causal relation. The deletion was �rst discovered in the WGS data of three

closely related individuals (mother I.2, son II.4, grandson III.4 in Figure 1.5 B) in a cohort

of 43,202 Icelanders by applying an early version of PopDel in batches of 10,000 individuals

to speci�cally explore the genomic vicinity of the LDLR gene.

Since the authors of the study were interested in variants a�ecting the LDLR gene, �rst

the PopDel read pair pro�les (see Section 3.2.4) were created for the LDLR gene including

5000 bp of �anking sequence to both sides of the gene for all 43,202 WGS samples. Then

PopDel call was applied on batches of 10,000 pro�les, which at that time this was the upper

limit for PopDel's joint calling. After processing each batch for the �rst time two carriers

were detected in two of the batches. The carriers were added to the other batches as �seeds�

to increase PopDel's sensitivity for del2.5 (see Section 3.3.3 for details on the increased

sensitivity). The calling was then repeated, yielding an additional carrier and thereby

showing the bene�t of the joint calling. The limit of 10,000 pro�les no longer applies to the

newest version of PopDel, making this batch-and-seeding procedure unnecessary. Del2.5

was con�rmed using polymerase chain reaction (PCR) and subsequent Sanger Sequencing.

Following this discovery and the observation that all carriers are closely related, additional

members of the family were WGS sequenced and phenotyped. This lead to the detection

of the remaining four known carriers of del2.5. Further inspection of del2.5 granted insight

into the likely mechanism by which it leads to the over expression of LDL receptors,

ultimately reducing the mean blood LDL levels: Del2.5 increases the mRNA stability

by removing known miRNA target sites in the 3'-UTR of the transcript. This increases

the transcript's resistance to negative regulation. Consequentially, larger quantities of the

LDLR mRNA are translated into proteins, causing a higher number of LDL receptors to

be expressed on the cell surfaces. The increase in LDLR receptors increases the absorption

of LDL from the blood (see Figure 1.6).

My speci�c contributions to this �nding and publication were as follows: I implemented

PopDel, which was at an early and non-publicly available stage at the time of the �nding,

in coordination with the other authors of the study. I provided the parameters for the runs

of PopDel and assisted in the interpretation of the output, which was at that time not yet

formatted in standard VCF. I further was involved in the wording of the manuscript parts

concerning PopDel and the detection of del2.5.

This study is an especially vivid example of a good use-case for PopDel for various reasons:

Firstly, none of the other applied tools for SV detection were capable of detecting del2.5.

Additionally, PopDel's design allowed the e�cient targeted exploration of the vicinity of

the LDLR gene without the need for processing the whole BAM �les of all 43,202 samples

or subsetting them. The success of the batch-and-seed approach for detecting additional
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carriers of del2.5 further served as a proof-of-concept of the bene�ts of the joint calling

approach in real world scenario.

Figure 1.5: Del2.5 causes low blood LDL cholesterol levels. A: Schematic of the genomic
region of the LDLR gene and del2.5. B : Pedigree of the family that encompasses all detected
carriers of del2.5. Genotyped individuals are marked as red (carriers) and black (non-carriers).
The numbers below the individuals indicate the number in the respective generation, the mean
LDL cholesterol level [mmol/l] and the age and sex adjusted percentile of the individual's LDL
cholesterol level in the general Icelandic population. C: Distribution of mean LDL cholesterol
levels measured in 101,857 Icelanders. Mean values for del2.5 carriers are indicated by red
lines. Figure taken from Bjornson et al. (2021) [8]

Figure 1.6: Proposed mechanism for the increased LDLR expression caused by del2.5. Figure
taken from Bjornson et al. (2021) [8].
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Population-scale detection of non-reference sequence variants using colored de

Bruijn graphs. This publication presents PopIns2, a program for the detection and

genotyping of non-reference sequences (NRS) in population-scale WGS data. PopIns2 is the

successor of the tool PopIns [42] and introduces a new method for merging contig assemblies

of unaligned read sequences from thousands of genomes by using colored de Bruin graphs

(CDBG). As already discussed in 1.2 and 1.5, NRS, which typically manifest themselves

as insertions with respect to the reference sequence, are an interesting subtype of SVs.

Since their underlying sequence is missing from the reference NRS cannot be detected

and resolved solely by the information of reads aligned to the reference. They rather

require an assembly of the unaligned sequences, making the task more computationally

demanding than the detection of other types of SVs. Therefore, most previously published

tools, including PopIns, either excluded the detection of insertions from their analyses or

exhibited limited scalability to bigger sample numbers.

PopIns2 uses the read sequences from the provided BAM �les. It creates a sample wise

contig assembly of those reads that do not (or poorly) align to the reference. In the

subsequent merging step, the sample-wise contigs are merged into a set of uni�ed NRSs.

This is done by constructing a CDBG of the contigs. The colors of the vertices identify the

samples. A path through the graph is generated by heuristically solving the minimum path

cover problem. This new formulation of the problem and application of CDBGs not only

improves the running time of the merging step compared to the original implementation of

PopIns (50 minutes instead of 94 minutes for contigs generated from 150 WGS samples) but

also drastically reduces the memory consumption by three orders of magnitude (342MB

instead of almost 100GB for 150WGS samples). Consequentially these improvements allow

for many more samples to be processed together before reaching hardware restrictions. The

�nal steps of the work�ow, the placement of the uni�ed NRSs on the reference genome and

genotyping of the sequenced genomes for the candidate variants, underwent no algorithmic

changes compared to the original implementation of PopIns.

To assess the performance of PopIns2 it was compared against PopIns and the NRS detec-

tion tool Pamir [40] on simulated and real human WGS data sets. On up to 100 simulated

WGS samples, PopIns2 shows clear improvements over PopIns and its precision and recall

are competitive with Pamir's. Benchmarking on real data was performed using the Po-

laris HiSeqX Diversity Cohort (BioProject accession PRJEB20654) (PDC) and the Polaris

HiSeqX Kids Cohort (BioProject accession PRJEB25009) (PKC). The PDC comprises 150

WGS samples from three continental groups (50 African, 50 East Asian, 50 European sam-

ples), allowing to check for biologically meaningful NRS �ndings by performing a principal

component analysis (PCA) on the NRS detected by PopIns2 and checking if the samples

cluster by their known ethnicity (Figure 1.7). The steps' details for the processing of the

https://www.ebi.ac.uk/ena/browser/view/PRJEB25009
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variants and calculation of the PCA were the same as for the evaluation of PopDel and are

described in Subsection 4.7.2. By expanding the samples of the PDC with the PKC, a set

of 47 trio-families was be generated, enabling the assessment of the rate of estimated geno-

type combinations that violate Mendelian laws, and the computation of the rate at which

NRS variants were transmitted from parents to their o�spring. A detailed description of

the metrics and their calculation is given in Subsection 4.1.3. As demonstrated in Figure

1.8, both implementations of PopIns2 produce largely consistent genotypes for the detected

NRS variants and meaningful genotype likelihoods. Filtering by genotype likelihood can

be used to achieve Mendelian inheritance error rates below 1%. The transmission rate is

shown to be close to the expected value of 50%.

My speci�c contributions to the publication are the calculation of the PCA on the NRS

variants detected by PopIns2 on the 150 samples of the PDC, as well as the calculation

of the Mendelian inheritance error rates and transmission rates, including the �ltering of

variants not in Hardy-Weinberg-Equilibrium (HWE, see Equation 4.9 in Subsection 4.1.3),

of the NRS variants detected in the 47 trios of the PKC. I further assisted in the interpreta-

tion of the results of those calculations and the wording of the manuscript parts concerning

those analyses.

Figure 1.7: PCA on 1,787 NRS variants detected by PopIns2 on 150 WGS samples of
the Polaris Diversity Cohort. Each data point indicates a sample, colored by its reported
continental superpopulation (AFR, African; EAS, East Asian; EUR, European). Figure taken
from Krannich et al. (2022) [50].
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Figure 1.8: Mendelian inheritance error rate and transmission rate of NRSs found in 47
trios of the Polaris Diversity Cohort. Top: NRSs were not �ltered by adherence to the Hardy-
Weinberg-Equilibrium (HWE). Bottom: Calls were �ltered for adherence to HWE (p-value
0.01). Grey lines indicate the theoretically ideal values. As Pamir does not include genotype
likelihoods in its calls which were necessary for �ltering the numbers of NRSs, only the median
inheritance error rate or transmission rate across the 47 trios was included in the plots as a
single data point. Since Pamir could not process all 47 trios jointly, no HWE �lter was applied
on its output. Figure taken from Krannich et al. (2022) [50].

PopDel identi�es medium-size deletions simultaneously in tens of thousands of

genomes. This publication presents the tool PopDel, details of the implemented method-

ology and an extensive benchmark on simulated as well as various real data sets to compare

PopDel with other state-of-the-art SV callers. Since most contents of the publication are

also presented and discussed in depth in Chapters 3 and 4 of this thesis, this publication

will only be summarized brie�y here. For further details, please consult the correspond-

ing chapters. The publication contains the description of PopDel's algorithmic approach

for the detection and genotyping of deletions and compares it with the SV callers Delly,

GRIDSS, Lumpy and Manta on 1,000 simulated WGS samples of the human chromosome

21, 150 human WGS samples of the Polaris Diversity Cohort, 47 family trios of the Polaris

Kids Cohort, the Genome in a Bottle sample HG002 plus its parents and the Illumina

Platinum Genome HG001 (aka NA12878).

Evaluation on the simulated data included running time, memory consumption as well

as precision and recall for increasing numbers of samples in the joint calling process and
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evaluation of the positional accuracy. Owing to the availability of high quality reference

truth sets for the well studied genomes HG001 and HG002, precision and recall could also

be calculated on real data and the agreement of the variant callers could be examined. For

a discussion on the limitations of precision and recall on real data please see Subsection

4.4.4. The inclusion of the parental genomes of HG002 in a joint family calling showed

the bene�ts of PopDel's joint calling approach by exhibiting increased sensitivity without

loss of precision. The Polaris Cohorts were used to compare the quality of the estimated

genotypes by assessing the rate at which they violated Mendelian laws and how many

parental alleles were transmitted from the parents to their o�spring. Further, the cohorts

enabled the examination on how the detected variants re�ect population structure known

from literature. A de novo deletion detected by PopDel in one of the 47 Polaris trios is

also presented and shows that PopDel is capable of detecting variants at a very low allele

fraction or exclusive to one sample when analyzing many samples at once. The successful

application of PopDel on WGS data of 49,962 Icelanders underlines its scalability to large

cohorts.

As this work constitutes the central publication of this thesis, all parts of this paper were

mainly conceived and authored by me.

A comprehensive benchmarking of WGS-based structural variant callers. This

publication presents a deletion detection benchmark of 16 di�erent SV callers. A preprint

of the study has been published on bioRxiv. The study has been accepted for publication

in the journal Brie�ngs in Bioinformatics. The benchmark is based on a PCR con�rmed

set of deletions in seven inbred homozygous mouse strains and comparisons on the human

Genome in a Bottle sample HG002 and the available high quality reference truth set. Please

note that the benchmarking on human data is not included in the preprint. The number of

detected variants per mouse strain is measured for each SV caller and performance metrics

like precision and recall are calculated. The calls are generated for varying degrees of

downsampling of the coverage of the BAM �les to assess the tools' performance for both

high and low coverage data. Further, a comparison of the estimated deletion lengths is

performed to show to what degree the callers over- or underestimate the true size of a

deletion. Besides the large number of compared SV callers, a strong point of the study

is the use of real biological data for which all deletions are known and con�rmed. This

allows the assessment of the callers' precision and recall under more realistic conditions

than the usual comparison on simulated data, which cannot fully re�ect the properties of

real sequencing data. A limitation of the approach is the lack of heterozygous variants

and variants other than deletions in the benchmark. Further, the mouse genome is less

repetitive than the human genome, reducing the di�culty of the variant detection task on

mouse data.
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My speci�c contributions to the publication consisted of setting up and performing the

variant calls using the tools GRIDSS, Lumpy, Manta and PopDel on the mouse and human

data. I assisted with the design of evaluation metrics, the selection of the human reference

and evaluation of the variant calls on the human data. Further, I was involved in the

wording of di�erent parts of the manuscript.
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Chapter 2

Background

This chapter aims at providing the necessary background about the detection of SVs from

alignments of NGS data. Additionally, current methods for the joint analysis of small

variants will be described to relate them to the approach applied by PopDel. A discussion

of the current state of SV detection as performed by some SV callers other than PopDel

will conclude this chapter.

2.1 Structural Variation in Detail

All SVs cause a disruption of the original sequence. Those points of disruption are called

breakpoints. The positions where two previously separated substrings of a sequence form

a new junction due to an SV are called novel junctions. Depending on the type of SV the

number of breakpoints and novel junctions can vary.

SVs exhibit di�erent signals or signatures in sequencing data around their breakpoints

and the genomic regions in between. Di�erent sequencing technologies provide di�erent

signatures, but this thesis focuses on the signatures that are exhibited by short read paired-

end sequencing data. SV signatures from paired-end reads can be divided into three classes:

Read depth, discordant read pairs, and split read alignments.

Read depth measures the number of reads that cover a speci�c genomic position or

genomic window. SVs that cause a gain or loss of sequence, namely deletions, duplications

and unbalanced translocations, also cause a change of the read depth. Those SVs can be

summarized under the term copy number variants (CNVs). Even in absence of CNVs the

read depth is naturally �uctuating. One factor that can cause a substantial �uctuations of

the read depth is the GC-content . It describes the relative quantity of the bases G and C

as compared to A and T in a piece of sequence. Simple corrections for the GC-bias exist
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and are necessary to detect deletions from read depth changes alone [7]. The read depth

signal alone is only suitable for the detection of larger CNVs due to di�culties in the exact

determination of the breakpoints [3].

Split read alignments can occur if not a pair but a single read of a pair is spanning

the breakpoint of an SV, like displayed in Figure 2.1a for read pair s. One part of the

read spanning the breakpoint cannot be mapped to the reference in one go. This part is

therefore soft-clipped , meaning the a�ected positions will be marked as mismatches in the

alignment, indicated by the light gray coloring in the �gure. Some SV callers or mapping

programs perform a split read alignment, which will try to �nd the best position for the soft

clipped portion of the read. If the clipped portion is long enough and its sequence unique,

it can be assigned the correct position. Split read alignments are typically exceptionally

useful for the exact de�nition of the breakpoints of SVs.

Figure 2.1: Read pair signatures of deletions. a A deletion (marked in red) causes an
increase of the read pair distance for read pair d spanning the breakpoint. Further, a split
read alignment for the �rst read in read pair s occurs. The read pair distance of read pair s
is counted from the clipped end upstream of the deletion up to the 3'-end of the read that is
located downstream of the deletion. Therefore, it is also increased. b Read pairs that span a
deletion breakpoint follow a shifted distribution of read pair distances (red). The shift from
the usual distribution (blue) corresponds to the deletion size δ.

Discordant read pairs are read pairs whose mapping distances or orientations do not

match the expected values. The distance between the two reads in a pair is expected to

follow a set distribution, depending on the distribution of the fragments selected during the

preparation of the sequencing sample (see Figure 2.1b, blue curve). If a read pair overlaps

an SV breakpoint, i.e. its �rst read is mapping to the left of an SV breakpoint and its

second read is mapping to the right of the breakpoint, the distance between the read pairs

will change depending on the size of the SV. Throughout this thesis, this read pair distance

will be de�ned as the absolute distance in bp on the reference between the mapped 3'-ends

of both reads in pair. It is closely related to the insert size (see Section 1.3), which also
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increases if a read pair overlaps an SV breakpoint. Neither read pair distance nor insert

size are not de�ned for reads that map to di�erent chromosomes. In soft clipped reads

in forward orientation the rightmost unclipped base is considered as its 3'-end. Reads in

reverse orientation with soft clipping are treated as if their 3'-end was located at their

leftmost unclipped base. Read pair d in Figure 2.1a shows an example of an increased read

pair distance.

A read pair is also discordant if the orientation of its reads in the reference genome is

di�erent from the expected forward-reverse orientation (FR). Duplications, inversions and

some translocations cause a switch in the orientation of reads because they either in�uence

the direction of sequence (inversions, some translocations) or the mapping order of the

reads in a pair (duplications). Figure 2.5 shows an example for this process.

The frequency at which SVs occur in the human genome heavily depends on their type.

Collins et al. created gnomAD-SV, a public database of SVs [16]. They report frequencies

of di�erent SV types found in 14,216 human genomes of di�erent origin. A selection of the

resulting distributions is shown in Figure 2.2. Generally, the frequencies of SVs declines

with increasing size. Notable local peaks in the frequency distributions of CNVs are often

caused by mobile elements, like Alu and SVA or LINE1. The frequencies reported in

gnomAD-SV for the speci�c SV types will be given below in the respective subsections.

The frequencies are to be interpreted as lower boundaries because it is to be expected that

there are more SVs than those that are currently reliably detected.

Figure 2.2: Frequencies of SVs types detected in 14,216 diverse samples in gnomAD-SV by
SV size. DEL, deletion; DUP, duplication, INS, insertion; INV, inversion; CPX, complex SV.
Labeled arrows indicate peaks associated with mobile element insertions. Figure adapted from
Collins et al. (2019) [16].

Mechanisms of SV Formation There are di�erent models that can explain the bio-

logical generation of SVs, some of which will be presented here.
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One mechanism that often leads to recurrent SVs is non-allelic homologous recombination

(NAHR) [11;25]. An SV is recurrent if it can be found in multiple unrelated individu-

als and therefore has not been inherited but emerged individually in di�erent individu-

als [11]. NAHR can occur when long (above 10,000 bp) pieces of sequence are very similar

to each other (about 95% homology) and are relatively close by, typically between 50,000

to 1,000,000 bp. During mitosis or meiosis the two highly identical sequence pieces can

align with each other instead of their correct haplotypes. This leads to a crossing over

and causes a deletion of the sequence parts between the parts of highly identical sequence.

NAHR between the strands of di�erent chromosomes will further produce a duplication

that accompanies the deletion [11]. A schematic of this process is shown in Figure 2.3.

Figure 2.3: Schematic of an Non-allelic homologous recombination. The orange and red
sequence parts share a high amount of homology, causing them to be aligned during mitosis
or meiosis. The resulting crossing over causes sequence loss on one haplotype and sequence
gain in the other haplotype.

Another mechanism is non-homologous end joining (NHEJ) [11;25]. NHEJ has been found

as the cause of non-recurrent SVs, creating short insertions or deletions. NHEJ is a repair

mechanism for double strand breaks of the DNA. When the two strand of the DNA double

helix break at marginally shifted positions, the overhanging ends of the strands are removed

and the new blunt ends of the double helix are jointed again to repair the break. This

leads to the loss of the sequence of the overhanging ends. Alternatively, random nucleotides

can be inserted at the position of the break [11]. Although NHEJ is the dominant repair

mechanism for double strand breaks in human cells [2], it is not considered a major source

of variation [27].

Microhomology-mediated break-induced replication (MMBIR) can occur when the replica-

tion fork of the DNA stalls or collapses during DNA synthesis [11;25]. The stalling can

be caused by single strand breaks in the template DNA strand. Under ideal conditions,

this would be covered by the homologous recombination mechanism, which repairs the

break exactly [2]. But in the presence of microhomologies in the a�ected sequence the

DNA polymerase can switch to another DNA strand and continue the replication with the

wrong template [11;25]. This template switching can result in complex SVs of up to multiple

megabases (millions of bases) in size [25]. The resulting SVs can include deletions, duplica-

tions, inversions and translocations [11;25;91]. Figure 2.4 shows an example of an MMBIR

event leading to the formation of a complex SV.
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Figure 2.4: Complex SV caused by MMBIR. A single strand break causes the collapse of the
replication fork. The nascent strand is trimmed back and the �rst template switch (TS) occurs
when the homologous regions (indicated by the color of the segments) 4 of the nascent strand
and 2 of the template strand are annealed. The polymerase continues the DNA synthesis until
TS2 occurs: The newly synthesized block 3 of the nascent strand anneals to its duplicate on
the nascent strand. This causes the synthesis of an inverted copy of the sequence upstream
of block 3. During TS3 block 2 of the nascent strand anneals to block 4 of the template. The
product of this process contains duplicated sequence between block 2 and 3 (including block
3), an inverted copy of the sequence after block 3 and an extra copy of block 4. Figure taken
from Carvalho et al. (2016) [11].

2.1.1 Deletions

In the context of this thesis, a deletion is de�ned as a piece of consecutive sequence of at

least 50 bp length that is missing from a sample sequence when compared to a reference

sequence. Figure 1.2a shows a conceptual example of a deletion.

Deletions are the most commonly detected SVs in the human genome. The gnomAD-SV

database reports a median of 3,505 deletions per human genome [16]. As shown in Figure

2.2, they follow the general trend of being rarer with increasing size. Local frequency peaks

can be observed at 300 bp due to Alu insertions in the reference genome and at 6000 bp

due to LINE1 insertions in the reference genome.

Deletions have been associated with a wide range of disorders in various studies. Examples

are autism [89], rheumatoid arthritis [83] and muscular dystrophy [43].

Detection. One signal that can be used for the detection of (large) deletions is reduced

read depth. Since the sequenced genome is lacking sequence on one or both haplotypes at

the locus of the deletion the number of reads that are sampled from this position of the

sample genome is reduced. This causes a reduced read depth at the a�ected location when

mapping those reads to the reference.

Another deletion signature can be found in discordant paired end reads. A read pair

overlapping the deletion breakpoint will exhibit a read pair distance that is increased by

the size of the deletion, as shown in Figure 2.1a for read pair d. This causes a shift of the
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expected distribution of read pair distances by the deletion size (see Figure 2.1 b). The

read pair distance is the main signal for the detection of deletions in PopDel.

If not a pair but a single read of a pair is spanning the breakpoint, like displayed in Figure

2.1a for read pair s, a split read mapping can occur. A split read mapping is a very clear

signal for the presence of a deletion because it gives the exact size and position of the

deletion, assuming the alignments of both part of the split read are correct. PopDel does

not perform a split read alignment but uses the information of the soft clipped bases at

the 3'-ends of the reads for the calculation of the exact breakpoints.

2.1.2 (Tandem) Duplications

In the context of this thesis a duplication is de�ned as a piece of consecutive sequence of

at least 50 bp length that has been duplicated in the sample sequence when compared to

a reference sequence. If the additional copy of the sequence directly follows the original

sequence, this is called a tandem duplication. If the additional copy is inserted somewhere

else in the genome, it is called a dispersed or interspersed duplication. The inserted copy

of a duplication can also be detected as a insertion but does not consist of novel sequence.

Figure 2.5 shows a conceptual example of tandem duplication and a dispersed duplication.

The gnomAD-SV database reports a median of 723 duplications per human genome [16].

They follow the general trend of being rarer with increasing length and have a local peak

in frequency for 6000 bp due to LINE1 insertions (see Figure 2.2).

Duplications are associated with di�erent disorders. For example, a duplication of the

MeCP2 gene is causal for the MeCP2 duplication syndrome [73]. It is associated with weak

muscle tone, autism and other neuropsychiatric disorders.

Detection. Like other CNVs, duplications can be detected by local changes of the read

depth.

Paired end reads provide di�erent signals suitable for the detection of tandem duplications.

Read pairs overlapping the novel junction between the two copies of the sequence (read pair

d in Figure 2.5a) will become discordant and exhibit a reverse-forward (RF) orientation

when mapped to the reference. Further, their read pair distance will be increased depending

on the length of the duplicated sequence. PopDel considers both the change in orientation

and increased read pair distance when detecting duplications.

Split read mappings occur when a single read is overlapping the novel junction between

the two sequence copies (read pair s in Figure 2.5a). As the primary alignment (here:

its larger part) of the second reads follows the �rst read, the orientation of the read pair

changes to RF. Further, the mapping positions of the split read alignment provide a sharp
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signal de�ning the breakpoints of the duplication. PopDel does not perform a split read

alignment but uses the information of the soft clipped bases at the 3'-ends of the reads for

the calculation of the exact breakpoint positions.

If the duplication does not occur in tandem, the paired end mappings can exhibit a sig-

nature similar to that of deletions. Pairs overlapping the �rst junction between the non-

duplicated part of the sample sequence and the duplicated sequence, will show a read pair

distance that is increased by the distance between the original and inserted sequence (read

pair d in Figure 2.5b). If a read pair is overlapping the second junction of the duplicated

and the non-duplicated sequence instead, the read pairs will further map to the reference

sequence in RF orientation (read pair d' in Figure 2.5b).

Split read mappings can also occur for dispersed duplications, as shown for read pair s in

Figure 2.5b. Here only the second junction of the duplicated sequence is sharply de�ned

by the split read alignment. The �rst junction would require an additional read pair with

one read overlapping the �rst junction.

Figure 2.5: Read pair signatures of duplications.a A tandem duplication (marked in red)
causes an increase in read pair distance and read pair orientation for read pair d. Further,
a split read alignment occurs for the �rst read of read pair s. b An interspersed duplication
causes an increased read pair distance for read pair d and an additional change in orientation
for read pair d'. Further, a split read alignment occurs for the �rst read in read pair s.

2.1.3 Insertions

In the context of this thesis an insertion is de�ned as a piece of consecutive sequence of

at least 50 bp length that is present in the sample sequence but absent from the reference

sequence at that location. If the inserted sequence is not part of the whole reference, this

is called a non-reference sequence (NRS) insertion or novel sequence insertion.

The gnomAD-SV database reports a median of 2,612 insertions per human genome [16].

As shown in Figure 2.2 many of those insertions occur as mobile element insertions. The

majority of insertions are 6000 bp in length or shorter. The presence of many non-repetitive

human NRS in primate genomes [41] suggest that those presumed insertions are actually

sequences that have been deleted in the genomes that contributed to the reference genome.
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Novel sequence insertions have been associated with coronary artery disease, myocardial

infarction, variations in bone mineral density and breast cancer [41].

Detection. Novel sequence insertions are not detectable by read depth approaches. The

reads that have been sampled from the novel inserted sequence do not map to the reference

because the novel sequence is per de�nition not part of the reference.

Paired-end reads that overlap the junction of the inserted NRS become one-end-anchored

pairs because only one of the reads can be mapped to the reference genome (see read pair

o in Figure 2.6). Read pairs that are sampled completely from the inserted sequence do

not map to the reference at all (read pair u in Figure 2.6).

A reads that overlaps one of the junctions can undergo clipping. This causes only the part

of the read that has been sampled from the non inserted sequence to be mapped to the

reference genome. The remaining part of the read will be clipped during the alignment, as

shown for read pair c in Figure 2.6.

While the mere presence and genotype of an insertion can be assessed from above signa-

tures, the determination of the actually inserted base pair sequence requires an assembly of

the unmapped reads. The one-end-anchored reads can then be used to connect the newly

assembled contigs and the reference sequence.

Due to the necessity of an assembly and the availability of PopIns [42;50], which already

performs this task at population-scale, PopDel does not detect or genotype novel sequence

insertions.

Figure 2.6: Read pair signatures of NRS insertions. A NRS insertion (marked in red) causes
unmapped read pairs (read pair u) and one end anchored pairs (read pairs o and c). The
upstream read of read pair c is further a�ected by clipping as its left end cannot be mapped
to the reference.

2.1.4 Inversions

In the context of this thesis an inversion is de�ned as a piece of consecutive sequence of at

least 50 bp length that is replaced by its reverse complement in the sample sequence when

compared to a reference sequence. Figure 2.7 shows a conceptual example of an inversion.
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Inversions are among the rarer SVs. The gnomAD-SV data base reports a median of 14

inversions per human genome [16]. In contrast to other SVs, the frequency of inversions is

barely a�ected by their size (see Figure 2.2).

An inversion that disrupts the gene encoding for the blood-clotting protein Factor VIII

has been been linked to sever hemophilia A [4].

Detection. Inversions are copy neutral: They do not cause any sequence to be gained or

lost. Therefore, inversions cannot be detected by changes in the read depth alone, albeit

local drops in read depth can sometimes be observed at the breakpoints of an inversion.

Read pairs that overlap one of the breakpoints of an inversion in the sample sequence

become discordant when mapped to the sample genome. Depending on the overlapped

breakpoint, the orientation of a pair changes either to forward-forward (FF; read pair

d in Figure 2.7) or reverse-reverse (RR; read pair d' in Figure 2.7). This is the main

signature PopDel uses for the detection of inversion. In addition to the change in read

pair orientation, the read pair distance increases depending on the length of the inverted

sequence and the location of the reads relative to the breakpoints. PopDel considers both

the change in orientation and increase in read pair distance when detecting inversions.

Split reads can occur when one read of a pair is overlapping one of the inversion breakpoints

as shown for read pair s in Figure 2.7. A correct split read alignment sharply de�nes two

breakpoints of the inversion. PopDel does not perform a split read alignment but uses the

information of the soft clipped bases at the 3'-ends of the reads for the calculation of the

exact breakpoint positions.

Figure 2.7: Read pair signatures of inversions. An inversion (marked in red, black arrows
indicating sequence direction) causes an increase in read pair distance and a change in orien-
tation for read pairs d and d'. Further, a split read alignment occurs for the �rst read of read
pair s.

2.1.5 Translocations

In the context of this thesis an translocation is de�ned as a piece of consecutive sequence

of at least 50 bp length that is moved from its original location (as de�ned by a reference
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genome) in the genome to another genomic location. If the new location is on the same

chromosome as the original location, this is called an intrachromosomal translocation. If

the sequence is translocated to another chromosome, this is called an interchromosomal

translocation.

Translocations are called reciprocal or balanced if no sequence is gained or lost during the

process, as shown in Figure 2.8. If sequence is gained or lost, it is called unbalanced .

Unbalanced translocations count as CNVs.

Translocations are very rarely detected in healthy genomes. gnomeAD does not report any

frequency for translocations in the 14,216 examined samples [16].

An example for disorders that can be caused by translocations is the Lynch syndrome.

It can be caused by a translocation disrupting the MLH1 gene [33]. The MLH1 protein is

involved in the DNA mismatch repair mechanisms and loss of function mutations in its

sequence have been associated with various types of cancer.

Detection. Read depth approaches can detected the increased coverage caused by un-

balanced translocations but will most likely classify the event as a duplication instead.

This is because the change in read depth alone cannot be used to infer the translocation

target site.

Read pairs overlapping one of the breakpoints of an interchromosomal translocation will

have both of their reads mapped to di�erent chromosomes. Additionally, depending on

which parts of the chromosome(s) were translocated, their orientation will change from FR

to one of RF, FF or RR. PopDel considers both the mappings to di�erent chromosomes

and change in orientation for detecting translocations. It does not detect intrachromosomal

translocations.

Split reads can occur if a read is overlapping a breakpoint of a translocation. In this

case both parts of the split read alignment will map to di�erent chromosomes, sharply

de�ning two of the breakpoints of the translocation. PopDel does not perform a split read

alignment, but uses the information of the soft clipped bases at the 3'-ends of the reads

for the calculation of the exact breakpoint positions.
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Figure 2.8: Read pair signatures of interchromosomal translocations. An interchromosomal
translocation (indicated by the exchange of green and blue blocks) causes the two reads of read
pair d to map to di�erent chromosomes. Further, a split read alignment occurs for the �rst
read of read pair s. Here both parts of the split read alignment map to di�erent chromosomes.

2.2 Population Analysis for Small Variants

Joint analysis for small variants has already been established by the GATK Haplotype-

Caller [70] (GATK HC). It has been shown to scale up to 90,000 exome sequencing samples

without loss in accuracy.

GATK HC performs a haplotype assembly of all samples in the cohort. The locally assem-

bled haplotypes are then compared against the reference to assess the presence of SNVs

and indels. If one were to apply this assembly in a naive fashion by using the reads of all

samples together, the approach would not scale to many samples due to the exponential

increase in running time and memory consumption [70]. GATK HC solves this problem by

applying a sample wise assembly in a module called the GATK Reference Con�dence Model

(GATK RCM) before calculating the genotypes using a paired Hidden Markov Model [21]

(pair-HMM).

Reference Con�dence Model. GATK RCM identi�es regions of a genome where there

is some evidence of variation [70]. To this end, it calculates an active probability for each

position of the genome. This is done by considering the pile-up at each position and

performing a simple genotyping that is based on alignment evidence of mismatches, indels

and soft clipping. A Gaussian kernel is used to spread and combine the variant probabilities

across neighboring positions. If the active probability is above a generous threshold for

enough consecutive positions, the window (of 50 to 300 bp) is marked as active. Only reads

from active regions and in 100 bp vicinity (by default) are considered in downstream steps.

Larger active regions are split.

For each active region, a graph based local assembly is performed. The reads of the active

region and the reference are segmented into k-mers and are used for creating a de Bruijn
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graph like structure. Vertices represent k-mers and edges are connecting overlapping k-

mers. The edges are weighted according to the number of reads that contain both connected

k-mers. The graph is simpli�ed and the paths through the graph can be used to infer

the candidate haplotypes. Finally, each candidate haplotype generated from the graph is

aligned to the reference using the Smith-Waterman algorithm.

HaplotypeCaller. GATK HC takes the assembled candidate haplotypes of the GATK

RCM and uses a pair-HMM to determine the likelihood P (Ri|Hj) that each candidate

haplotype Hj is represented by each read Ri
[70]. This is done by calculating an alignment

score of the alignment of each read to each haplotype. The score is based on the states

of the pair-HMM which are match/mismatch, insertion and deletion. The transitions

probabilities between the states de�ne the penalties for opening or extending a gap.

The alignment of a haplotype to the reference that has been previously performed by the

GATK RCM yields a set of variants at those alignment positions that do not match the

reference. To genotype each sample for those variants, the likelihoods from the pair-HMM

are used in a Bayesian model for calculating the posterior probabilities of the genotypes

given the data:

P (Ri|Gg) =
∏
i

(
P (Ri|H1) + P (Ri|H2)

2

)

P (Gg|Ri) =
P (G)P (Ri|Gg)∑
g P (Ri|Gg)P (Gg)

with P (G) as the prior genotype probability.

Together, GATK HC and RCM output gVCF �les for all samples. They are closely related

to usual VCF �les but contain additional information for each variant. They further also

contain records of non-variant sites, including the con�dence that the respective site is dif-

ferent from the reference, even if it has not explicitly been called as a variant. The GATK

tool CombineGVCFs is then used to combine all gVCFs into a multi-sample gVCF, before

the GATK tool GenotypeGVCFs is used to determine the �nal genotypes of all samples for

all variants. It further removes low quality calls and artifacts. The calculations performed

by GenotypeGVCFs for the determination of the �nal genotypes are not publicly docu-

mented, as stated in GATK's technical documentation1, and are therefore not summarized

here.

One can argue that this work�ow does not constitute a classical joint calling but rather

a joint genotyping. The haplotypes are generated on a per-sample basis and the initial

1https://gatk.broadinstitute.org/hc/en-us/articles/360035890511

https://gatk.broadinstitute.org/hc/en-us/articles/360035890511
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genotypes are also based on the data of the individual samples. It is only after the com-

bination into a multi-sample gVCF �le that the information across the samples is shared.

However, the maintainers of GATK argue that the genotyping step is the only part of the

work�ow that needs to be performed jointly2. Further, the gVCF �les contain additional

information like the reference con�dence and genotype likelihoods for non-variant sites.

This allows the joint genotyping to come to well-funded results for all variant sites, even

if a speci�c site was not considered to be a variant in the sample wise calling.

2.3 Current State of Structural Variant Detection

Currently, there are various programs available for the detection of SVs in NGS data. Here,

the approaches of the SV callers Delly and Lumpy are summarized as examples. Their

performance is also evaluated along with PopDel and other callers in Chapter 4.

While all of the presented SV callers were originally designed for SV calling on single

samples or small cohorts, they are capable of processing cohorts of many samples together

using a sample wise calling and subsequent regenotyping approach.

2.3.1 Delly

Delly can detect all types of SVs, including complex SVs [74]. It uses the signatures from

discordant paired end reads (or mate pair sequencing, which is not discussed here) for the

detection of SVs. Split read alignments are used as further evidence and for the re�nement

of breakpoints.

Discordant Read Pair Analysis for Breakpoint Detection. In a �rst step, the

discordant read pairs of the sample are collected [74]. Delly considers a read pair to be

discordant if its insert size is three standard deviations or more above the median insert

size or if the pair is not in FR orientation. Reads that have multiple mapping location are

�ltered out. The discordant pairs are binned by chromosome and sorted according to their

left-most alignment positions. They are then used to build an undirected weighted graph.

The vertices of the graph represent the individual read pairs and the edges indicate mutual

support for the same SV. The support for an SV is based on the SV signatures discussed

in Subsection 2.1. The weights of the edges are based on how di�erent the SVs inferred

from the two connected vertices are. The edges are sorted according to their weights and

a maximal clique �nding heuristic is applied on the graph. The detected maximal cliques

then correspond to distinct SV candidates.

2https://gatk.broadinstitute.org/hc/en-us/articles/360035890431-The-logic-of-joint-calling-for-
germline-short-variants

https://gatk.broadinstitute.org/hc/en-us/articles/360035890431-The-logic-of-joint-calling-for-germline-short-variants
https://gatk.broadinstitute.org/hc/en-us/articles/360035890431-The-logic-of-joint-calling-for-germline-short-variants
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Split Read Alignment for Breakpoint Re�nement. The read pairs of each clique,

i.e. SV candidate are used to infer a set of breakpoint candidates [74]. For their re�nement,

Delly searches for one-end-anchored pairs that map within two standard deviations of the

breakpoints because the unmapped reads of such pairs are used as candidates for split read

alignments. A k-mer �lter is applied for reducing the size of the split read candidate set

before the split read alignment around a breakpoint candidate is performed. To improve

the running time of this process, the reference sequence is modi�ed such that all reads can

be aligned as if the SV was a simple deletion. The consensus of the split read alignments

gives the exact breakpoints of the SV.

In a �nal step, Delly checks if the SV size inferred from the discordant read pairs matches

the size that is inferred from the split read alignments. All passing SVs are subsequently

merged such that the breakpoints that belong to the same SV event are combined into a

single call.

Delly's re�nement of the breakpoints by using split read alignments greatly increases its

precision. It moderately reduces its recall, mainly at lower coverages or for very short read

lengths.

SV Calling on Multiple Samples. According to the user guide provided by Delly's

maintainers3, Delly should be applied on a single sample basis for high coverage genomes

or small batches for low-coverage genomes. Delly provides functions for the single sample

calling, the subsequent merging of the SV call sets and the regenotyping of the single

samples. Section 4.5.1 contains such a work�ow.

2.3.2 Lumpy/Smoove

Lumpy is described as a �general probabilistic framework for SV discovery� by its au-

thors [54]. It is capable of integrating di�erent signatures of SVs by representing breakpoints

as pairs of probability distributions. The distributions re�ect the uncertainty concerning

the exact positions of the breakpoints. By combining these distributions, Lumpy calcu-

lates the integrated probability distributions that are used for predicting the SVs. Lumpy

extracts the signatures of discordant read pairs and split reads internally, but is further

capable of using additional evidence provided by the user in BEDPE [58] format. Figure

2.9 visualizes this approach. Lumpy is capable of detecting deletions, tandem duplications,

inversions and translocations. It does not perform genotyping.

3https://github.com/dellytools/delly

https://github.com/dellytools/delly
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Figure 2.9: SV signature integration approach applied by Lumpy. Breakpoints are repre-
sented by probability distributions that re�ect their positional uncertainty. Figure taken from
Layer et al. (2014) [54].

Distributions Generated from Discordant Read Pairs. Lumpy considers the ori-

entation and insert sizes of discordant read pairs to generate the probability distributions

representing the candidate breakpoints [54].

First, Lumpy assigns the SV type to each breakpoint by considering the orientations of

the read pairs (see Section 2.1). Then, the probability distributions of the breakpoints are

generated by calculating the probabilities that two reads are spanning each position of the

breakpoint regions. This in turn depends on the observed distribution of insert sizes in

the sequenced sample and the observed mapping locations of the reads. For a read pair

to span some assumed breakpoint position, its insert size must be large enough such that

it covers the range between its leftmost read and the breakpoint. If one calculates this

probability for a breakpoint position that is only a few bp downstream of the leftmost read

of a pair, one gains a high probability. If the considered location is far downstream, the

distribution of insert sizes of the sample returns a low probability instead. This leads to

the probability distributions of the breakpoints as seen for the paired-end aligner evidence

in Figure 2.9.

Distributions Generated from Split Read Alignments. Like for discordant read

pairs, the orientations of di�erent split read parts are used to assign SV types to the break-

point candidates [54]. As already discussed in Section 2.1, split read alignments typically
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de�ne sharp breakpoints. Still, some ambiguity may arise from sequencing or alignment

errors. To account for, this Lumpy places probability distributions around the breakpoints

induced by the split read alignment. The distributions have their maxima centered at the

points where the read has been split and exponentially decrease with increasing distance.

The quality of the sequencing data and alignments control the rate at which the probability

distributions decay.

SV Calling on Multiple Samples. Lumpy can perform a joint calling by integrating

the probability distributions from multiple samples to determine the breakpoints of the

SVs. However, for larger cohorts the recommended work�ow consists of a single sample

approach with subsequent merging4.

Wrapping Lumpy via Smoove. The recommended way of using Lumpy is via the

Smoove [69] pipeline5. It manages the extraction of discordant read pairs and split reads

required by Lumpy and performs �ltering steps (see below) that reduce the running time

and false-positive rate of Lumpy. It further applies SVTyper [14] for genotyping, because

Lumpy does not perform this step. Steps applied by Smoove include:

� extraction of discordant read pairs and split reads

� �ltering of extracted read pairs based on region, coverage and quality

� calculation of required metrics for each sample

� SV calling using Lumpy

� genotyping using SVTyper

� processing of the VCF output

Where possible these steps are performed in parallel.

The authors of Smoove recommend a joint calling approach for small cohorts of less than

40 samples6. For bigger cohorts, a sample wise calling with subsequent merging and

regenotyping is recommended. Section 4.5.1 contains such a work�ow.

In the benchmarks of this thesis, Lumpy was always applied via Smoove.

4https://github.com/brentp/smoove#population-calling
5https://github.com/arq5x/lumpy-sv#quick-start
6https://github.com/brentp/smoove#small-cohorts-n---40

https://github.com/brentp/smoove#population-calling
https://github.com/arq5x/lumpy-sv#quick-start
https://github.com/brentp/smoove#small-cohorts-n---40
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Chapter 3

Joint SV Calling and Genotyping in

PopDel

This chapter focuses on the main contribution of this thesis: The SV calling tool PopDel.

The basic ideas behind its approach and details regarding applied algorithms, as well as

implementation, will be discussed.

3.1 Basic Idea and Aim of PopDel

The aim behind PopDel is to allow for e�cient joint calling of SVs in tens of thousands of

whole genomes. Previous e�orts in the �eld of small variants have shown the scalability

and bene�ts of joint calling approaches, some of which are an increase in the number of

detected variants, especially in the regions with low sequence coverage and a decrease in

false positive calls resulting from improved �ltering [70]. Not only the detection, but also the

genotyping can bene�t from the consideration of multiple samples as demonstrated by the

tool GraphTyper, which uses pangenome graphs to detect small variants and calculate their

genotypes in population scale sequencing data. But for structural variants, the potential

of joint calling approaches has not yet been fully explored.

PopDel approaches the challenge of joint SV calling in two steps: In a �rst step, relevant

information from the BAM �le of each genome is extracted and stored in small read pair

pro�les (subsequently only called pro�les). The pro�le format is explained in detail in the

Subsection 3.2.4 and allows to minimize I/O - one of the key challenges for joint calling on

population-scale. The subsequent joint calling, described in detail in Section 3.3, only relies

on the pro�les and uses the provided information from all samples together to calculate

likelihoods for the presence of SV along with their genotypes while moving along the

genome in tiling genomic windows. Using the data from all samples jointly in a statistical
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Figure 3.1: PopDel's joint deletion calling work�ow. For the detection of SVs other than
deletions the step �joint calling per genomic window� is performed with a window-wise calling
procedure tailored for the respective SV type.

framework speci�cally designed for the integration of multiple samples, allows PopDel

to detect variants which might be missed when looking only at single samples. Careful

integration of sample-speci�c genotype weights for the likelihoods guarantee that variants

are not overseen if they are only present in a few or even a single sample among thousands

of other samples. Overlapping variants are detected by inspecting windows that harbor

multiple SV candidates with multiple initializations of the variant parameters. Figure

3.1 shows the general work�ow for the pro�le creation and joint calling and genotyping of

deletions. For duplications, inversions and translocations, the step joint calling per genomic

window is performed with the window-wise calling procedures tailored for the respective

SV type.

All together, this allows PopDel to scale to tens of thousands of genomes in a user friendly

work�ow and to produce reliable SV calls and genotypes in single samples as well as

population-scale data.

The initial aim of this thesis and PopDel only encompassed the detection and genotyping of

genomic deletions at population-scale. The approach has since been extended to other types

of SVs, speci�cally duplications, inversions. The calling and genotyping of duplications and

inversions is however still a work in progress. Further, an early prototype for the detection

and genotyping of interchromosomal translocations has been implemented.

For an overview of PopDel's parameters, please consult Section A.1 of the Appendix. A

detailed user-guide for PopDel is available in its GitHub-Wiki1.

1https://github.com/kehrlab/PopDel/wiki

https://github.com/kehrlab/PopDel/wiki
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3.2 The PopDel Pro�ling

This section describes the �rst step in PopDel's analysis work�ow: The creation of the

read pair pro�les from the alignment �le of a genome.

3.2.1 Basic Idea and Work�ow of the PopDel Pro�ling

As described in previous sections, one of the main problems of population-scale variant

calling is the scaling to big sample numbers. To allow for an e�cient calling process and

reduce unnecessary I/O operations, this thesis introduces the PopDel read pair pro�les.

The read pair pro�les are designed to hold only the relevant information required for the

later joint calling step, which are

� chromosomes and positions of read pairs on the reference genome

� insert sizes of the reads in a pair when mapped to the reference genome

� orientation of the reads in a pair when mapped to the reference genome

� number of soft clipped bases of the reads' 3'-ends when mapped to the reference

genome

� for read pairs with the reads mapping to di�erent chromosomes: Chromosome and

position of the other read in the pair

Only information of read pairs satisfying the basic quality criteria described in Subsection

3.2.2 are included in the pro�le. Further, all information are stored in windows of 256 bp for

reasons of compression described in Subsection 3.2.4. Together with the binary compression

and the pro�le index (see Subsection 3.2.5) this allows to store the information for calling

in as little as 1-2% of the disk space requirements of the original BAM �le, and access the

information at any position of the pro�le without the need to linearly iterate through the

whole �le. This also leads to the possibility to e�ciently limit the calling to individual

sections of the genome without much overhead, which is especially practical for distributing

many calling jobs across multiple nodes of a compute cluster for parallel processing. The

variant calling problem is embarrassingly parallel when approached on a per-chromosome

basis. For example, a user could start 24 instances of PopDel's calling process on the

same set of pro�les, each working on a di�erent chromosome. The output of the individual

processes can then later be concatenated. More small-scale partitioning of the genome to

the sub-chromosomal level is also possible.

An additional motivation and advantage behind the creation of the pro�les is that it reduces

the overhead for later analyses when additional samples are added after the variant calling

has already been performed on the previous samples. Only the pro�les of the newly added
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samples have to be created before they can be used for the joint calling together with the

already existing ones, saving a lot of time and computational resources.

The pro�les are created from the position-sorted and indexed BAM �les of short whole-

genome reads. CRAM �les are also supported and require the FASTA �le of the reference

sequence if it is not embedded in the CRAM �le. In the �rst phase of the pro�ling, the

empirical distribution of the insert sizes of the read pairs is sampled from some well behaved

genomic regions. These regions are prede�ned for the most recent builds of the human

genome, but can be speci�ed by the user for other use cases. Since one alignment �le can

hold the information of multiple sequencing libraries for the same sample, all information is

collected on a per-read-group basis to allow for di�erent libraries with di�erent properties

like di�erent insert sizes distributions.

After the sampling, PopDel iterates all records of the alignment �le in a second linear pass.

Each record is compared against the quality criteria and �lters described in Subsection

3.2.2. Only records that satisfy all criteria and for which the other read in the pair also

passes all �lters are further processed. Because one read in a pair typically occurs some-

where downstream in the alignment �le, the read that occurs �rst in a pair that passes

all �lters is stored in a bu�er, until the downstream read is encountered. This strategy

eliminates the need for traversing the �le in search of the downstream read in the pair,

which would lead to a substantial increase in I/O and running time. For each read pair

that is passing all �lters the information listed above are determined. These information

are aggregated for all read pairs in a 256 bp window. Once such a window has been passed

and no more records can occur in the window, the window is compressed and written to

the output stream. The details of this process are described in Subsection 3.2.4.

During the whole process PopDel keeps track of the �le positions in the output �le. After

all records of the alignment �le have been processed, these information are used to build

an index of the pro�le that is stored at the beginning of the pro�le. The index is described

in Subsection 3.2.5.

One BAM �le can contain data from multiple read groups of the same individual. Typi-

cally, one read group de�nes a set of reads that where generated in the same run of the

sequencing machine using the same sequencing library. In a BAM �le, they are declared by

a special tag. PopDel operates on the read group level. This means that information like

the distribution of insert sizes is estimated for each read group of the sequenced genome

individually. This allows PopDel to work with BAM �les that contain read groups from

di�erent sequencing libraries with di�erent properties regarding the size of fragments and

their distribution.
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3.2.2 Quality Criteria and Filters

When examining the records of a BAM or CRAM �le, PopDel applies some basic quality

criteria. By not further processing �ltered records, the following objectives are achieved:

Reduction of running time for pro�le creation, reduction of disk space required to store the

pro�les, reduction of artifacts and noise caused by (likely) faulty records, and reduction of

running time for the calling. By default they are chosen to be as permissive as possible to

avoid a loss of sensitivity caused by over�ltering. One of the main criteria for the decision

is the status of the SAM �ag of the records. They are encoded as strings of bits with

length 12. Each bit encodes for a speci�c property of the record and can be set during

the alignment process. As strings of bits can be interpreted as (base-ten) numbers, one

can combine multiple �ags into a single unsigned 16 bit integer. This integer can then

be used together with the SAM �ag of the records in bitwise AND operations to check

all conditions simultaneously. A record and its associated record are �ltered out if one or

more of the following conditions apply:

� one or both reads of a pair do not map to the reference (i.e. SAM �ag 0x4 or 0x8 is

set)

� the read is not a primary alignment (i.e. SAM �ag 0x100 is set)

� the read fails platform/vendor quality checks (i.e. SAM �ag 0x200 is set)

� the read is a PCR or optical duplicate (i.e. SAM �ag 0x400 is set)

� the record is a supplementary alignment (i.e. SAM �ag 0x800 is set)

Further, the following conditions must be met to ensure that the fundamental information

required by PopDel (i.e. the insert size or location of both reads in the pair) are present

and the read locations assigned by the read mapper are reasonably certain:

� the read must be paired (i.e. SAM �ag 0x1 must be set)

� at least 50 bp of the read must be aligned to the reference after accounting for clipped

bases

� the mapping quality of the record must be at least 1

� the alignment score of the record divided by its length must be at least 0.8

With exception of the pairedness of the reads, all of the above values are user con�gurable

to allow for special use-cases and individual preferences. To ensure that the distribution

of the insert sizes is only sampled from well behaved read pairs, there are additional

requirements for the records that are used for the sampling of the insert size histograms:
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� the upstream read must align in forward orientation (i.e. SAM �ag 0x10 must not

be set)

� the downstream read must align in reverse orientation (i.e. SAM �ag 0x10 must be

set)

� both reads of the pair align to the same chromosome

Read pairs that map to di�erent chromosomes are additionally compared against a blacklist

of genomic regions. A default blacklist that contains gap regions and repetitive regions of

GRCh38 is provided, but the blacklist can be fully de�ned by the user. If one or both reads

of a pair fall into a blacklisted region, the read pair will not be added to the pro�le. Read

pairs that do not map to di�erent chromosomes are not a�ected by this blacklist. The aim

of the blacklist is the reduction of the number of read pairs that are falsely considered as

evidence of translocations because one read of the pairs maps to a wrong chromosome.

3.2.3 Robust Estimation of Insert Size Histogram Parameters

The distribution of insert sizes of each read group of a sample is estimated from a prede�ned

set of regions. These regions encompass 1,000,000 bp on each of the 22 human autosomes

and are de�ned for the most recent (hg19, hg38) human genome builds. The user is free

to specify a set of individual sampling regions for special use cases or other organisms.

Each read pair that passes the �lters described in Subsection 3.2.2 is used for creating a

read group speci�c empirical histogram of insert sizes. As soon as the required minimum

number of read pairs per read group has been reached (default 50,000) no further sampling

regions are processed. The default sampling regions can be found in Section A.2 of the

Appendix.

After the sampling, initial estimates for the median µ and standard deviation σ of each

insert size histogram are calculated. To mitigate the e�ect of outliers and get a robust

estimate for µ and σ, the initial estimates are re�ned in an iterative process. The insert size

histogram is trimmed to only contain insert sizes that fall into the interval [µ− 3σ, µ+ 3σ].

µ and σ are then recalculated from this trimmed histogram and the process is repeated

until µ and σ converge. The trimmed histogram and the re�ned estimates are then stored

in the PopDel read pair pro�le as described in the next section.

3.2.4 The PopDel Read Pair Pro�le Format

The PopDel read pair pro�le is de�ned as a binary �le format, whose de�nition is given in

Table 3.1. The main directive in designing the pro�le format was to create a format that

allows for the storing of all information necessary for the subsequent joint SV calling, while

requiring as little disk space as possible. Since the need to hold much data in the main
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memory would quickly become a problem when performing the calling on many samples

simultaneously, the pro�le format also has to allow for e�cient streaming and present the

information in small blocks. Further, to avoid linear scans of the �le to �nd a certain

position, the pro�le format should contain its own index. This is essential if the joint

calling should be restricted to a small portion of the genome. The �nal implementation

of the PopDel read pair pro�le that achieves these goals can be conceptually divided into

seven parts:

1. pro�le identi�er: magic string and pro�le version

2. index for jumping to a given positions or chromosomes

3. sample information: Names and number of read groups

4. information on each read group: read length, histogram of insert sizes, median and

standard deviation of insert size distribution

5. Chromosome information: names, lengths and number of reference sequence chro-

mosomes

6. single-chromosome block: coordinate sorted list of 256 bp windows with read pair

information: genomic coordinate, number of read pairs starting in the window, in-

formation on distance between the reads of the pair, orientation and soft-clipping.

7. multi-chromosome block: coordinate sorted list of 256 bp windows with information

on read pairs mapping to di�erent chromosomes: number of read pairs falling into

the window, genomic coordinates of both reads in a pair, information on soft-clipping

and orientation.

An example of a human readable representation of the sorted lists of windows is given

in Table 3.2 for read pairs mapping to the same chromosomes and in Table 3.3 for reads

mapping to di�erent chromosomes.

The size of the single windows is set to 256 bp because the exact genomic positions of the

read pairs in the windows are not stored explicitly, but can be calculated as the sum of

coordinate of the beginning of the window and the stored o�set value of the read pair.

That way, the maximum size for the o�set, which is stored for each read pair, is limited

to 256 bp, thus making it suitable to be stored in a (8 bit) char, rather than an (32 bit)

integer, requiring only 1
4 of the space per position. Further, as all read pairs in a window

of the single-chromosome block originate from the same chromosome, it is su�cient to

store the chromosome identi�er only for the window and not for the individual read pairs,

further reducing the required disk space.
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Additional compression is reached by encoding and packing of the read pair orientations

in a window. As one read can align either in forward or reverse orientation, there are

four possible combinations of orientations in a read pair: Forward-reverse (FR), forward-

forward (FF), reverse-forward (RF) and reverse-reverse (RR). These four combinations

can be encoded as pairs of two bits. As the smallest processable unit in most systems

is a byte, which is in turn made up of eight bits, one byte can hold information on the

orientations of four read pairs. While storing the orientation of each read pair individually

would take one byte, packing four 2-bit encoded orientations into one char reduces the

amount of required disk space by 75%. Another factor enabling further compression of

orientation information is the circumstance that the majority of read pairs is expected

to be in FR orientation. For example, the pro�le for the genome NA12878, mapped to

GRCh38 (517,486,045 total records in the BAM �le), contains 225,615,536 read pairs in the

single-chromosome block. 225,233,784 (99.83%) of those read pairs are in FR orientation

and only 339,808 (0.15%), 22,657 (0.01%), 19,287 (0.01%) read pairs are in RF, FF,

or RR orientation. Consequentially, it is on average bene�cial to only store the packed

orientations for read pairs that have an orientation di�erent from FR. This comes at the

price of storing information on which read pair an orientation in the string of packed

orientations O is referring to. This is solved by storing the rank of the read pairs in the

windows (i.e. the order of occurrence) that have an non-FR orientation in an additional

string R of unsigned integers. This way, the i-th orientation in O refers to the read pair

that is referenced as the i-th element of R. Storing R requires 16 times as much space

as storing only the orientations, but since only the orientation information for ∼0.17%
of read pairs has to be explicitly stored when using R, this easily amortizes. In case the

number of read pairs with non-FR orientation in a window is not a multiple of four, the

packed string of orientations is padded with trailing zeros.

Similarly, the information on the clipping of the read pairs in a window is only stored if it

is di�erent from zero. Only 6,119,731 read pairs in the aforementioned pro�le of NA12878

have clipped bases on either 3'-end, accounting for only 2.7% of all read pairs in the pro�le,

making the approach of storing a combination of read pair identi�er and number of clipped

bases feasible. As the number of clipped bases is stored in chars, no packing like for the

orientations is required.

The multi-chromosome block stores the information on read pairs where both reads map to

di�erent chromosomes. Therefore, the format for storing the required read pair information

as described for the single-chromosome block applies only partially. Firstly, the concept

of distance between the reads of a read pair no longer holds as they are mapping to

di�erent chromosomes. Secondly, a record in the multi-chromosome block requires di�erent

information on the chromosomes for both reads in a pair. Table 3.3 gives an example of
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the human readable representation of how these read pairs are stored. Each window is

characterized by the chromosome it is located on and its start position. Each read pair in

the window is speci�ed by the o�set of the 3'-end of the one read mapping into the window

from the starting point of the window. In addition, the reference ID of the chromosome

and the explicit location the other read is mapping to is stored. Soft-clipping is stored for

both the �rst and the second read in the pair. The orientations of the read pairs are packed

as described above, but this time also FR orientations are included. The reason behind

this is that the assumption that most of the read pairs are in FR orientation does no longer

hold, so that the need to store the string of read pair IDs would likely cost more storage

space than the packing is saving: The multi-chromosome block for the NA12878 pro�le

consists of information on 915,010 read pairs. Of those, 457,089 (50.2%) are in either FR

or RF orientation, 228,271 (24.95%) in FF orientation and the remaining 229,650 (25.1%)

are in RR orientation. The FR and RF reads cannot strictly be distinguished because the

order depends on the chromosome one is considering �rst. Another special point about the

multi-chromosome block is that it holds the information of each read pair in two windows,

one for each chromosome a read of the pair is mapping to. Since only a minor portion

of all read pairs is stored in the multi-chromosome block it is feasible to store all of the

information redundantly. This is necessary for the e�ciency of the streaming of the pro�les

during the joint calling which requires all information about a window to be readily and

locally available without searching or jumping in the �le. Therefore, the information on

the read pairs in Table 3.3 are present in the windows on chr21 and also in those on chr22.

Otherwise, only one of the novel junctions of a balanced translocation could be detected

on one chromosome, even though another chromosome is involved.

All above mentioned factors together and the fact that the pro�le format does not rely on

the actual sequence of the read pairs allows for a very e�cient storing of the information

required for the joint calling. Typically, the size of the pro�le is between 1-2% of the original

BAM �le size. For example, the �le size of the original BAM �le used for the creation of

the aforementioned NA12878 pro�le amounted to 51,943,573,793 bytes (≈ 51.9GB). The

pro�le on the other hand, can be stored in as little as 883,288,656 bytes (≈ 0.8GB), thus

requiring only 1.7% of the original �le size. This makes it feasible to store the pro�les of

many samples.
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Table 3.1: De�nition of the PopDel pro�le format.

Field Description Type Value
magic PopDel magic string char[7] POPDEL\1

version Version of the pro�le format uint16 3

l_region Index region size uint32

n_�le_o�sets # �le o�sets in the index (index size) uint32

n_trans_�le_o�sets # �le o�sets in the translocation index (translocation index size) uint32

List of �le o�sets (n=n_�le_o�sets)

�le_o�set File o�set (index entry) uint64

List of �le o�sets (n=n_trans_�le_o�sets)

trans_�le_o�set File o�set (translocation index entry) uint64

l_sm_name Length of the sample name plus 1 (including NUL) uint32

sm_name Sample name; NUL-terminated char[l_sm_name]

n_rg # read groups uint32

List of read group names and insert size histograms (n=n_rg)

l_rg_name Length of the read group name plus 1 (including NUL) uint32
rg_name Read group name; NUL-terminated char[l_rg_name]
median_isize Median insert size in this read group int16
stddev_isize Standard deviation of insert size in this read group int16_
read_length Length of reads in this read group uint16
hist_start First insert size listed in histogram uint16
hist_end Last insert size listed in histogram plus 1 uint16

List of read pair counts per insert size (n=hist_end - hist_start); insert size histogram
count # read pairs with corresponding insert size uint32

n_ref # reference sequences uint32

List of contig names (n=n_ref)

l_ref_name Length of the reference name plus 1 (including NUL) uint32
ref_name Reference sequence name; NUL-terminated char[l_ref_name]
l_ref Length of the reference sequence uint32

List of windows (until translocation_guard is reached)

refID Reference sequence ID, 0 ≤ refID < n_ref uint32
pos Start position of the window (0-based) uint32

List of read group entries for the window (n=n_rg)
n_rp # read pairs uint32
n_rp_clip # read pairs with clipping, 0 ≤ n_rp_clip ≤ n_rp uint32
n_rp_o # read pairs with non-FR orientation, 0 ≤ n_rp_o ≤ n_rp uint32

List of clipping of read pairs for the read group in the window (n=n_rp_clip)
rp_id ID (=position in the window) uint_32
clip # Clipped bases char

List of packed orientations of non-RF oriented read pairs in the window (n=n_rp_o)

rp_ids IDs (=position in the window) uint32
[
⌈n_rp_p

4 ⌉
]

orientation Packed orientation of non-FR oriented reads char
[
⌈n_rp_o

4 ⌉
]

List of read pairs for the read group in the window (n=n_rp)
pos_o�set O�set of read pair position from window start position char
idist Distance between the 3'-ends of the read pair in bp int32

translocation_guard Indicates the start of the multi-chromosome block uint32 4,294,967,295

List of translocation windows (until the end of �le)

refID_1 Reference sequence ID of read 1, 0 ≤ refID_1 < n_ref uint32
pos_1 Start position of the window of read 1 (0-based) uint32

List of read group entries for the window (n=n_rg)
n_rp # read pairs in the windows uint32

List of packed orientations of all read pairs in the window (n=n_rp)

orientation Packed orientation of all reads. char
[
⌈n_rp

4 ⌉
]

List of read pairs for the read group in the windows (n=n_rp)
pos_o�set_1 O�set of read 1 position from window start position char
clip_1 # 3' clipped bases in read 1 char
refID_2 Reference sequence ID of read 2, 0 ≤ refID_1 < n_ref uint32
pos_2 Start position of read 2 (0-based) uint32
clip_2 # 3' clipped bases in read 2 char
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Table 3.2: Human readable representation of the PopDel pro�le format. The �rst two
columns give the positional information of a 256 bp window on the genome.

Chr. Position Read pair information

chr21 5035777 1:-2(0):FR, 2:16(0):FR, 38:44(0):FR

chr21 5036033 0:7577(25):RF, 18:7559(66):RF, 26:19(67):FR

chr21 5036289 19:10(0):FR, 31:-93(0):FR, 33:-11(0):FF

chr21 5036545 16:31(0):FR, 26:103(0):FR, 36:-110(0):RR

The read pair information is given as a comma separated list. The value before the �rst
':' gives the positional o�set of the record, followed the distance between the 3'-end of the
reads negative values indicate overlapping reads in a pair. In brackets, the sum of soft
clipped bases at the 3'-ends is given. The two letter code encodes for the orientation of
the read pair: FR: Upstream read forward, downstream read reverse; RF: Upstream read
reverse, downstream read forward; FF: Both reads forward; RR both reads reverse.

Table 3.3: Human readable representation of the multi-chromosome block of the PopDel
pro�le format.

Chr. Position Read pair information

chr21 10489601 223(4):R+chr22:45595763(0):F

chr21 10489857 19(0):R+chr22:45595723(0):F

. . . . . . . . .

chr22 45595649 74(0):F+chr21:10489876(0):R, 114(0):F+chr21:10489824(4):R

The �rst two columns give the positional information of a 256 bp window on the genome.
The read pair information is given as a comma separated list. Each record can be divided
into two parts, separated by a '+'. Firstly, similar to the single-chromosome block of the
pro�le, the positional o�set from the window start of the read mapping to the window is
given, followed by the number of clipped bases at the read's 3'-end in brackets and the
single letter encoded orientation (F - forward; R - reverse). After the '+', the information
on the other read in the pair is given: The mapping position of the 3'-end, followed again
by the number of clipped bases and orientation. Because PopDel is only aware of the local
information (i.e. the information in the current window) when performing the calling, the
same read pair information is stored again in the respective window of the other read in
the pair, so that potential breakpoints can be detected on both chromosomes involved.
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3.2.5 The PopDel Pro�le Index

A PopDel read pair pro�le contains its own index at the beginning of the �le. Similar to

the parts of the pro�le that are used for storing the read pair information, the index can

be divided in two blocks: One block indexes the single-chromosome block, subsequently

called the single-chromosome index and the other block indexes the multi-chromosome

block, called the multi-chromosome index. Because the concept for both index blocks is

identical only the single-chromosome block will be described. The concept behind the

indices is reminiscent of the linear part of the SAM �le index [58]. The aim of the indices

is to provide information on where in the pro�le records of a speci�c genomic region are

stored. This is done in a sparse fashion using the genomic starting positions of the 256 bp

windows. The user can specify an index region size s (default 10,000 bp) to de�ne how

sparse the index is. An index region size of s = 10, 000 bp means that for every 10,000-

th genomic position of the linearized genome the exact �le position where the 256 bp

window containing the genomic position is located in the pro�le is stored. In this context,

linearization of the genome means that all chromosomes are brought into a �xed sequential

order (as given by the ordering of the chromosomes in the BAM header of the genome)

and the positions are calculated as if the genome was one long contiguous sequence. Given

a genome with chromosomes c0, c1, . . . , cn, let l (c) be a function that returns the length of

the sequence of the chromosome c in base pairs. Given some chromosome cx of the genome

and a position plocal, with 0 < pc < l (cx) the global position pglobal is calculated as:

pglobal (x, plocal) := plocal +

i<x∑
i=0

l (ci) (3.1)

The index does not need to explicitly hold the chromosome names of the stored positions

because they are implicitly given by the global positions. Therefore, the index itself can

be represented and stored as a list I of �le positions. Each entry Ii holds the �le position

of the 256 bp window that contains the global position piglobal.

To retrieve the �le position stored in the index for a given genomic region PopDel �rst

calculates the global position from it using Equation 3.1 and then divides this position

by the index region size (rounded down) to get the rank i in I. Since the index is stored

as a list of unsigned 64 bit integers, this enables the calculation of the �le position where

the index �eld is located by calculating i · 64 + 119. 119 is the sum of the size of the

�elds before the index (see Table 3.1). Since the multi-chromosome index is located after

the single-chromosome index, the size of the single-chromosome index has to be added to

the result when calculating the �le positions for the multi-chromosome index. In those

cases where the exact global position is not stored in the index, it can be found by linear

traversal of the pro�le's windows after jumping to the closest lower indexed position.
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3.3 Joint Variant Calling in PopDel

This section describes the second step in PopDel's analysis work�ow, the joint structural

variant calling. Here, PopDel takes the read pair pro�le(s) of one or many genomes that

have been mapped against the same reference genome as an input. It processes the pro�les

jointly to create a list of structural variants and per-sample genotypes. The calling does

neither rely on the BAM �les nor on the presence of the reference genome. The methods

described in this section for the variant calling on multiple samples are also applicable

when processing a single sample.

3.3.1 General Notation and Remarks

For the sake of comprehensibility and in order to avoid too many levels of subscripts or

superscripts, all subsequent formulas and explanations assume a single read group per

sample. The generalization for multiple read groups per sample is explained at the end of

Subsection 3.3.3.2.

A genomic window or just window refers to a consecutive number of positions on the same

chromosome in the genome. The positions are given with respect to the reference. Windows

in PopDel are tiling the chromosomes in a non-overlapping fashion: Let wi = [li, li + w[

be the i-th window on some chromosome, with li de�ning its left starting position on the

chromosome and window-length w. The �rst window on a chromosome is de�ned as w0 =

[0, w[. For all subsequent windows on the same chromosome holds wi = [i · w, (i+ 1)w[.

A read pair that maps to the same chromosome as wi is considered to overlap wi or to

be contained in wi if one or more positions between the (potentially soft clipped) 3'-ends

of the pair (including the mapping position of the leftmost 3'-end) fall into the interval

of the window. Let r1, r2 be the mapping positions of the 3'-ends of the reads in the

pair and assume without loss of generality that r1 ≤ r2. (r1, r2) then overlaps all wi for

which li ≤ r1 < li + w or r1 ≤ li < r2 hold. The reasoning behind this design choice is

that SV signatures that were discussed in Section 2.1 are mainly exhibited in between the

3'-ends of the reads in a pair. The reads themselves o�er little additional evidence for the

detection or genotyping of an SV. For reads that are in any other orientation than RF, this

de�nition of overlap also reduces the number of windows that contain a read pair. This in

turn reduces the computational load because a read pair will be considered in less windows

during the window-wise calling. Figure 3.2 visualized de�nition of read pairs that overlap

one or more windows.

Throughout the subsequent paragraphs, the following notation will be used: Let S denote

the set of all samples in the joint calling and let S ∈ S be a single sample. Let µS denote

median read pair distance (see Section 2.1) of S and let σS denote the standard deviation
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Figure 3.2: Read pairs overlapping windows. The dashed lines between the reads (arrows)
indicate the region in which PopDel considers a read pair to overlap the windows (w1 - w4)
of the genome. Read pair a overlaps w1 to w3. Read pair b overlaps only w1. Read pair c
overlaps w2 to w4 because the read pair is in RF orientation. Read pair d overlaps w2 to w4,
because the clipping of its left read (indicated by the gray coloring of the tip of the arrow)
moves its 3'-end mapping location from w3 to w2.

of the insert size histogram of sample S. The deviation of the read pair distance of a pair

with read pair distance x is calculated as δ = x − µS . The set of all read pair distance

deviations of all read pairs that overlap the current genomic window is denoted as ∆S .

3.3.2 Basic Idea and Work�ow

In the beginning of the joint calling process, PopDel �rst loads the insert size histograms of

all pro�les. The paths to the pro�les can be given as a text �le or directly via the command

line. Subsequently, parameters of the calling, like the minimum required deletion length

and the minimum likelihood ratio for a potential variant to be considered as signi�cant, are

calculated based on the distribution of insert sizes if those values have not been speci�ed

by the user. Next, the list of regions that are to be processed is initialized. If the user has

not speci�ed any regions of interest the calling should be limited to, the lists consist of all

chromosomes of the genome as given in the header of the pro�les. Overlapping regions of

interest are merged. The joint calling then commences in a window-wise fashion. A window

of 30 bp is moved across the genome (or the de�ned regions of interest respectively) in a

non-overlapping fashion. In each window, the pro�les are used to determine how many

read pairs of each sample are overlapping the window.

For the detection of deletions the read pair distances of the read pairs overlapping the

window are clustered by their deviation from the sample's median read pair distance us-

ing a simple hierarchical clustering scheme to gain a set of initial deletion values. The

initial deletions are then re�ned together with their frequency in the set of samples in an

iterative approach based on the maximization of the genotype likelihoods. A likelihood

ratio test is performed to assess the statistical signi�cance of a re�ned potential deletion

in a window. Owing to multiple initializations via the initial deletion sizes, PopDel detects

deletions of di�erent sizes that overlap the same window. Sample-speci�c genotype weights

guarantee that deletions that are only present in a few or even a single sample can still

be detected. The whole process for detecting and re�ning deletions is described in more

detail in Subsection 3.3.3.2.
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Windows containing duplications and inversions are detected separately from the windows

that contain deletions. First, the count of read pairs of each orientation is determined

for the window in question. If the number of read pairs whose orientations support a

duplication (or inversion respectively) reaches a threshold, they are used together with

all other read pairs that overlap the window to calculate the genotype likelihoods for the

variants in the window. The subsections 3.3.3.3 and 3.3.3.4 further elaborate on these

processes.

In a third process, that is still in a very early stage of development, windows containing

translocation breakpoints are detected and genotyped. This process does not only use the

records stored in the single-chromosome block of the pro�les but also those stored in the

multi-chromosome block (see Subsection 3.2.4). If enough read pairs with mappings to

di�erent chromosomes are detected in a window, the window is examined more closely for

the presence of interchromosomal translocations. This process is described more closely in

the Subsection 3.3.3.5.

After a certain number of windows has been processed (default: 200,000) the window-wise

calls are combined based on variant types, variant properties and positional distance. This

process, described in Subsection 3.3.3.6, yields a single SV call per distinct SV. Finally,

the calls are written to the output in VCF 4.3 format.

3.3.2.1 Data Management for Window-wise Calling

For the window-wise calling of SVs, PopDel streams the read pair pro�les of all samples

and holds the read pair information in an e�cient bu�ering structure. For each sample, it

consists of the start entry table, the end entry table and the active set.

Start Entry Table. One line of the start entry table describes one read pair. It consists

of the position of the read pair (i.e. the mapping position of its leftmost 3'-end), the read

pair's deviation from the sample's median read pair distance, the number of bp clipped

from the pair's 3'-ends, as well as the orientation of the pair. Owing to the ordering in

which the read pairs are stored in the pro�les, the start entry table is automatically sorted

according to the positions of the read pairs upon loading the pairs from the pro�le. No

additional sorting is required. The table is implemented as a SeqAn-String. The leftmost

table in Figure 3.3 shows an example of a small portion of the start entry table. The

information stored for �ve read pairs is shown.

End Entry Table. One line of the end entry table holds the ID of read pair. The ID of

a read pair is simply the index of the record in the cyclic start entry table that identi�es

the read pair. One line of the end entry table further holds the position of the last window
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the read pair overlaps. The end entry table is kept sorted in ascending order with respect

to these window positions at all times. This is done by not simply appending a new entries

to the end of the table, but inserting it directly before the next greater (with respect to

the ordering) entry of the table. If no such entry exists, the new entry is appended to the

end of the table. The table is implemented as a SeqAn-String. The center table in Figure

3.3 shows an example for the same �ve read pairs as shown for the start entry table. With

w = 30 denoting the window size and r1 as the position of a read pair that is stored in

the start entry table, the position of the last windows of this read pair is calculated as⌊
r1+µS+δ

w

⌋
· w.

Active Set. The active set is implemented as an unordered set of unsigned 32-bit inte-

gers, which allows for access, removal and addition of elements in constant time on average.

The active set holds the IDs of those read pairs that are contained in the currently pro-

cessed windows. It is updated using the start and end entry tables each time a new window

is processed in the window-wise calling: The start entry table tells what elements have to

be added to the active set while the end entry table tells what elements have to be removed.

As the window-wise calling proceeds, C++ iterators that point to the current positions in

the tables are updated. Each time a new genomic window is processed, the iterator of the

start entry table is advanced until the �rst entry whose position is greater or equal to the

starting position of the new window occurs. Then, until the �rst entry in the table whose

positions lies after the new window is encountered, the IDs of the entries are added to the

active set. A similar procedure is applied to the end entry table: The iterator pointing

to the end entry table advances until the �rst entry is encountered that holds a position

that is greater than the new window position. All IDs in the end entry table are read until

the end window position no longer falls into the new window. The IDs read from the end

entry table are removed from the active set.

To obtain the information of all read pairs that are active in some window, PopDel simply

has to read the IDs that are currently stored in the active set and access the start entry

table at the given indices. Since the referenced entries of the start entry table are expected

to be located close to each other in main memory, this bene�ts from cache locality. Di�erent

interface functions allow the targeted retrieval of read pair information in the calling and

genotyping routines of PopDel, e.g. obtaining only those read pairs that have a speci�c

orientation.
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Figure 3.3: Example of data tables and active set in PopDel. The start entry table holds the
start positions, deviations from the median read pair distance, the numbers of clipped bases
at the 3'-ends and the orientations of the bu�ered read pairs. The end entry table holds the
last window for each entry of the start entry table and the index of the record in the start
entry table. For this example the median read pair distance was assumed as 1. The active
set holds the IDs of the read pairs that are contained in the respective window. The active
set is only present in the state of the currently processed window. The start and end entry
tables hold all read pairs of the currently bu�ered windows (default: 200,000 windows) of one
chromosome.

3.3.3 Central Formulas and Algorithms

SVs can be characterized by various factors: breakpoint positions, which also imply their

size, variant type (deletion, inversion, duplication, translocation) and their frequency in

the cohort. The formulas and algorithms discussed in this section rely on the properties of

the SVs described in Section 2.1 to infer the information necessary for the characterization

of the SVs.

3.3.3.1 Processing of Insert Size Histograms

The insert size histogram H is based on the insert sizes measured during the sampling of

the pro�ling phase (see 3.2.3). It is important for the assessment of deletions, duplications

and inversions. It is stored in the pro�les as an array of raw read pair counts per insert size

and is transformed when loaded during the calling phase. The aim of the transformation is

to let the value stored for each δi in HS re�ect the probability of observing a read pair with

deviation δi from the sample's median insert size, in a window of size w. Let HS
abs (x) be

the function that returns the number of read pairs with insert size x sampled from genome

S. For x that lie outside of the sampled range of insert sizes, HS
abs (x) is de�ned as 0. In

a �rst step (that can be skipped by the user) PopDel applies a distance based smoothing

of the raw counts to gain a more even distribution of insert sizes. It weights each value of

HS
abswith its 40 nearest neighbors:

HS
smooth (x) :=

∑20
j=−20H

S
abs (x+ j) · e−

j2

40∑20
j=−20 e

− j2

40

(3.2)
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After the smoothing, PopDel corrects for window size and insert size by applying the

following scaling:

HS
trans (δi, r) := HS

smooth

(
δi + µS

i

)
·
w +max

(
δi + µS

i − 2r, 0
)

w
(3.3)

max
(
δi + µS

i − 2r, 0
)
re�ects the read pair distance of a read pair with insert size δi+µS

i and

read length r. Because the histogram was only sampled from read pairs in FR orientation,

the calculation of the read pair distance from the insert size does not have to account for

other orientations. The reasoning behind the scaling factor is that a read pair is more likely

to be observed if it has a larger insert size. This is because the PopDel only considers the

space between the 3'-ends of the pair when checking if a read pair is contained in a window

(see Subsection 3.3.1). The window size w also in�uences how many possible locations are

there for a read pair to be contained in a window. By adding the read pair distance to

the window size, the number of possible positions where a read pair can be observed by

PopDel is obtained. Scaling the smoothed histogram with the quotient of this number of

positions where a read pair can be observed and the window size consequently normalizes

for the window size and accounts for the read pair distance (that depends on the insert

size and read length) of the pair.

Unlike HS
abs (·), HS

trans (·) takes the deviation δi from the median insert size µS
i as an

argument. This is because PopDel operates on these deviations during the calling, and not

the absolute insert size. HS
trans is then scaled with the sum of all of its entries to gain a

probability density function:

HS (δi) :=
HS

trans (δi)∑
dH

S
trans (d)

(3.4)

To avoid later attempts of division by 0 or logarithms of 0, a pseudo-count of
max(HS)

500 is

used in cases where HS
abs (δi) would normally return 0.

In later steps, PopDel does not work with the insert sizes of the read pairs but with the

read pair distance. Since the read pair distance is always measured between the mapped

3'-ends of the reads in a pair, this allows a more consistent handling of read pairs regardless

of their orientation. In all subsequent sections, µS denotes the median read pair distance

of sample S. δ will denote the observed deviation of the read pair distance of some read

pair from µS . Compatibility between the insert size histogram and the read pair distances

during the calling is guaranteed by internal addition of the read lengths to the read pair

distance where required.
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3.3.3.2 Window-Wise Joint Calling and Genotyping of Deletions

The window-wise detection of deletions has the aim of calculating a likelihood ratio Λ

that compares the likelihood of a deletion model to a reference model. According to Wilk's

theorem, likelihood ratio tests qualify for a comparison against the known thresholds of the

χ2-distribution, since the distribution of likelihood ratios is asymptotically χ2-distributed

for large sample sizes [87]. A central condition is that the parameter space of the null

hypothesis model must be a subset of the alternative hypothesis model. In PopDel, the

null hypothesis states that the window is not a�ected by a deletion (reference model). The

alternative hypothesis states that the window is a�ected by a deletion of length l (deletion

model). PopDel's deletion model relies on the same parameters as the reference model

and further introduces the deletion length l as an additional parameter. Consequently,

the parameter space of the reference model is a subset of the deletion model and Wilk's

theorem can be applied:

Λ =
L (no del)

L (del of length l)
(3.5)

−2 log Λ ∼ χ2

Per default, PopDel uses a a p-value threshold of 0.01 (one-tailed) to assess whether a

deletion is present in the current window or not. Per Wilk's theorem, the degrees of

freedom for testing for signi�cance are equal to the di�erence in the dimensions of the

parameter spaces of the compared models. A discussion on the degrees of freedom can be

found at the end of this subsection.

To calculate the likelihoods for the likelihood ratio test, all parameters de�ning the po-

tential deletion(s) in a window have to be estimated. This is done in an iterative fashion.

The window-wise detection of deletions begins with the initialization of the set of sizes of

potential deletions that overlap the current window. To this end, PopDel takes the third

quartile Q3

(
∆S

)
of each samples' read pair distance deviations in the window and collects

them in a list. The entries of this list are then clustered in a greedy clustering with 50 bp

intercluster distance. The mean of each cluster is subsequently compared against a thresh-

old τ = 4σc where σc is the smallest σs of all samples that contributed to the cluster. Mean

values passing the threshold are used as initial deletion lengths linit. The pseudocode for

this process is described in detail in Algorithm 3.1.

If the clustering yields a list of values for linit, the parameters of the deletion are iteratively

re�ned along with the genotype likelihoods of all samples and the joint deletion likelihood.

The likelihood ratio test (Equation 3.5) asses the signi�cance of the variant after the

iteration terminates. The iteration relies on the formulas described in the subsequent

paragraphs and is performed for each linit.
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Algorithm 3.1 Initialization of deletion length estimates

1: bu�er = [ ]
2: for all S ∈ S do
3: Add Q3(∆

S) to bu�er
4: end for
5: if bu�er is empty then
6: No potential deletions in this window
7: end if
8: sort bu�er in ascending order
9: initDelLengths = [ ]

10: clusterSum = list[0]
11: clusterSize = 1
12: for i in 1:length(bu�er) - 1 do
13: δprev= bu�er[i-1]
14: δ = bu�er[i]
15: if δprev + 50 > δ then
16: clusterSum += δ
17: clusterSize += 1
18: else
19: τ = 4 ·min{σS |for all S that contributed to the cluster}
20: if clusterSum

clusterSize > τ then
21: Add clusterSum

clusterSize to initDelLengths
22: end if
23: clusterSum = δ
24: clusterSize = 1
25: end if
26: end for
27: τ = 4 ·min{σS |for all S that contributed to the cluster}
28: if clusterSum

clusterSize > τ then
29: Add clusterSum

clusterSize to initDelLengths
30: end if
31: Return initDelLengths
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Initial Genotype Likelihoods. From the initial value of the deletion length, the initial

values of the genotype likelihoods L
(
Gg|∆S

)
given the observed set of read pair distance

deviations ∆ of a sample S are calculated. The calculations rely on the density-scaled

insert size histograms described in Equation 3.3 and 3.4:

L
(
G0|∆S

)
=

∏
δ∈∆S

HS (δ) (3.6)

L
(
G1|∆S

)
=

∏
δ∈∆S

HS (δ) +HS (δ − l)

2
(3.7)

L
(
G2|∆S

)
=

∏
δ∈∆S

HS (δ − l) (3.8)

The rationale behind the equations of the genotype likelihoods are as follows: All read pairs

are assumed to be independent of each other. Therefore, the total likelihood of genotype

Gg for sample S has to be calculated as the product of the probabilities to observe each

individual read pair distance deviation δ ∈ ∆S . As explained in Subsection 3.3.3.1, HS (δ)

re�ects the probability to observe a read pair with read pair distance δ in the window. For

the homozygous reference genotype, one expects all read pairs of the sample in the window

to follow the distribution represented by HS . Consequentially, L
(
G0|∆S

)
is calculated

as the product of the probabilities returned by HS (δ). As discussed in Subsection 2.1.1,

a deletion of size l causes a shift of the distribution of observed read pair distances by

l. By adjusting the observed read pair distances by l, the observed read pair distances

should again match the distribution represented by HS . Because a homozygous deletion

a�ects both haplotypes of a genome, all read pairs are expected to follow the shifted

distribution. The genotype likelihood for the homozygous deletion model L
(
G2|∆S

)
is

therefore calculated as the product the probabilities returned by HS (δ − l). In case of

a heterozygous genotype, only one haplotype is a�ected by the deletion. One half of the

read pairs are thus expected to originate from the reference haplotype and the other half is

expected to originate from the deletion haplotype. The equation for L
(
G1|∆S

)
is therefore

a mixture of L
(
G0|∆S

)
and L

(
G2|∆S

)
to equal parts.

Initialization of Allele Frequency. The initial allele frequency f init is calculated by

counting the number of read pairs in the current window whose read pair distance deviation

roughly matches linit and dividing the count by the number of haplotypes of all samples

combined:
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f init =

∑
S∈S

∑
δ∈∆S bl,2σS

(δ)

2 |S|
, bl,2σs (δ) =

1 if max
(
l − 2σS ,

l
2

)
≤ δ ≤ l + 2σS

0 else
(3.9)

Expected Genotype Frequencies. The initialized frequency estimates give rise to the

expected frequencies L (Gg, f) of the three genotypes G0 (no variant allele), G1 (one variant

allele / heterozygous variant), G2 (two variant alleles / homozygous variant) in the cohort.

The expected frequencies are derived from the Hardy-Weinberg equilibrium [34], which is

discussed more closely in Subsection 4.1.3. The expected frequencies are calculated as:

L (f,G0) = (1− f)2 (3.10)

L (f,G1) = 2f (1− f) (3.11)

L (f,G2) = f2 (3.12)

Sample-Speci�c Genotype Weights. The sample-speci�c genotype weights aSg are de-

signed to assign a higher weight to genotypes with a good likelihood in a sample and a

lower weight to those with a low likelihood in a sample. They are used for the update of

the deletion parameters and genotype likelihoods. This allows PopDel to detect deletions

that are present at a very low allele frequency in the cohort as long as the signal from the

sample(s) carrying the deletion is good. Still, observing a deletion in multiple samples will

give additional credibility to the deletion and lead to a higher likelihood. For calculating

the weights, the product of the genotype likelihoods of sample S and the expected fre-

quency of genotypes given the observed allele frequency in the cohort is calculated. Then,

the ratio of this value and the sum of this product across all three genotypes is calculated:

aSg =
L
(
Gg|∆S

)
L (f,Gg)∑2

j=0 L (Gj |∆S)L (f,Gj)
(3.13)

Intuitively, this gives a measure of how likely it is to observe genotype Gg given the set

of read pair distance deviations in the current window in sample S and the observed

allele frequency of the variant allele in the cohort, compared to all possible genotypes and

expected genotype frequencies in the cohort.

Sample-Speci�c Reference Shift. To account for potential biases in the sequencing

data, PopDel introduces the sample-speci�c reference shift ϵS . Di�erent biases (e.g. the

GC-content of the sequence) can have an in�uence on the read pair distance of the reads
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mapped to a window. To mitigate this in�uence on potential deletion calls, the model

allows for a shift of up to ϵS ≤σS base pairs to maximize the likelihoods of the reference

allele(s). Initially ϵS is set to 0. Together with the sample-speci�c genotype weights aSg ,

ϵS allows for the calculation of PS
l,ϵS

(δ), which denotes a weighted probability that an

observed deviation δ of the read pair distance originates from a distribution shifted by l,

rather than ϵS :

PS
l,ϵS

(δ) = aS1
HS (δ − l)

HS (δ − ϵS) +H (δ − l)
+ aS2 (3.14)

For each sample, ϵS is then updated by weighting the observed read pair distance deviations

with PS
l,ϵS

(δ) and calculating the ratio to the sum of all PS
l,ϵS

(δ):

ϵnewS =

∑
δ∈∆S δ · Pl,ϵS (δ)∑
δ∈∆S Pl,ϵS (δ)

(3.15)

If ϵS becomes greater than σS , it is set to 0 to avoid the distortion of the length estimates

for homozygous deletions, as observed in early versions of PopDel.

Update of Deletion Length. The deletion length estimate l is updated in a similar

fashion to the update of the sample-speci�c reference shift. This is because both the

reference shift and the deletion length cause a shift of the observed read pair distances

from the expected distributions (see Figure 2.1b). The deletion length is estimated using

read pairs of all samples in the cohort. It is updated by extending Equation 3.15 with a

sum across all samples to achieve a joint calculation that considers all observed read pair

distance deviations of all samples in the window:

lnew =

∑
S∈S

∑
δ∈∆S δPl,ϵS (δ)∑

S∈S
∑

δ∈∆S Pl,ϵS (δ)
(3.16)

Update of Allele Frequency. The allele frequency is updated using the sample-speci�c

genotype weights:

fnew =
1

2 |S|
∑
S∈S

(
aS1 + 2aS2

)
(3.17)

Because aS2 represents the likelihood of observing a homozygous deletion given the data

and the expected genotype frequencies, it is counted with a weight of two (corresponding to

the two a�ected alleles). aS1 corresponds to likelihood of observing a heterozygous deletion

given the data and the expected genotype frequencies. Since a heterozygous deletion only

a�ects one allele, aS1 is only counted with a weight of one. Dividing the weighted sum of

sample-speci�c genotype weights across all samples by the total number of alleles in the

cohort (i.e. 2 |S|) yields the new allele frequency.
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Update of Genotype Likelihoods. Once all parameters of the potential deletion have

been updated, the genotype likelihoods are updated. The update is conceptionally very

close to the initialization of genotype likelihoods (Equations 3.6 - 3.20), but also considers

the sample-speci�c reference shift ϵS for the reference alleles:

L
(
G0|∆S

)
=

∏
δ∈∆S

HS (δ − ϵS) (3.18)

L
(
G1|∆S

)
=

∏
δ∈∆S

HS (δ − ϵS) +HS (δ − l)

2
(3.19)

L
(
G2|∆S

)
=

∏
δ∈∆S

HS (δ − l) (3.20)

Reference Model and Deletion Model. The updated genotype likelihoods and the

sample-speci�c genotype weights together enable the calculation of the deletion model and

reference model for the likelihood ratio test in Equation 3.5. With the prior probability π

of observing a deletion (default value of 10−4) the models are set up as:

L (no del) = (1− π)
∏
S∈S

L
(
G0|∆S

)
(3.21)

L (del of length l) = π
∏
S∈S

2∑
g=0

aSgL
(
Gg|∆S

)
(3.22)

Termination of Iteration. For each value in the list of initial deletion lengths the above

calculations are repeated until one or more of the following termination conditions are met:

� the newly calculated combination of deletion length and frequency has been observed

in a previous iteration

� the maximum number of iterations (default 15) is exceeded

� fnew drops below a threshold (default 10−10)

� lnew drops below a threshold (default 95%-quantile of 4σS for all S ∈ S)

The potential deletion is discarded for the current window if one of the latter two cases

applies. A special case occurs when the iteration starts alternating back and forth between

two sets of deletion parameters. In this case, the set of parameters yielding the higher

likelihood ratio is chosen.

Breakpoint Estimation. After the termination of the iteration, PopDel estimates the

start and end positions of the variant in the reference. This is done by collecting the
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mapping positions of the (potentially clipped) 3'-ends of all read pairs that support the

variant in a sorted list. A read pair with read pair distance deviation δ overlapping the

window is considered to support a deletion of size l if δ lies within the boundaries given

by l and the sample's distribution of read pair distances as de�ned in Equation 3.23:

l −Q99

(
HS

)
≤ δ ≤ l +Q99

(
HS

)
(3.23)

where Q99

(
HS

)
is the 99% quantile of the sample's read pair distance histogram.

From the sorted list of 3'-end positions of supporting read pairs the 80% quantile is calcu-

lated and taken as the start position of the variant. The reasoning behind this approach

is that in the presence of a deletion the 3'-end of the reads located upstream but still

overlapping the breakpoint can be clipped. This causes the a�ected reads to have the

same clipped 3'-mapping location directly before the deleted sequence. By taking the 80%

quantile instead of the maximum, the e�ect of outliers is compensated. Evaluations on

simulated data have shown that this approach is on par with other SV callers that ex-

plicitly consider split-read alignments (see Paragraph Breakpoint Precision in Subsection

4.3.3.1).

The end position of a deletion is calculated in a similar way. Instead of the reads that are

located upstream of the deletion, the downstream reads are considered. Like before, the

(potentially soft-clipped) 3'-end mapping positions of the downstream reads of the pairs

that support the deletion are collected. Instead of the 80% quantile, the 20% quantile is

calculated and taken as the end position of the variant.

The range given by the start and end position estimates does not necessarily match the

previously estimated deletion length l exactly. Therefore, if all downstream reads of the

supporting read pairs are found to have no clipping at their 3'-ends and the estimated

end position does not match the variant start position plus l ± σs, PopDel falls back to

calculate the end position of the variant as its start position plus l. A shortcoming of this

approach for the estimation of the positions of the variant is the reliance on the exactness

of the mapping positions of the read pairs. In the presence of repeats at the breakpoints,

they easily become imprecise, resulting in deviations of the estimates.

Handling of Multiple Read Groups per Sample. The BAM format allows a single

sample to consist of multiple read groups. Read groups can originate from di�erent se-

quencing libraries with di�erent properties. This can cause di�erences in the distribution

of read pair distances PopDel uses for the detection of deletions as described above.

For working with multiple read groups PopDel creates a distinct insert size histogram for

each read group of a sample. All histograms are stored in the read pair pro�le of the sample.



CHAPTER 3. JOINT SV CALLING AND GENOTYPING IN POPDEL 65

During the joint calling process all read pairs are analyzed based on the read group they

are assigned to. This means that the read pair distance of a read pair from read group

'A' will be evaluated based on the histogram of the read group 'A'. All other parameters

related to the distribution of read pair distances are also calculated and handled based on

the respective read group.

This changes the calculation of the deletion and reference model (see Equations 3.22 and

3.21 for comparison) as follows:

L (del of length l) = π
∏
S∈S

∏
R∈RS

2∑
g=0

aRg L
(
Gg|∆R

)
(3.24)

L (no del) = (1− π)
∏
S∈S

∏
R∈RS

L
(
G0|∆R

)
(3.25)

with RSas the set of all read group in sample S and ∆R denoting the read pair distance

deviations of read group R in the current window.

The genotype likelihoods (see Equations 3.18-3.20 for comparison) are now calculated as:

L
(
G0|∆R

)
=

∏
δ∈∆R

HR (δ − ϵR) (3.26)

L
(
G1|∆R

)
=

∏
δ∈∆R

HR (δ − ϵR) +HR (δ − l)

2
(3.27)

L
(
G2|∆R

)
=

∏
δ∈∆R

HR (δ − l) (3.28)

Here HR stands for the transformed and density-scaled histogram of insert sizes for read

group R.

The sample-speci�c genotype weights (Equation 3.13) become read group and genotype-

speci�c weights:

aRg =
L
(
Gg|∆R

)
L (f,Gg)∑2

j=0 L (Gj |∆R)L (f,Gj)
(3.29)

Consequently, the update of the allele frequency (Equation 3.17) and deletion length (Equa-

tion 3.31) are also adapted:

fnew =
1

2 |S|
∑
S∈S

∑
R∈RS

(
aR1 + 2aR2

)
(3.30)
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lnew =

∑
S∈S

∑
R∈RS

∑
δ∈∆S δPR

l,ϵR
(δ)∑

S∈S
∑

R∈RS
∑

δ∈∆S PR
l,ϵR

(δ)
(3.31)

with

PR
l,ϵR

(δ) = aR1
HR (δ − l)

HR (δ − ϵR) +H (δ − l)
+ aR2 (3.32)

Discussion on Degrees of Freedom. As mentioned when introducing the likelihood

ratio in Equation 3.5, the degrees of freedom one has to use when comparing −2 log Λ

against the thresholds of the χ2-distribution are the di�erence in the dimensions of the

parameter spaces of the deletion model and the reference model. In the main publication

presenting PopDel [67], my co-authors and I assumed the deletion length to be the only

parameter discerning the deletion model from the reference model, resulting in the choice

of one degree of freedom.

After further consideration, I now argue that the likelihood of the deletion model does in

fact not only depend on the size of the deletion but also on its allele frequency in the data.

This makes two degrees of freedom the appropriate choice. As can be seen when comparing

the equations for the two models (Equation 3.21 and 3.22), the deletion model depends

not only on the genotype likelihoods (Equation 3.18 - 3.20), but also on the sample-speci�c

genotype weights aSg . As described in Equation 3.13, the weights depend on the expected

genotype frequencies L (f,Gg), which in turn are calculated based on the frequency f ,

which has been initialized based on the data (Equation 3.9).

An argument against the consideration of f as an individual parameter was that its estima-

tion is heavily based on the deletion length l. I argue here that this ostensible dependency

is just a side e�ect of the iterative nature of the approach applied by PopDel for esti-

mating the properties of a deletion. It naturally introduces a dependency of all variables

on each other in the equations because already known and re�ned values of one variable

(e.g. l) are used to further re�ne the estimate for another variable (e.g. f). This circular

dependency in the formulas does not change the circumstance that deletion length and

frequency are separate properties of the data. The actual frequency of a deletion in the

data is not determined by its size or vice versa. Therefore, the necessity to estimate the

allele frequency of a deletion from the data adds to the uncertainty of the deletion model.

Thus, an additional degree of freedom is required when comparing −2 log Λ against the

thresholds of the χ2-distribution.
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3.3.3.3 Window-Wise Joint Calling and Genotyping of Duplications

PopDel's joint calling and genotyping of duplications is currently implemented as a pro-

totype and is still subject to improvements. The data from all samples in the cohort is

used jointly to determine the breakpoints of a potential duplication, but currently no joint

likelihood for the overall presence of a duplication is calculated like done in Equation 3.5

for deletions. If a duplication has been determined using the data from all samples, each

sample is genotyped for this jointly determined duplication. This is done by calculating a

window-wise genotype likelihood for each sample.

Initialization. In a �rst step, the read pairs that overlap the current window are counted

and classi�ed by their orientation. Let
∣∣oS∣∣ be the number of read pairs of sample S

that overlap the current window and have orientation o, with o ∈ {FR,RF,FF,RR}. As
described in Subsection 2.1.2, duplications are indicated by the presence of read pairs

in RF orientation. PopDel requires at least one sample to have at least 10% (and an

absolute minimum of 2 read pairs) of its read pairs that overlap the current window in RF

orientation to initialize the duplication calling for this window:

∣∣RFS
∣∣ ≥ 2 (3.33)∣∣RFS
∣∣∑

o |oS |
≥ 0.1 (3.34)

Start and End Point Estimation. If a sample passes the above thresholds, the start

and end point of the potential duplication are calculated. This is done using an approach

similar to the position estimation for deletions. A list of the (potentially soft-clipped) 3'-

end mapping positions of the upstream read pairs that support the duplication is created

and sorted. The list consists of read pairs from all samples. A read pair is considered to

support the duplication if it has RF orientation and is overlapping the current window.

Further criteria like a consistent read pair distance of all supporting read pairs (reminiscent

to Equation 3.23) are to be considered in future implementations. Since the supporting

upstream reads are in reverse orientation, the 20% quantile of the list is taken as the

starting point of the duplication. The end position is estimated analogously by creating

the sorted of (potentially soft-clipped) 3'-end positions of supporting read pairs and taking

the 80% quantile.

Sample-Wise Genotype Likelihoods. As a tandem duplication only introduces new

junctions, even a sample that is a homozygous carrier of the tandem duplication carries

read pairs that support the reference haplotype. The zygosity of the duplication however

changes the ratio of pairs that support the reference or duplication. Observations of the
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ratio of read pairs that support the reference allele to read pairs that support the variant

allele on simulated data led to the following empirical estimates for the expected ratios:

For a heterozygous carrier, approximately 50% of the read pairs were observed to support

the reference and 50% were observed to support the duplication. In a homozygous carrier,

the expected ratio of reference supporting read pairs to duplication supporting read pairs

is 1/3 and 2/3. Notably, these observed ratios deviate from theoretical expectations, which

will be discussed in the next paragraph. The currently implement estimation of the sampe-

wise genotype likelihoods is based on these observed ratios. The estimations uses all read

pairs of any orientation that overlap the window:

L
(
G0|∆S

)
=

∏
δ∈∆S

HS (δ) (3.35)

L
(
G1|∆S

)
=

∏
δ∈∆S

HS (δ) +HS (δ − l)

2
(3.36)

L
(
G2|∆S

)
=

∏
δ∈∆S

1

3
HS (δ) +

2

3
HS (δ − l) (3.37)

Where l is calculated as the absolute di�erence between the start and end positions of the

potential duplication that have been calculated from the quantiles of the sorted lists of

3'-end positions in the previous step.

In the current implementation of the duplication genotyping, read pairs that have an

increased read pair distance due to the presence of another variant in another sample

could also lead to a high genotype likelihood L
(
G1|∆S

)
or L

(
G2|∆S

)
for a duplication,

if the variant sizes are similar and the genotyping has been initiated due to the presence

of RF oriented read pairs. In future implementations that include the calculation of a

joint duplication likelihood, this will be addressed by not only considering the read pair

distances when calculating the genotype likelihoods but also the orientation of the read

pairs. Another shortcoming of the current model is that the adjustment of δ by l does not

account for the distance of the reads to the start and end positions of the duplication and

potential soft-clipping, which both in�uence the increase of the read pair distance. For

large duplication and low read pair distances, the model is dominated by the in�uence of

l. For low l and larger read pair distances however, the inaccuracy becomes larger. An

approach for the appropriate adjustment of δ is presented for the genotyping of inversions

in Subsection 3.3.3.4, but not yet implemented for duplications.

Discussion on the Deviation from the Theoretically Expected Ratio of Dupli-

cation Supporting Read Pairs. When only considering read pairs that map inside of

the duplicated sequence, i.e. excluding the windows that contain the novel junction, one
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theoretically expects the following ratios of read pairs in a window: On a single duplica-

tion haplotype (and therefore also in homozygous carriers of the duplication), 2
3 of the read

pairs that overlap a window are in FR orientation and therefore support the reference. The

remaining 1
3 of the read pairs that overlap the window are in RF orientation, since they

overlapped the novel junction of the duplication in the sequenced genome (see Subsection

2.1.2). The reason for the higher number of FR read pairs lies in the inserted duplicated

sequence: Read pairs that originate form the inserted duplicated sequence in the sample

genome are mapped to the original sequence in the reference genome. In contrast, since

only one novel junction occurs between the duplicated sequences in the sample genome,

the amount of read pairs that overlap the junction is not increased. This leads to the

described ratio. For heterozygous duplications, the FR read pairs from the non-variant

haplotype also map to the location of the duplicated sequence. The additional FR read

pairs thereby change the share of expected FR read pairs to 3
4 and the share of RF read

pairs to 1
4 .

Window-wise observations based on simulated data however suggested a ratio of approx-

imately 50% FR read pairs and 50% RF read pairs for heterozygous carriers of a dupli-

cation. For homozygous carriers, approximately 33% FR read pairs 66% RR read pairs

where observed. Due to the small insert size of the simulated data, the absolute number of

observed FR read pairs in a window further showed considerable �uctuations. The sources

of this discrepancy between the theoretically expected and observed ratios of FR read pairs

and RF read pairs are currently unknown and require further investigation. Window sizes

larger than the currently used 30 bp for the reduction of the �uctuation of the observed

number of FR read pairs in a window, and a targeted genotyping only based on the win-

dows that contain the breakpoint of a duplication are two possible approaches that are

currently considered to this end.

3.3.3.4 Window-Wise Joint Calling and Genotyping of Inversions

PopDel's joint calling and genotyping of inversions is currently implemented as a prototype

and is still subject to improvements. The same limitations as mentioned for the detection

of duplications in Subsection 3.3.3.3 hold.

As described in Subsection 2.7, inversions are indicated by read pairs in FF orientation as

well as read pairs in RR orientation. PopDel considers read pairs in FF and RR orientation

separately. It can therefore detect and genotype the same inversions from both sources of

evidence independently. This typically causes the same inversion to be detected twice.

The window-wise detection of inversions calculates a genotype likelihood for each of the

three possible genotypes for each sample in the cohort. The approach follows the same
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scheme as for duplications (see Subsection 3.3.3.3). The approach will be described for

read pairs in FF orientation only, but RR read pairs are treated analogously.

Initialization. In a �rst step, the read pairs are compared against the same thresholds

given in Equation 3.33 and 3.34, except that they are applied for read pairs in FF or RR

orientation.

Start and End Point Estimation. If a sample passes the thresholds, the start and

end points of the potential inversion are calculated. Similar to the process described for

duplications, the sorted list of 3'-end mapping positions of all read pairs in FF orientation is

generated using all samples and the borders of the variant are determined from the quantiles

of the positions. For read pairs in FF orientation, this means that the starting position

of the inversion is estimated from the 80% quantile of the 3' positions of the upstream

reads. The end position is estimated from the 80% quantile of the 3'-end positions of the

downstream reads. For read pairs in RR orientation, both positions are estimated using

the 20% quantiles. The start and end point estimation currently does not account for

varying breakpoints at the left and right novel junctions of the inversion, like often caused

by micro-deletions. The explicit characterization of the four possible breakpoints is left for

future implementations of PopDel.

Breakpoint-Spanning Read Pairs. For inversions, only the read pairs that overlap

the breakpoints of the variant provide a good signature for genotyping. Other than copy

number variants like deletions or duplications, the read depth of read pairs that do not

overlap the breakpoint are not expected to change. Therefore, the sample-wise genotype

likelihoods are only calculated from read pairs that have one read located outside of the

inverted region and on read within it. To account for soft-clipping or inaccuracies in the

location of the breakpoints or the mapping locations of the reads, a tolerance of 50% of

the read length is applied, depending on the orientation of the read pair. Formally, let a

and b denote the 3'-end mapping locations of the upstream and downstream read of a read

pair p. Let further L denote the left breakpoint of the inversion and let R denote the right

breakpoint of the inversion. Let r denote the length of a read in the pair. A read pair is

considered to overlap only the the inversion breakpoint L if

overlap (a, b, L,R) =



a− r
2 ≤ L < b+ r

2 < R if orientation (p) == FR

a ≤ L < b < R if orientation (p) == RF

a− r
2 ≤ L < b− r

2 < R if orientation (p) == FF

L ≤ a+ r
2 < R < b+ r

2 if orientation (p) == RR

(3.38)
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For the overlap of R the conditions are de�ne analogously. The breakpoint overlap is also

de�ned for read pairs in RF orientation, even though read pairs in RF orientation are not a

signal for inversions. This is because the sample-wise genotype likelihoods described below

consider all read pairs of all orientations in the window. Read pairs in RF orientation are

interpreted as a signal against the presence of an inversion, just like FR oriented read pairs.

Sample-Wise Genotype Likelihoods. Let RS
span be the set of all read pairs of sample

S in the window that ful�ll any of the conditions in Equation 3.38 and therefore span one

breakpoint. On an inversion haplotype, all read pairs that span a breakpoint are expected

to be in FF or RR orientation and have an increased read pair distance. The exact increase

depends on the the size of the inversion, the distance of the reads to the breakpoints and

potential clipping of the reads. Let ldist(r, L) = |L− pos(r1)| denote the absolute distance
in bp of the 3'-end mapping position of the upstream read of read pair r to breakpoint

L. Let analogously rdist(r,R) = |R− pos(r2)| denote the absolute distance of the 3'-end
mapping location of the downstream read of r to the right breakpoint R. Let clip(r) be

the function that returns the number of clipped bases at any 3'-end of r. With µS as the

median read pair distance of sample S, the breakpoint-adjusted read pair distance deviation

δadj (r) of a read pair r in FF or RR orientation is then calculated as:

δadj (r) = ldist(r, L) + rdist(r,R)− µS − clip(r) (3.39)

For read pairs in FR or RF orientation δadj (r) is not de�ned.

For the calculation of the sample-wise genotype likelihoods of an inversion let δ (r) denote

the unadjusted read pair distance of read pair r. On a haplotype that does not carry the

inversion, all read pairs are expected to follow the sample distribution of read pair distances.

On a haplotype that carries the inversion, all read pairs that overlap a breakpoint of the

inversion are expected to be either in FF or RR orientation and thus require adjustment

like described above. Therefore, the sample-wise genotype likelihoods for each of the

preliminary inversion are calculated from the breakpoint spanning read pairs as:

L
(
G0|RS

span

)
=

∏
r∈RS

span

HS (δ) (3.40)

L
(
G1|RS

span

)
=

∏
r∈RS

span

HS (δ) +HS (δadj (r))

2
(3.41)

L
(
G2|RS

span

)
=

∏
r∈RS

span

HS (δadj (r)) (3.42)
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Since δadj (r) is not de�ned for read pairs in FR or RF orientation, HS (δadj (r)) returns a

pseudo-count probability of 1 · 10−5 for those pairs. This procedure further prevents that

read pairs that exhibit an increased read pair distance due to a deletion or duplication (see

Subsection 2.1.1 and 2.1.2) are mistaken as evidence of an inversion.

3.3.3.5 Window-Wise Joint Calling of Translocations

PopDel's detection and genotyping of translocations is currently implemented as a pro-

totype in a very early, conceptual phase. While that data of all samples is used for the

calculation of the translocation breakpoints, no joint likelihood for the overall presence of

a translocation is calculated. Further, the processing of translocations has not been tested

yet due to bugs in the current implementation that prevent it from running on multiple

samples. The following description of the detection and genotyping of translocations is

therefore to be understood as a draft of a possible approach that still requires substantial

improvements and testing.

The window-wise detection of translocations calculates a genotype likelihood for each of

the three possible genotypes for each sample in the cohort. Each sample is genotyped for

all translocations that are detected in any of the samples of the cohort in the window.

Generation of Chromosomal Cluster. In a �rst step, the count of read pairs in the

window that show signs of an interchromosomal translocation is assessed for each sample.

A read pair is considered to show signs of a translocation if both of its reads map to di�erent

chromosomes. At least 10% of the read pairs of a sample - but more than one - must show

signs of an interchromosomal translocation for the sample to be further considered in the

current window. If this is the case, the translocation read pairs are clustered by the remote

chromosome, the chromosome the other read in the pair has been mapped to. The read

pairs of each chromosomal cluster are then separated by their orientation. The count of

read pairs of at least one orientation has to pass the same thresholds as before for the

cluster to be marked as passing for subsequent steps.

Generation of Positional Subclusters. In a next step, all chromosomal clusters of

each sample that had at least one of its clusters passing the threshold after being sepa-

rated by read pair orientation are inspected together. Each cluster (that has already been

separated by orientation of the read pairs) is divided into further subclusters based on the

positions where the reads map on the remote chromosome. If two reads map more than 3σS

apart on the remote chromosome, they are not considered to support the same transloca-

tion and are therefore assigned to di�erent clusters. The clustering follows a simple greedy

scheme: The reads are �rst sorted by position and the �rst subcluster is initialized from

the �rst read in the list. New reads are added to the subcluster as long as they are close
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enough to the �rst read pair of the subcluster. If a read is encountered whose distance is

too big, a new subcluster is created.

Filtering of Clusters. The number of positional subclusters per read pair orientation

is counted for all chromosomal clusters of the sample. These sums of chromosomal and

positional clusters per orientation are then used for checking the following conditions to

assess the presence of too many contradicting clusters in the sample:

a) more than one chromosomal cluster has been marked as passing after the clustering

by chromosome

b) there are more than two chromosomal and positional clusters for any orientation

c) there is a chromosomal and positional cluster of reads in FF orientation or RR

orientation and at the same time a chromosomal and positional cluster of reads in

FR orientation or RF

If any of the above conditions are met, the sample is marked as noisy for the current

window and not further considered in subsequent steps.

Determination of Remote Chromosome. After the chromosomal and positional clus-

ters have been �ltered for all samples, the clusters of all samples are processed together.

They are used to create a set of remote chromosomes by collecting the remote chromo-

somes of all chromosomal clusters that were marked as passing from samples that were

not marked as noisy. For each remote chromosome and orientation, the 3'-end mapping

positions of the read pairs in the biggest positional subcluster are collected and stored per

sample in the lists P o
local and P o

remote, depending on whether they map to the current or re-

mote chromosome. Here, o ∈ {FR, RF, FF, RR} denotes the orientation of the read pairs

in a cluster. The size of all positional subclusters for all orientations is summed up per

sample and used for quantifying the support for the translocation in each sample. Based

on the most numerous orientation in the positional subclusters, the preliminary transloca-

tion is assigned an orientation which will determine what read pairs are considered in the

subsequent steps.

Estimation of Local and Remote Position. Next, the sample-wise positional esti-

mates for the translocation breakpoints are calculated from the subclusters. As well the

position on the current chromosome plocal as the position on the remote chromosome premote

have to be estimated for each sample. For each orientation o, one local position estimate
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is calculated as the q% quantile Qq of P
o
local of the sample:

polocal = Qq (P
o
local) , q =



80 if o == FR

20 if o == RF

80 if o == FF

20 if o == RR

(3.43)

The remote position estimates of the sample are calculated similarly from di�erent quan-

tiles:

poremote = Qq (P
o
remote) , q =



20 if o == FR

80 if o == RF

80 if o == FF

20 if o == RR

(3.44)

After the local and remote positional estimates for all samples have been calculated, they

are used together to get the �nal positional estimate for the translocation. The median

across all samples for polocal and poremote are calculated. Let median(polocal) denote this

median for the local positions across all samples and median(polocal) for the remote positions

respectively. The �nal local position of the translocation is calculated as the weighted

mean of median(pFR
local) and median(pRF

local) if the translocation has been assigned an FR

or RF orientation, or from median(pFF
local) and median(pRR

local) otherwise. The weights are

the numbers of positions that contributed to the calculation of the medians across all

samples. This process currently does not account for varying breakpoints on the local

and remote chromosomes, like for example caused by micro-deletions at the breakpoints.

Accounting for all breakpoint requires a calling and genotyping of both breakpoints on both

involved chromosomes, resulting in a total of four breakpoints per translocation event. This

individual characterization of all breakpoints is left fort future implementations of PopDel.

Once the local and remote positions of the translocation have been calculated, it is given to

a bu�er and stored along with the sample-wise local and remote positions per orientation

and the sample counts of the cluster sizes per orientation and sample. They are later

used in the step for the combination of windows (see Subsection 3.3.3.6) to calculate the

likelihoods for the genotypes of all samples.

3.3.3.6 Combination of Windows Representing the Same SV

The window-wise calling of SVs results in a single SV being called for multiple windows.

The number of windows depends on the size of the variant. To avoid redundancy of the
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output, those window-wise calls are combined. Each distinct SV is then written as a single

line in the �nal VCF output.

The window-wise calling is performed until a de�ned number of windows (default 200,000

windows) has been processed an bu�ered. Afterwards, the bu�ered windows are checked

for their eligibility for being combined with other windows in the bu�er. The criteria for

the combination of windows and the means of combining the windows are di�erent for the

di�erent SV classes and are described in the subsequent paragraphs.The combination of

windows for the di�erent SV classes is performed independently.

Deletions. The deletion calls of all bu�ered windows are sorted in ascending order ac-

cording to their positions on the reference, deletion length and likelihood ratio as �rst,

second and third sorting key. Let wi be the �rst of n windows for which a deletion call has

been made in the window-wise deletion calling, i.e. the deletion likelihood ratio Λ passed

the threshold. Let further wi+k be another such window with 0 < k < n. Let li and

li+k denote the deletion length estimates of wi and wi+k. Let rx denote the range that is

spanned by the breakpoints of the deletion in wx. wi is compared with wi+k for su�cient

similarity. Su�cient similarity is de�ned as ful�lling the following criteria:

a) |li − li+k| ≤ max
(
min(li,li+k)

2 , 2σ
)
, with σ :=

∑
S∈S σS

|S|

b) ri and ri+k overlap by at least min
(
min(ri,ri+k)

4 ,min (ri, ri+k)− 2σ
)

If both criteria are satis�ed, wi and wi+k are marked for combination. If only condition

a) is satis�ed, the windows are only marked for combination if the deletion was likely

interrupted. To this end, the following condition is tested to check if an interruption is

leading to a mismatch of the estimated deletion length and the range spanned by rx:

c) (|ri| < li ∨ |ri+k| < li+k) ∧ delStart (wi+k)− delStart (wi) < min (li, li+k) + 4σ̄

Here, |rx| denotes the length of the deletion derived from the spanned range rx in contrast

to lx that re�ects the deletion length estimated during the window-wise calling.

If both a) and c) are met, the end breakpoint in wi is updated to match that of wi+k and

the windows are marked for combination.

The checks are performed for increasing k until a window wi+k′ is encountered that does

not meet the above conditions. Afterwards, all windows between wi and wi+k′ (including

wi but not wi+k′) are combined. The combined deletion length is calculated from the

median of all deletion length estimates of the combined windows. The combined starting

position of the deletion is calculated from the median of the starting position estimates of

the combined windows. Further, the genotype likelihoods of the samples are recalculated
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so that only windows that lie within the borders of the deletion are considered. The

genotype likelihoods of the same sample for the combined windows are not independent

because they have been calculated using the same read pairs that overlap the deletion.

Consequentially, the genotype likelihood of a sample in the combined windows cannot

be integrated by multiplying them. As a pragmatic resort, the harmonic mean of the

sample-wise genotype likelihoods of the windows is taken instead as a representative for the

combined windows. After the genotype likelihoods have been recalculated for all samples,

the allele frequencies of the deletion in the cohort is estimated from the allele counts as

inferred from the genotypes of the samples. The genotypes are determined from the best

genotype likelihood of each sample.

After the windows between wi and wi+k′ have been combined, the process is repeated

starting from the �rst window that has not been combined wi+k′ and the subsequent

windows. Once the process reaches the end of the sorted list of windows, all windows that

represent the same deletion have been combined.

Duplications and Inversions. The combination of windows containing duplications

and inversions is performed separately from each other in PopDel but since they share a

similar approach, they both will be explained on the example of duplications. Di�erences

when combining windows of inversions are highlighted at the end of the paragraph.

The duplication calls of all bu�ered windows are sorted in ascending order according to

the mapping positions of their left and right breakpoint as a �rst and second sorting key

and to the position of the window as a third sorting key. Subsequently, a scheme similar to

the combination of deletion windows is applied. Therefore, the same notation is used here.

The following conditions must both be ful�lled for marking two windows wi and wi+k as

eligible for combination:

a) the left breakpoints of the duplications in wi and wi+k are located within 4σ̄ of each

other

b) the right breakpoints of the duplications in wi and wi+k are located within 4σ̄ of

each other

Like for deletions, the check for similarity is performed for increasing k until the �rst

window wi+k′ occurs that does not meet one or both of the above conditions. Then, the

combination of all windows marked for combination commences.

The combined starting position of the duplication is calculated from the 20% quantile of

the starting position estimates of the combined windows, while the combined end position

is calculated from the 80% quantile of the end position estimates of the combined windows.

For each sample, the genotype likelihoods of the windows that lie between the breakpoints
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of the duplication are combined by calculating their harmonic mean. The reasoning behind

this is the same as for deletion windows. Subsequently, the genotypes of all samples are

set according to their best genotype likelihood and the cohort-wide allele frequency of the

variant is set by counting the variant alleles as given by the genotypes.

After the windows between wi and wi+k′ have been combined, the process is repeated

starting from the �rst window that has not been combined wi+k′ and the subsequent

windows. Once the process reaches the end of the sorted list of windows, all windows that

represent the same duplication have been combined.

For inversions, the main di�erences are:

� Window-wise calls from read pairs in FF orientation are treated separately from

window-wise call from read pairs in RR orientation.

� Only those windows that contain the breakpoints of the inversion contribute to the

combination of sample-wise genotype likelihoods via the harmonic mean.

This approach for inversions leads to each inversion being detected twice, assuming a

clear signature from read pairs in either FF or RR orientation. Combining the junctions

implied by read pairs in FF and RR orientation into single events is considered for a future

implementation.

Translocations. The combination of windows that passed the window-wise transloca-

tion calling described in Subsection 3.3.3.5 follows a di�erent approach than the combina-

tion of windows for the other SV types. This is because the results of the window-wise

translocation calling are less �nal than the results of the other SV types. The genotypes

of the translocations have yet to be calculated from the combined evidence across multiple

windows. This is possible in an e�cient manner even for larger numbers of samples. While

the genotypes of other SV types rely on the read pair distances, the genotypes of translo-

cations currently only rely on the number of read pairs that map to di�erent chromosomes.

Because the translocation calling in PopDel is currently in a very preliminary phase, the

process of combining windows and the genotyping of the samples for the translocations is

also to be considered as an early prototype.

First, the window-wise translocation calls are sorted in ascending order according to the

their remote chromosome as a �rst sorting key, their position on the current chromosome

and their position on the remote chromosome as a second and third sorting key. The

position of the window is used as a fourth sorting key. As each window can hold multiple

clusters, each with read pairs of a distinct orientation (see Subsection 3.3.3.5) no read pair

orientation is used as a sorting key when ordering the windows. The ordering of windows

does not necessarily lead to all window-wise calls that refer to the same translocation
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event following each other. This is because there can be di�erent translocations starting

in close-by windows, with di�erent positions on the same remote chromosome. Because

the windows are �rst sorted by the remote chromosome, then by the positions on the local

chromosome and lastly by the positions on the remote chromosome, this can lead to an

interruption of the run of windows for one of the translocations. Therefore, a di�erent

combination scheme than the one for the other SVs is applied. Let wi be the �rst of n

window-wise translocation calls sorted in above fashion. Let wi+k with 0 < k < n be

another such window-wise call. wi and wi+k are considered similar, if all of the following

conditions are met:

a) The remote chromosome of wi and wi+k is the same.

b) The breakpoint positions on the current chromosome plocal of wi and wi+k are located

within 4σ̄ of each other.

c) The breakpoint positions on the remote chromosome premote of wi and wi+k are

located within 4σ̄ of each other.

The check for similarity is performed for increasing k. If wi and wi+k are similar, they

are immediately combined by appending the sample-wise estimates of the local and remote

breakpoint according to the read pairs of di�erent orientations (denoted as polocal and poremote

in Subsection 3.3.3.5) of wi+k to those of wi. Further, the sample-wise counts of the clusters

per orientation of f wi and wi+k are summed up. wi+k is then invalidated such that it

cannot be combined with any other window. The check with increasing k for windows

that are similar to wi does not stop when a window does not meet the above conditions

for similarity. It continues until a window wi+k′ is encountered that has a di�erent remote

chromosome than wi or the local position of wi and wi+k′ are more than 2σ apart. If one

of those cases occur, i is increased to match the index of the �rst window in ]i, k′] that has

been invalidated (i.e. it has already been combined). Similarly, k is set to the lowest index

in ]i+1, k′] that has not been invalidated. Then, the process of checking for similarity and

combining eligible windows continues.

Once the process reaches the end of the list, all windows in the bu�er that represent the

same translocation event have been combined. For each combined translocation, the �nal

translocation positions and the sample-wise genotype likelihoods are calculated.

The �nal breakpoint positions of the translocation are calculated like median(polocal) and

median(polocal) described in Subsection 3.3.3.5 with the only di�erence that now the com-

bined list of positions from multiple windows is used. The �nal genotype likelihoods of

all samples are calculated from the size of the positional clusters per orientation and their

inferred support or non-support for the translocation. Let CS denote the size of the posi-

tional clusters of sample S. Let nS denote the sum of read pairs of S that do not support
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the translocation (i.e. they map to the same chromosome) in the combined windows. Let

tS denote the sum of sizes of positional clusters of S that support the translocation. For

translocations that are assigned FR or RF orientation, the added sizes of the positional

clusters with FR and RF orientation make up the number of translocation supporting

reads. If instead the translocations is assigned an FF or RR orientation, tS is derived from

the sizes of the positional clusters with FF and RR orientation accordingly. π denotes

a pseudo-count probability introduced to allow for noise (currently set to 0.001). The

sample-wise genotype likelihoods are then calculated as:

L
(
G0|CS

)
= log10 (1− π) · nS + log10 (π) · tS (3.45)

L
(
G1|CS

)
= log10

(
1

2

)
·
(
nS + tS

)
(3.46)

L
(
G2|CS

)
= log10 (π) · nS + log10 (1− π) · tS (3.47)

Because the same interchromosomal translocation event involves two chromosomes, the

same event is typically detected twice by PopDel, once on each involved chromosome.

Those calls are not combined by PopDel.

3.3.4 Availability

PopDel is written in C++ using the SeqAn library. Its source code is freely available on

GitHub2. Further, it can be installed via the Conda package manager from the bioconda

channel3.

The functionality for the detection of duplications and inversions is currently part of the

develop branch of the GitHub repository. A documentation of PopDel's functionality,

parameters and example use-cases is available via its GitHub wiki4.

2https://github.com/kehrlab/PopDel
3https://anaconda.org/bioconda/popdel
4https://github.com/kehrlab/PopDel/wiki

https://github.com/kehrlab/PopDel
https://anaconda.org/bioconda/popdel
https://github.com/kehrlab/PopDel/wiki
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Chapter 4

Performance Evaluation of PopDel

This chapter compares the performance and accuracy of PopDel to other state-of-the-art

SV callers. It introduces the simulated and real data sets used for the benchmarks, and

explains the di�erent performance metrics. Further, the results of the benchmarks are

presented and interpreted.

Please note, that the benchmarks that are based on real data only comprise deletions.

In those benchmarks, PopDel 1.2.2 was applied. The results of the deletion benchmarks

(with exception of the analysis of the Simons Genome Diversity Cohort in Section 4.7) were

�rst presented in the central publication of this thesis that also presented PopDel [67]. The

prototypes of PopDel's duplication and inversion calling and genotyping (PopDel 2.0.0-

alpha) are only covered by simulated data in Subsections 4.3.3.2 and 4.3.3.3.

4.1 Applied Performance Metrics

This section focuses on the description of the setup of the di�erent benchmarks used for

comparing PopDel and other SV callers, as well as the calculation and interpretation of

the various applied performance metrics.

4.1.1 De�nition of Matching Variants

The predicted properties of an SV, like breakpoint locations and size, often vary within

certain boundaries, depending on the SV caller that made the prediction [30]. Therefore,

a de�nition of when two SVs are considered to be identical (subsequently referred to as

matching) is required for the calculation of most performance metrics.

De�nition of Matching Variants for Real Data. A useful metric for the comparison

and matching of SVs is the reciprocal overlap [92]. It measures the (relative) number of base
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pairs by which two or more genomic ranges overlap. Let A = (sA, eA) and B = (sB, eB) be

two genomic ranges on the same chromosome, de�ned by their start and end coordinates

s and e. Let further len(A) = eA− sA denote the length of A and B respectively. Without

loss of generality, assume that A ends before or with B, i.e. eA ≤ eB. The reciprocal

overlap can then be calculated as:

∩rec (A,B) :=
max (eA −max (sA, sB) , 0)

max (len (A) , len (B))
(4.1)

When given in percentages, a reciprocal overlap of 50% means that A and B overlap

by exactly half of the bases of the longer range. The focus of the evaluation applying

the reciprocal overlap lies on the presence or absence of a detected variant from a set of

variant calls rather than the quality of the estimates for position and length. Therefore,

a generous threshold of 50% reciprocal overlap is applied to decide if two variants are the

same, if not stated otherwise. The ranges A and B are given by the start and end points

of the compared SVs.

As an additional criterion, the SV type predicted by the caller has to match the true SV

type.

De�nition of Matching Variants for Simulated Data with Consideration of

Genotypes. The call sets on the simulated data were additionally evaluated using an

alternative criteria for matching variants. This comparison approach considers the prox-

imity of a predicted variant to the simulated starting position and the agreement on SV

size separately and also requires the genotype of a predicted variant to match the ground

truth. Under this matching criteria, two variants of the same SV type are considered to

match, if the predicted start position is within 300 bp of the true start position and the

predicted length of the SV does not di�er by more than 150 bp from the real length. To

determine the number of correctly predicted alleles, the predicted genotypes are compared

with the read genotypes: Let Gpred (v) ∈ {0, 1, 2} be the number of predicted variant al-

leles for variant v and let analogously Gsim (v) be the real number of variant alleles for v.

The number of correctly predicted alleles (G+ (v)) and the number of incorrectly predicted

alleles (G− (v)) are calculated as:

G− (v) = |Gpred (v)−Gsim (v)| (4.2)

G+ (v) = 2−G− (v) (4.3)

Variants with the special case were Gpred (v) = Gsim (v) = 0 are excluded from count-

ing because counting them would allow a variant caller to arti�cially in�ate its count of
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correctly predicted alleles by calling false positive variants and correctly genotyping these

variants with Gpred (v) = 0.

A called variant that is not part of the the truth set is counted with one incorrect allele

if it was assigned a heterozygous genotype in the simulated genome by the caller. If it

was assigned a homozygous carrier genotype by the caller it is counted with two incorrect

alleles.

A true variant that is not detected by the SV caller is counted as one incorrect allele if the

true variant has a heterozygous genotype in the simulated genome. If the true variant has

a homozygous carrier genotype, it is counted with two incorrect alleles.

4.1.2 Single-Sample-Scale Metrics

For the evaluation of the callers performance on a single sample the commonly used metrics

precision and recall are applied. In this context, a true positive (TP) is de�ned as a

predicted variant call that has a reciprocal overlap of at least 50% with a true variant

(see formula 4.1) and are of the same variant type. A false positive (FP) is de�ned as a

predicted variant that does not match a true variant. A false negative (FN) occurs when

a true variant is not matched by a predicted variant. Each variant from the truth set may

only be matched with one variant from the call set and vice versa. Let further TP (V)
denote the number of TP in the set of predicted variants V and let FP (V) and FN (V) be
de�ned analogously. Single-sample-scale metrics can of course also be used to measure the

performance in scenarios where more than one sample is involved. Nevertheless, they are

described here, since they are the main measures for single-sample benchmarks.

Precision. The precision is a commonly used measure for estimating the reliability of

positive classi�cations (i.e. a variant calls). In the context of variant detection it reports

how many of the predicted variants are actually correct and can be found in the truth set.

A perfect precision of 1 indicates that a positive classi�cation is always true. A precision

of 0 means that all of the positive classi�cations are wrong.

Precision (V) := TP (V)
TP (V) + FP (V)

(4.4)

For the precision to be correct and meaningful, it is important that the truth set is actually

comprehensive. Using an incomplete truth set would result in a reduced precision for a

variant caller that correctly detects those variants that are not part of the truth set, thereby

falsely suggesting a lower performance of the variant caller. Truth sets of simulated data are

especially useful for measuring the precision because all simulated variants are known. One

still has to keep in mind that simulated data is not capable of re�ecting all properties of real
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data. For this reason, the precision measured on simulated data should be interpreted as an

upper bound that will not be reached on real data in most cases. For real data, measuring

the precision is more challenging, since it is hard to create a truth set that contains all

variants of a biological sample. The Genome in a Bottle (GIAB) sample HG002 from the

well studied Ashkenazi Jewish trio is a valuable resource for this purpose [92]. It provides

a gold standard SV call set that is reported to be comprehensive in well-de�ned regions

of the genome. This allows the meaningful estimation of the precision on real data, albeit

limited to the de�ned regions. This excludes large portions of the genome where the correct

detection of SVs, especially using short-read technologies, is more di�cult, e.g. due to the

presence of highly repetitive sequence. For the sake of readability, the precision is often

given in percentages of one.

Recall. In the context of SV calling, the recall measures how reliably true SVs are de-

tected by the caller. It is often also termed sensitivity. A perfect recall of 1 means that

all variants in the truth set are also present in the call set. A recall of 0 indicates that no

variant from the truth set has been found.

Recall (V) := TP (V)
TP (V) + FN (V)

(4.5)

Similar to the precision, it is vital for the recall that the truth set is comprehensive and

reliable. For the sake of readability, the recall is often given in percentages of one.

F1 Score. The F1 score is a special case of the F score. It combines precision and recall

by being calculated as their harmonic mean:

F1 (V) :=
TP (V)

TP (V) + 1
2 (FP (V) + FN (V))

= 2 · Precision (V) · Recall (V)
Precision (V) + Recall (V)

(4.6)

Same as precision and recall, the F1 score lies between 0 (precision or recall of 0) and 1

(perfect precision and recall). While it gives a quick overview of both metrics combined,

depending on the use case, one should not solely rely on the F1 score. For some cases a

high precision is more important or desirable than a high recall or vice versa. This makes

the consideration of the individual values for precision and recall necessary. For the sake

of readability, the F1 score is often given in percentages of one.

Ratio of Correct Alleles. When not only considering whether or not a variant has

been detected in a sample, i.e. the genotype for respective sample and variant is 0/1 or

1/1, the previous binary classi�cation problem becomes a multiple one. Each of the three

possible genotypes of a variant represents one of the possible classi�cations per sample.
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To obtain a simple measure of the correctness of the genotypes, it is useful to move the

level of the measurement from the genotype level to the allele level. This means that not

the number of correct and incorrect genotypes are counted but the number of correct and

incorrect alleles. In this case, a predicted 0/0 genotype for a sample that actually has a

1/1 genotype for the variant in question will be counted as zero correct alleles and two

incorrect alleles (see formula 4.2 and 4.3), while a 0/1 prediction would result in one correct

and one incorrect allele being counted. The ratio of correct alleles for the set of predicted

variants V is calculated as:

Ratio of correct alleles (V) :=
∑

v∈V G+ (v)∑
v∈V G+ (v) +G− (v)

(4.7)

Call Set Overlap. Especially when comparing multiple SV callers, it can be informative

to inspect which variants from one call set are also part of the other call sets and which are

not. This agreement of call sets can be displayed in the form of Venn diagrams and many

conclusions (sometimes requiring manual investigation of the variants in the sets) can be

drawn from the overlapping areas: Many callers agreeing on a particular variant that is

not part of the truth set can be an indication that the variant is missing from the truth

set or that the variant callers su�er from the same wrong conclusion about the variant.

Reasons for this may be the presence of sequencing artifacts or incorrect alignments. The

overlap of a single call set with the truth set that is not covered by any other tool gives

insight into the number of variants that are only detected by the respective caller. The

opposite case, where one caller is the only one not detecting a certain set of variants can

help to discover weaknesses of the approach by the caller.

4.1.3 Family-Scale Metrics

Performing benchmarks in the presence of family information enables the comparison of the

predicted variants and genotypes with the theoretically expected patterns of inheritance.

Since this evaluation approach does not rely on a ground truth set it is also applicable

for less well studied genomes for which no comprehensive gold standard set of SV calls is

available. In the course of the evaluation of PopDel, the metrics Mendelian inheritance

error rate (MIER) and the transmission rate have been calculated on the Ashkenazi Jewish

trio (see Subsection 4.4.2, MIER only), and the 49 parent-o�spring-trios (subsequently

only referred to as trios) of the Polaris Kids Cohort (see Subsection 4.6). The two metrics

complement each other, in a sense that the MIER is useful for the evaluation of common

variants that are present in many genomes, while the transmission rate is useful for the

evaluation of rare variants. In the context of family scale metrics, variants are counted per

parent-child-trio. This means that a variant call with at least one variant allele predicted

in any member of a trio will be counted as one variant for this trio and as another variant
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for another trio, if it is also genotyped with at least one variant allele for that trio.

Mendelian Inheritance Error Rate. The MIER measures the rate at which the geno-

type combinations of a trio violate the Mendelian laws of inheritance. Speci�cally, this

means that the child must only exhibit a speci�c variant allele if it is present in at least

one of the parents. If one parent is a homozygous carrier of a variant, the child must

also carry the variant on at least one haplotype. If both parents are homozygous carri-

ers, the child must be homozygous carrier too. Figure 4.1 visualizes all possible genotype

combinations in a trio and their conformity with Mendelian inheritance. Let |V|c be the
number of variants detected for all trios with predicted genotype combinations that abide

the Mendelian rules, also referred to as consistent variants. Let analogously |V|c̄ be the

number of predicted variants for all trios whose predicted genotypes do not follow the

Mendelian rules. The MIER is calculated as:

MIER (V) :=
|V|c̄

|V|c + |V|c̄
(4.8)

to avoid an in�ation of the MIER, variants that are genotyped as homozygous reference in

all members of a trio are excluded from the calculation. The MIER has also limitations.

The genotypes of a variant being consistent does not necessarily mean that they are indeed

the true genotypes. It just mean that this speci�c combination of genotypes is one of

multiple plausible combinations. This circumstance results in a hypothetical variant call

set where all samples are genotyped as heterozygous carriers for all variants to achieve

a perfect MIER of 0. The same holds for a call set with all samples always genotyped

as homozygous carriers. Since systematic biases in the genotyping of the SV callers is

something a good benchmark should address, it is important to apply an additional �lter for

those cases if possible. The solution applied in the presented benchmark is the application

of a �ltering step based on the Hardy-Weinberg equilibrium (HWE) [34]. Although the

HWE assumes an ideal population of in�nite size, with (among others) random breeding,

absence of selection, migration and mutation, its principles can be applied to real world

population genetics, since the model behaves close enough to real world data. The HWE

gives the expected frequencies at which di�erent alleles can be observed. With p and q as

the allele frequencies of two alleles P and Q at a locus, it states:

p2 + 2pq + q2 = 1 (4.9)

The summands of the formula can be interpreted as the expected frequencies for the three

genotypes in the population. p2 and q2 are the expected frequencies of homozygous carriers

of the P -alleles and Q-alleles respectively. The expected frequency of carriers of both the
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P -allele and Q-allele is given by 2pq.

Taking a hypothetical variant that has been genotyped as 0/1 in all members of all trios

in a reasonably big cohort, the allele frequencies would be p = q = 0.5. The HWE would

thus dictate a distribution of 25% homozygous non-carriers, 50% heterozygous carriers and

25% homozygous carriers, which does not match the predicted 100% heterozygocity rate,

indicating that the genotyping of the variant is most likely wrong. Using a χ2-test one can

further compare the predicted distribution of genotypes with the ideal distribution given

by the HWE to assess if the two distributions are di�erent at a statistically signi�cant

level. Variants whose distributions di�er at the chosen signi�cance level (here: p-value =

0.01) are removed from the analysis.

The MIER ignores the possibility of de novo mutations. If there is a true de novo mutation

in an o�spring that is correctly genotyped, this will be counted as an inconsistent genotype

combination if the parents are also correctly genotype as homozygous non-carriers. For

the overall correctness of the approach this is of no grave concern because the de novo

mutation rate for SVs is neglectably small [46].

In order to avoid biases in the evaluation of PopDel and the other SV callers, no pedigree

information was provided to the tools.

Transmission Rate. The transmission rate can be used to assess how often a variant

allele from a heterozygous parent was inherited by the o�spring, i.e. transmitted. The

underlying rationale is that a parent that is heterozygous for a speci�c variant should

theoretically transmit this variant to its o�spring in 50% of the cases. The e�ects of

selection and disease-causing alleles can skew the expected values, but for cohorts of healthy

people, like those discussed in this thesis, these e�ects are negligible. Let |V|Gtrio be the

number of variants with a �xed combination of genotypes Gtrio for the trio and let |T |Gtrio

be the number of variant alleles transmitted from a heterozygous parent to the child for

that genotype combination. The transmission rate for this combination of genotypes is

then calculated as:

Transmission rate
(
V, T,Gtrio

)
:=

|T |Gtrio

|V|Gtrio

(4.10)

There are some restrictions to the genotype combinations. Combinations not in line with

the Mendelian rules (marked red in Figure 4.1) are excluded because they are treated

as errors. Cases were both parents are homozygous carriers or both are homozygous non-

carriers are excluded as well because they leave no room for any variations in the genotype of

the child (marked yellow in Figure 4.1) and are therefore not informative for the calculation.

This leaves the cases where one parent is a homozygous carrier or non-carrier while the

other is heterozygous (marked blue in Figure 4.1) and the cases where both parents are
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Figure 4.1: Visualization of Mendelian consistency and informativeness for the transmission
rate. Column give the genotype combinations of the parents and rows give the genotype of
the child. Colors indicate agreement with the Mendelian laws of inheritance and the informa-
tiveness for the calculation of the transmission rate.

heterozygous (marked green in Figure 4.1). In the former cases, the homozygous parent

will never (non-carrier) or always (homozygous carrier) transmit the variant allele to the

child. By observing the other allele of the o�spring one can see if the other heterozygous

parent transmitted the variant allele or not. This leads to an expected transmission rate of

50% for these combinations of genotypes. If both parents and the child are heterozygous,

it is not possible to tell which parent transmitted which allele. This would required phasing

of the variants, which is beyond the scope of the discussed benchmarks. Nevertheless, it

is still possible to state that the child is expected to be heterozygous in 50% of the cases

and a homozygous carrier or non-carrier in 25% of the cases each (also see formula 4.9).

For the assessment of the detection and genotyping of rare variants it is further possible to

limit the transmission rate calculation to those variants that were only detected in a single

trio.

4.1.4 Population-Scale Metrics

WGS data sets like those of the Polaris Diversity Cohort or of the Simons Genome Diversity

Project [62] contain genomes from di�erent (sub)populations. This allows the inspection of

the call sets created by a variant caller to assess if the detected variants match known
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population-scale patterns.

Variant Count. Previous studies have shown that the number of detected variation

varies between di�erent populations from di�erent continental groups [16;72;82]. For exam-

ple, it is known that genome samples from African (AFR) populations tend to exhibit

more variants than those of other continental populations (see Figure 4.2a) [16;72]. A possi-

ble explanation for this common observation can be found in the Out of Africa hypothesis

(OOAH), which states that the origin of the modern human lies on the African continent.

When early humans migrated from Africa to other parts of the world, they were subject to

migration bottlenecks because only relatively small groups of them actually migrated. This

limitation of the new population's gene pool led to a genetically more homogeneous popula-

tion than the original pre-migration population [72]. The OOAH therefore not only explains

the di�erence between populations but also the variation within the populations. Because

the AFR population was not subjected to migration bottlenecks to the same extend as

the other continental populations, the diversity within the AFR population is observably

higher. This results in a higher standard deviation of the distribution of variants.

Principal Component Analysis and t-Distributed Stochastic Neighbor Embed-

ding. The principal component analysis is a statistical method often used for linear di-

mensionality reduction. The principal components are obtained by calculating the eigen-

vectors of the covariance matrix of a data set. The principal components are orthogonal to

each other. Each principal component explains a portion of the variance of the data set.

The principal component explaining the biggest portion of the variance is called the �rst

principal component. Using the �rst two principal components of a data set, one can plot

the previously high dimensional data in two dimensions and reveal underlying structures.

In the context of population-scale variant calling, one can assume that the population an

individual originates from is one of the main factors that in�uence the genetic variation.

Consequently, it can be expected that the �rst principal components captures the variation

caused by the population of the samples and separate samples from multiple populations

accordingly. This separation patterns are already known from previous studies on small

variants and SVs (see Figure 4.2b). [16;82]

Speci�cally for the discussed benchmarks, the PCA was computed as follows: Deletions

detected by a variant caller where converted into a Matrix M , representing the number

of detected deletion alleles for each sample. The rows of M represent the sample and the

columns represent the di�erent deletions, ordered by genomic location. Mi,j ∈ {0, 1, 2}
contains the number of deletion alleles detected in sample i for deletion j according to

the predicted genotype. Duplicate samples (i.e. rows) were removed because they are not

informative for the PCA. Further, variants in high linkage disequilibrium where removed to
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avoid correlation between the columns of the M . This was done by calculating the Spear-

man correlation for neighboring variants and removing those with a signi�cant correlation

coe�cient (p-value ≤ 0.05). The approach was iteratively applied until no more signi�cant

correlations could be found. After �ltering and shu�ing of the sample order, the PCA

was computed using the function prcomp of the R programming language with the options

for 0-centering and unit variance scaling enabled. When plotting the �rst two principal

components of the data one can observe a distinct clustering of the samples (see Figure

4.2b). Coloring or labeling the data points according to the samples' reported ancestries

reveals how good the clustering matches the known populations.

For a better visualization of the clustering of the samples, one can alternatively apply

a t-distributed stochastic neighbor embedding [36;85] (t-SNE) instead of a PCA. While the

PCA can be used as a linear dimensionality reduction technique, the t-SNE is non-linear.

This enables a better visualization of high dimensional data in two dimensions. This comes

at the cost of distorting the distances of dissimilar data points, whereas the distances of

similar data points are more preserved [65;85]. In this thesis, t-SNE was computed on the

same �ltered data as the PCA using the R function tsne from the M3C package using the

default options for all non-cosmetic options. A computed t-SNE is not canonical. The

exact coordinates and relative positions of the inferred clusters can vary to some degree,

based on the ordering of the samples and the random state of the algorithm. Therefore, one

should compare the results of multiple initializations and carefully interpret the embedding

using additional background information for the validation wherever possible.

PCA and t-SNE are a very sensitive tools capable of revealing hidden structures. Consider-

ing that the population is a strong factor determining the genetic makeup of an individual,

a good clustering of samples by population must not be interpreted as a proof that a variant

call set is of high quality. Rather it shows that the predicted variants carry some biological

meaning and are not purely of technical or random nature. On the other hand, failure to

produce a good clustering, is a clear indication of severe shortcomings in the analyzed call

set.
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Figure 4.2: Population di�erences by detected SVs. a Number of detected SVs by continental
population (African/African American, AFR; Latino, AMR; East Asian, EAS; European,
EUR; Other, OTH) and SV type (complex, CPX; inversion, INV; multiallelic copynumber
variation; MCNV; duplication, DUP; deletion, DEL). b Principal component analysis showing
the separation of the continental populations. Figures adapted from Collins et al. (2020) [16].

4.2 Compared SV Callers

In the following benchmarks, PopDel was compared with di�erent established SV callers.

Those SV callers are Delly (0.7.8), GRIDSS (1.8.1), Manta (1.6.0) and Smoove (0.2.4,

using Lumpy 0.2.13 and SVtyper 0.7.0). The parameters of the SV callers in the di�erent

benchmark scenarios are described in the respective subsections.

4.3 Simulated Data

Simulated data can be used for benchmarking under controlled conditions. All properties

of the simulated variants are known, making an accurate assessment of precision and

recall or the vicinity of the predicted and simulated breakpoints possible. Given enough

storage space and computational resources, one can simulate thousands of samples to enable

comparisons on the performance and behavior of the benchmarked SV callers for growing

numbers of well-de�ned samples. All parameters, like coverage, read length and insert size

distribution, of the simulated �sequencing� can also be controlled, guaranteeing controlled

conditions for the comparison. A considerable shortcoming of simulated data is that it

does not completely capture the complexity of real data. When consulting benchmarks,

one regularly observes that the benchmarked tools perform better on simulated data than

on real data. This can be attributed to the simulated reads themselves being more exact

and of better quality than their real counterparts but also to the variants that are being

simulated. As described in Section 1.2 and 2.1, di�erent sequences, e.g. repeats, can make

a mutation at a location more likely to occur. If one simulates variants ignorant of the

sequence context, the association of variants with the sequence context is not captured

by the results. This reduces the transferability of the benchmarking results. Despite

these shortcomings, simulated data is a common approach to assess some baseline in the

benchmark and can be used complementary to the analysis on real data. The subsequent

sections describe in detail how the data for the benchmarks of this thesis was simulated
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and how the variant callers were executed on the data and how the performance metrics

discussed in previously were assessed. Further, the results are presented and discussed.

4.3.1 Data Simulation Protocol

4.3.1.1 Deletions

The simulated deletion data can be divided into two cohorts. The �rst cohort (uniform

deletion simulation) consists of 1,000 simulated samples of the human chromosome 21 and

contains 2,000 uniformly distributed deletions with a uniform size distribution between

100 and 10,000 bp, and uniformly distributed allele frequencies between 0 and 1. Gap

regions of the genome were excluded and deletions were required to be at least 1,000 bp

apart. The second cohort (G1k simulation) consists of 500 simulated samples of the human

chromosomes 17-22. For this cohort, the deletions were not randomly generated, but taken

from the 1000 Genomes Project [17] (G1k)1. This allows to better re�ect the in�uence of the

sequence context and size distribution of the deletions in the simulated data. Because the

number of simulated deletions per chromosome from the G1k is comparatively low (3,246

deletions on chromosome 17-22), it was necessary to simulate multiple chromosomes to get

robust measures for precision and recall.

The uniform deletion simulation cohort was generated by creating a set of 2,000 haplotypes

from the chromosome 21 sequence of GRCh38 and inserting the simulated variants sampled

according their allele frequencies into the sequences. For the G1k simulation cohort, the

G1k deletions were sampled instead and inserted into 1,000 haplotypes of the chromosome

17-22 sequences of GRCh37. GRCh37 was selected for this cohort because the G1k variant

call set is based on GRCh37. The haplotypes were combined into 1,000 (uniform deletion

simulation) and 500 (G1k simulation) diploid genomes respectively. The generation of the

simulated NGS reads from the simulated genomes was performed using art_illumina [38]

(see Appendix Section A.3 for detailed parameters). Subsequent alignment to GRCh38 and

GRCh37 was performed using BWA-mem [56;57]. Parameters included '-R' for including

read group tags and '-M' for marking shorter split read alignments as secondary. The

scripts for the simulation of deletions are available on GitHub2.

4.3.1.2 Duplications

Only one cohort of duplications was simulated for the initial testing of PopDel's dupli-

cation calling and genotyping. The simulation of duplications was performed similar to

the approach for the uniformly distributed deletions described in Subsection 4.3.1.1. The

1http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.

v8.20130502.svs.genotypes.vcf.gz
2https://github.com/kehrlab/PopDel-scripts

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
https://github.com/kehrlab/PopDel-scripts
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duplication simulation cohort consisted of 10 simulated samples of the human chromosome

21. The sizes and locations of the variants were identical to the 20 haplotypes of the �rst

ten samples of the uniform deletion simulation cohort. Instead of deleting the sequence

in the speci�ed regions, the sequences were duplicated and inserted again at their origi-

nal position to generate tandem duplication. The generation of the simulated NGS reads

from the simulated genomes was performed using art_illumina with the same settings as

for the deletion data simulation. Subsequent alignment to GRCh38 was performed using

BWA-mem with the same settings as for the deletion data simulation.

4.3.1.3 Inversions

Only one cohort of inversions was simulated for the initial testing of PopDel's inversion

calling and genotyping. The simulation of inversions was performed similar to the approach

for the uniformly distributed deletions described in Subsection 4.3.1.1. The inversion sim-

ulation cohort consisted of 10 simulated samples of the human chromosome 21. The sizes

and locations of the variants were identical to the 20 haplotypes of the �rst ten samples of

the uniform deletion simulation cohort. Instead of deleting the sequence in the speci�ed

regions, the sequences were replaced by their reverse complement to generate inversions.

The generation of the simulated NGS reads from the simulated genomes was performed

using art_illumina with the same settings as for the deletion data simulation. Subsequent

alignment to GRCh38 was performed using BWA-mem with the same settings as for the

deletion data simulation.

4.3.2 Comparison Protocol

Benchmarking on simulated data was performed for the SV callers Delly, GRIDSS, Manta,

PopDel (1.2.2 for the deletion benchmarks, 2.0.0-alpha for the inversion and duplication

benchmarks) and Smoove. All tools were run on increasing numbers of samples in steps

of 1 for up to 10 samples, steps of 10 up to 100 samples, and steps of 100 up to 500

(G1k simulation) or 1,000 samples (uniform deletion simulation). Whenever supported by

the tools, the calling was limited to the simulated chromosomes. Benchmarking on the

simulated duplication and inversion inversion data was performed with increasing numbers

of samples in steps of 1 up to 10 samples. Speci�cally, the tools were applied as follows:

Delly was applied using mostly default parameters. Additionally, the option '-n' for

disabling small indel realignment was applied, to reduce running time. As small indels

were not part of the benchmark, keeping the small indel realignment active would only

increase the running time of Delly with not bene�ts in terms of precision and recall. For

the deletion simulation benchmark, variants other than deletions were removed from the
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call set. No �ltering for the value of the VCF's �lter �eld was applied because doing so

was observed to have a negative e�ect on the sensitivity without bene�ts for the precision.

GRIDSS was run using default parameters and a heap size of 8GB for the Java vir-

tual machine. Non-deletion variants and variants that had the VCF's �lter �eld report

�LOW_QUAL� were removed from call sets prior to evaluation. Because GRIDSS only pro-

duces breakpoint calls, an adapted version of the annotation script provided by GRIDSS'

authors in its GitHub repository3 was used to convert the breakpoints into deletion calls.

The adaptations were necessary because the original version of the script would not run

without errors. As GRIDSS does not report genotypes, it was excluded from genotype

based analyses.

GRIDSS was only tested on the uniform deletion simulation data.

Manta was executed using mostly default parameters. Additionally, its con�guration

step was run with the '�region' option to limit the calling to the simulated chromosome(s).

The work�ow was executed in the 'local' mode (as opposed to being distributed across

multiple nodes of a compute cluster) using one thread. For the deletion simulation bench-

mark, non-deletion variants were removed from the call set prior to evaluation. No �ltering

for the value of the VCF's �lter �eld was applied because doing so was observed to have

a negative e�ect on the sensitivity without bene�ts for the precision. Manta produces

di�erent �les for SVs that are called with di�erent degrees of con�dence/evidence. For the

evaluation only the �le containing the SVs called with high con�dence was used because

the other SVs had a very high false positive rate without considerable bene�t for the recall.

Manta was excluded from the evaluation of the simulated inversion data, because it mostly

detected the inversions as breakends (VCF notation: BND) and occasionally as insertion

but never correctly resolved as inversion.

PopDel was applied using it's default parameters while limiting the processing of the

samples to the simulated chromosomes. As dictated by it's work�ow, the pro�les of all

samples were created individually using PopDel pro�le and the joint calling was performed

using PopDel call. No further �ltering of the predicted variants was performed.

PopDel 1.2.2 only implemented the detection and genotyping of deletions at the time of

the uniform and G1k deletion benchmark. For the duplication and inversion benchmarks

PopDel 2.0.0-alpha was applied using the same parameters.

3https://github.com/PapenfussLab/gridss/blob/master/example/simple-event-annotation.R
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Smoove was applied using the settings recommended by its authors on Smoove's GitHub

page: The recommended �le for the exclusion of certain regions on GRCh37 or GRCh38

was used and mappings to chromosomes other than the simulated ones were excluded

using the '�excludeChroms' option. Since Smoove does not recommend joint calling for

large cohorts, the work�ow was as follows:

1. Single-sample SV calling and genotyping using Smoove call.

2. Merging of the calls using Smoove merge.

3. Genotyping all individual samples for the merged calls using Smoove genotype.

4. Joining all SV calls and genotypes from step 3 using Smoove paste.

No further �ltering of the predicted variants was performed.

4.3.3 Results

The results for the detection and genotyping of deletions, duplications and inversions for

simulated data will be presented in the following subsections.

4.3.3.1 Results for Simulated Deletion Data

Precision, recall and F1 score were measured as described in Subsection 4.1.2 on the �ltered

call sets for increasing batch sizes. Evaluations were performed on both the uniform simu-

lation data and the G1k simulation data, with and without consideration of the genotypes.

Without Consideration of Genotypes. When evaluating only the presence or absence

of variant calls without considering the individual genotypes of the samples, one observes

that all compared SV callers achieve an almost perfect precision. This indicates that

every variant that is called or for which a sample is genotyped as a carrier is most likely

present and that the number of false positives is very low (see Figure 4.3a). As the

number of samples in the cohort increases, the precision stays stable for all compared

SV callers, with the exception of GRIDSS. GRIDSS su�ers from an increasing number of

false positive predictions for 50 and more samples. Further, GRIDSS was not capable of

processing more than 400 human chromosome 21 samples simultaneously, which - together

with its lack of genotypes - is why it was excluded from further analysis of joint variant

calling. The recall of all tools is close to 0.9, with PopDel achieving the highest value

for most batch sizes. The recall of all tools shows a slight but statistically signi�cant

increase for growing sample numbers (one-sided p-value (Spearman): 3.2 · 10−4(PopDel),

8.4 · 10−8(Delly), 2.8 · 10−15(Smoove), 6.2 · 10−3(Manta), 8.5 · 10−6(GRIDSS)). The tables

of this evaluation are part of the Appendix (Section A.4).
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Figure 4.3: Precision and recall without genotype consideration on simulated deletion data.
A cross at the end of a line indicates that the respective tool could not process more than the
marked number of samples together. a Uniform deletion simulation cohort with up to 2,000
deletions in up to 1,000 simulated human chromosome 21 samples. b G1k simulation cohort
with 3,246 deletions in up to 500 simulated human chromosome 17 - 22 samples.
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Similar trends can be observed in the analysis of the G1k simulation cohort (Figure 4.3b).

The precision is close to perfect for all tools, with Smoove performing the best (only 1

false positive for seven to ten samples, 0 otherwise). PopDel is generating some false

positive calls starting at 9 samples and its overall number of false positives for 500 samples

is second lowest (0 (Smoove), 15 (PopDel), 26 (Delly), 28 (Manta)). The recall on the

G1k simulation data is overall lower for all tools except Smoove, which interestingly has

a higher recall in this scenario than in the uniform deletion simulation scenario (recall

between 0.91 - 0.96 compared to 0.86 - 0.88), even though the G1k simulation was designed

as the more di�cult scenario. One hypothesis that could explain this behavior was that

the recommended list of excluded regions applied for Smoove a�ects more variants of the

uniform deletion simulation data than of the G1k simulation because the uniform deletion

simulation has the simulated variants more densely distributed across the chromosome and

is ignorant of the sequence context (except gap regions that are avoided). But since only

15 deletions from the truth set for 1,000 samples of the uniform deletion simulation overlap

with the excluded regions of Smoove, this cannot explain the notable di�erence in recall

because those 15 variants only would amount to an recall increase of 0.0075 if they were

called. Further investigation of the possible reason for Smoove's performance is therefore

required.

For all tools the trend of the recall increasing with a growing number of samples can again

be observed, and is more pronounced than for the uniform deletion simulation data. The

p-values of the one-sided Spearman correlation test are 2.6·10−3(PopDel), 9.7·10−7(Delly),

1.3 · 10−6(Smoove) and 1.0 · 10−2(Manta). The tables of this evaluation are part of the

Appendix (Section A.4).

Overall, the genotype-free precision and recall benchmark on both simulated data sets

shows that PopDel reliably detects deletions, with a stable performance for increasing

sample numbers and that its performance is on par with other state-of-the-art SV callers.

Increasing the number of samples in the analyzed cohorts has a positive in�uence on the

recall without adversely a�ecting the precision.

With Consideration of Genotypes. Figure 4.4 shows the ratio of correct alleles (for-

mula 4.7). As shown in Figure 4.4a, the all tools genotype more than 90% of all alleles

correctly for the uniform deletion simulation data, with PopDel making the most correct

predictions. The performance is stable across all sample number for all tools.

For the genotyping evaluation on the G1k simulation data, the results are more spread out

(Figure 4.4b). While PopDel and Delly show a lower ratio of correct alleles than before,

Manta and Smoove perform better on the G1k simulation data, with a correct allele ratio

of up to 0.96 (Manta) and 0.95 (Smoove). PopDel's ratio of correct alleles lies between 0.89
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Figure 4.4: Evaluation of genotype correctness on simulated deletion data. a Ratio of
correctly classi�ed alleles in the uniform deletion simulation cohort with up to 2,000 deletions
in up to 1,000 simulated human chromosome 21 samples. b Ratio of correctly classi�ed alleles
in G1k simulation cohort with 3,246 deletions in up to 500 simulated human chromosome 17
- 22 samples.

and 0.91 and is therefore slightly lower than for the uniform simulation data, for which it

lies between 0.92 and 0.93. Similar to the recall in Figure 4.3, most tools show a trend of an

increasing ratio of correct alleles for growing sample numbers, with signi�cant Spearman

correlations (one-sided) for Delly (p-value = 5.7 · 10−4), Smoove (p-value = 1.5 · 10−6)

and Manta (p-value = 1.5 · 10−6). PopDel's genotyping performance is not signi�cantly

in�uenced by the number of samples in a cohort. The tables of this evaluation can be

found in Section A.5 of the Appendix.

The results demonstrate that PopDel reliably genotypes deletions without being in�uenced

by the number of samples in the cohort.

Breakpoint Precision. The starting positions of the deletions reported by Delly, Manta,

PopDel and Smoove on the �rst ten samples of the uniform simulation data were evaluated.

The predicted starting positions of all true positive deletions were taken from the VCFs and

compared to the true starting positions of the simulated variants to create the histograms

of start position deviations shown in Figure 4.5 below. A predicted starting position was

assigned a deviation of 0 bp if it matched the true variant starting position exactly. Negative

deviations indicate an estimate that is too far upstream, while a positive deviation indicates

an estimate that is too far downstream. Left or right alignment was not performed because

the true positions were known even for deletions falling into repetitive regions. By not using

the left or right alignment the histograms show the tendencies of the di�erent tools to over-

or underestimate the true positions. This measure does not provide any information on

the exactness of the length estimate of the deletion or the exactness of the end position

of the deletion. The exactness of the deletion starting positions reported by PopDel (a)

are on par with Delly (b), Smoove (c) and Manta (d). The histograms show that all tools
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Figure 4.5: Histograms of deletion start positions deviations. The comparison is based
on ten samples of the uniform deletion simulation data of human chromosome 21. a Start
position deviations for PopDel on 1704 deletions. b Start position deviations for Delly on
1686 deletions. c Start position deviations for Smoove on 1653 deletions. d Start position
deviations for Manta on 1677 deletions. A deviation below 0 indicates that the estimate is
upstream of the true position, a positive deviation indicates that the estimate is downstream
of the true position.

estimate the starting positions mostly exact: PopDel estimates the starting positions of

71.1% of its variants calls with a deviation of 0 bp from the real starting positions. Delly

(72.3%), Smoove (71.2%) and Manta (72.2%) reach marginally higher values, despite

explicitly considering split reads alignments in their methods. The deviations of all tools

are mostly limited to one direction. PopDel and Smoove estimate the imprecise starting

locations mostly further downstream, while Delly and Manta estimate imprecise starting

locations to be further upstream. The results re�ect PopDel's approach for the estimation

of the deletion starting positions described in Subsection 3.3.3: As PopDel takes the 80%-

quantile of the clipped 3'-mapping positions of the forward reads of read pairs that support

the deletion, an overestimation of the positions (i.e. a shift downstream) is more likely to

occur than an underestimation. Local ambiguities in the alignments, which for example

can be caused by repeats around the breakpoint, can lead to such deviations.

Running Time and Memory Consumption. Running time and memory consump-

tion of the tools were measured on the uniform deletion simulation cohort for all batches

of di�erent sample numbers using the Unix /usr/bin/time command. Measurements were
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Figure 4.6: Running time and memory consumption on uniform deletion simulation data. a
CPU time for increasing number of simultaneously analyzed samples. b Maximum memory
consumption for increasing number of simultaneously analyzed samples.

performed on a dedicated workstation to avoid the in�uence of other running processes.

The workstation was equipped with an Intel Xeon E5-1630v3 8 Ö 3.5GHz and 64GB

RAM. The measured time includes the running time of all processes required to create the

�nal VCF �le from the input BAM �les of the batch and was calculated as the sum of CPU

seconds the process spent in user mode (%U ) and the number of CPU seconds spent in

kernel mode (%S ). If a tool's work�ow consisted of multiple steps (e.g. PopDel's pro�ling

and calling steps), the time was calculated as the sum of the time all steps required. Mem-

ory was measured as the maximum resident set size (%M ) at any point of the work�ow

for the respective number of samples.

As shown in Figure 4.6a, running time of all tools scales linearly in the number of simul-

taneously analyzed samples. With 22 s CPU time for a single sample and 6 h 39min for

1,000 samples, PopDel has the lowest running time for all batches, followed by Delly, which

takes 38 s for one sample and 8 h 23min for processing 1,000 samples. Manta and Smoove

take almost four times as long for processing 1,000 samples (25 h 17min and 26 h 26min

respectively). GRIDSS' running time is far above all other tools, taking 78 h 9min for 400

samples, which is the maximum number of samples GRIDSS could process.

Figure 4.6b shows the memory consumption of the tools. For up to ten samples the

memory consumption of PopDel's calling step is below that of the pro�ling step, which is

why it is virtually constant at 31MB for batches of up to ten samples. For 20 samples

and above, the joint calling dominates the memory consumption which is now increasing

in a linear fashion. PopDel's maximum memory consumption peaks at 1.5GB at 1,000

samples. The initial memory consumption of Manta is slightly lower (28MB), but shows

a stronger increase after 8 samples, peaking at 2.3GB for 1000 samples. This is below the

values achieved by Delly (2.6GB) and Smoove (3.1GB). Delly and Smoove both require a

high initial memory of 534MB and 979MB respectively. With 5.3GB, GRIDSS' memory



100 4.3. SIMULATED DATA

consumption has the highest initial value, orders of magnitude above that of PopDel or

Manta, and also has a much higher peak memory consumption of 96GB at 400 samples.

A possible explanation for this amount of measured memory consumption that is above

the physically available memory of the machine used for running the tools is that the Java

virtual machine (JVM) GRIDSS is running on causes some memory pages to be counted

multiple times, causing an overestimation of the resident set size. This counting problem

of shared memory pages is a known shortcoming of the resident set size as a measurement.

An alternative (which was not applied in this benchmark) would be the application of the

proportional set size instead. The tables of running time and memory consumption can be

found in Section A.6 of the Appendix.

Summarizing, the results show that PopDel's requires less memory and CPU time than

other tools. Further, PopDel exhibits good scaling of both resources for increasing sample

numbers.

Measurements for Varying Bu�er Sizes. For increased �exibility, PopDel provides a

parameter for controlling the number of bu�ered windows during the joint calling. Despite

PopDel's already low memory requirements, it might be desirable to reduce the number

of bu�ered windows for a further reduction of memory consumption when processing very

large cohorts with limited available RAM. This comes at the cost of an increased running

time, as shown in Figure 4.7. For the quanti�cation of the memory and CPU time trade-o�,

100 samples of the uniform deletion simulation data were analyzed with PopDel call while

applying settings ranging from 10,000 to 8,000,000 windows for the bu�er size. As marked

by the �lled red dot in the �gure, the default value of 200,000 windows strikes a balance

between CPU time and memory consumption. Compared to the memory consumption

using default settings, it was possible to reduce the required memory by 87% (22MB

compared to 187MB) at the cost of an 341% increase in CPU time (47min compared

to 11min). Increasing the number of bu�ered windows had little e�ect in this example

due to the small size of chromosome 21: Given the approximate size of 48,000,000 bp for

chromosome 21, a window size of 30 bp and a bu�er size of 200,000 windows, one bu�er size

contains already 1
8 th of the whole chromosome. This leaves only little room for reducing

the overhead caused by clearing and �lling the bu�er multiple times. Bu�er sizes above

1,600,000 windows can already contain the whole information for chromosome 21, virtually

causing the whole pro�les of the 100 samples to be loaded into the main memory. Further

increasing the bu�er size therefore has no e�ect on memory consumption and CPU time.

For bigger chromosomes, this point is reached later. A detailed table of the measured

results can be found in Section A.6 of the Appendix.
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Figure 4.7: Memory and CPU time trade-o� of PopDel's joint calling procedure. Joint calling
was performed on 100 samples of the uniform deletion simulation data of human chromosome
21 with varying settings for the number of bu�ered windows. The �lled red dot indicates the
default value for the number of bu�ered windows (200,000).

4.3.3.2 Results for Simulated Duplication Data

Precision and recall on the simulated duplication data were measured as described in Sub-

section 4.1.2 on the �ltered call sets for increasing batch sizes. Evaluations were performed

with and without consideration of the predicted genotypes.

Without Consideration of Genotypes. All SV callers achieve a near-perfect precision

when evaluating the presence or absence of duplications in the call sets. Only Manta

calls between one and two false positive duplications for batch sizes between �ve and ten

samples. Therefore, no plot of precision is shown. The near-perfect precision of all SV

callers is indicative of the relative simplicity of the simulated data and of the clear read

pair signature the SV callers use for the detection of duplications. Detailed tables of the

measured results can be found Section A.4 of the Appendix.

Figure 4.8a shows the recall for Delly, Manta, PopDel and Smoove. PopDel achieves the

highest recall, ranging from 0.9 to 0.91. This is closely followed by Delly's recall, which lies

between 0.89 and 0.90. The recall of Manta lies between 0.87 and 0.88. Smoove's recall is

lowest and lies between 0.81 and 0.85. There is no indication of a strong in�uence of the

number of samples and all SV callers exhibit a stable performance.

With Consideration of Genotypes. When considering the ratio of correctly geno-

typed alleles , Smoove achieves the highest ratio, which lies between 0.81 and 0.83 as

shown in Figure 4.8b. Considering that Smoove has the lowest recall, this indicates that

the majority of the duplications detected by Smoove are correctly genotyped in most sam-
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Figure 4.8: Precision and recall on simulated duplication data of up to ten samples (1,900
duplications). a Recall of duplication detection without consideration of genotypes. The plot
for the precision is not shown because all tools achieved a near-perfect precision for all batch
sizes. b Ratio of correctly classi�ed alleles.

ples. With a ratio of correct alleles between 0.78 and 0.79 PopDel achieves the second best

performance. Notably, Delly and Manta do not genotype any duplications as 1/1 in any of

the samples. They therefore achieve the lowest and second lowest ratio of correct alleles.

Since Manta has an overall lower recall than Delly, its ratio of correct alleles is lowest with

values between 0.68 and 0.69. Delly achieves ratios between 0.69 and 0.7. Detailed tables

of the measured results can be found Section A.5 of the Appendix.

The relatively low ratio of correctly predicted alleles achieved by all SV callers underlines

the di�culty of estimating the zygosity of duplications and points out potential for future

improvements of PopDel.

Running Time and Memory Consumption. Running time and memory consump-

tion were measured as described for the uniform deletion simulation (see Subsection 4.3.3.1)

for Delly, Manta, PopDel and Smoove. The absolute measurements of the duplication sim-

ulation are not directly comparable with those of the uniform deletion simulation. The

running time of the duplication simulation was measure on a virtual machine that was

provided 10422MB of RAM and 4 out of 12 CPUs (Intel Core i7-8700k 12 Ö 3.7GHz) of

the host system. The detailed tables of the running time and memory consumption are

part of Section A.6 of the Appendix.

Figure 4.9a shows the measured CPU time for processing batches of one to ten samples

of the duplication simulation data. One can observe the same trends as shown for the

uniform deletion simulation (Figure 4.6a). All compared tools show a linearly increasing

CPU time with respect to the number of simultaneously processed samples. PopDel has

the lowest CPU time for all batch sizes, linearly increasing from 20.87 s for a single sample

to 214.54 s for ten samples. The next lowest CPU time is achieved by Delly (54.66 s to
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Figure 4.9: Running time and memory consumption on duplication simulation data. a

CPU time for increasing number of simultaneously analyzed samples. b Maximum memory
consumption for increasing number of simultaneously analyzed samples.

436.85 s), which takes on average (arithmetic mean) 2.04 as many CPU seconds as PopDel.

Manta and Smoove take considerably more CPU time than PopDel and Delly. Manta's

CPU time lies between 103.24 S for one sample and 1359.09 s for ten samples. Smoove

takes the most CPU time, with values ranging from 156.60 s to 1849.85 s.

Figure 4.9b shows the observed maximum residual set size of the tools when process-

ing batches of one to ten samples of the duplication simulation data. The observed

trends are again similar to those shown in Figure 4.6b for the uniform deletion simula-

tion data. PopDel has the lowest memory consumption, requiring only between 13.34MB

and 33.2MB of RAM. Manta's memory consumption amounts to values between 28.52MB

and 37.77MB. Delly's memory consumption is one order of magnitude higher than that of

PopDel or Manta: It requires between 671,19MB and 762.45MB RAM. Smoove requires

the most memory. With 6251.33MB to 6967.99MB RAM it occupies one order of magni-

tude more memory than Delly and two orders of magnitude more than PopDel or Manta.

All tools show little increase of required RAM for increasing batch size, which is most

likely attributed to the low number of samples in this scenario. A more detailed analysis

of the scaling of memory consumption would require more samples, as it was the case for

the uniform deletion data simulation in Subsection 4.3.3.1.

4.3.3.3 Results for Simulated Inversion Data

Precision and recall on the simulated inversion data were measured as described in Sub-

section 4.1.2 on the �ltered call sets for increasing batch sizes. Evaluations were performed

with and without consideration of the predicted genotypes.

Without Consideration of Genotypes. All tested SV callers achieve a perfect pre-

cision when evaluating the presence or absence of inversions in the call sets. Therefore,
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Figure 4.10: Evaluation on simulated inversion data of up to ten samples (1,900 inversion).
a Recall of inversion detection without consideration of genotypes. The plot for the precision
is not shown because all tools achieved perfect precision for all batch sizes. b Ratio of correctly
classi�ed alleles.

no plot of precision is shown. The perfect precision of all SV callers is indicative of the

relative simplicity of the simulated data and of the clear read pair signature the SV callers

use for the detection of inversions.

The highest recall is achieved by Delly (0.913 to 0.918), closely followed by PopDel (0.908

to 0.916) as shown in Figure 4.10a. Smoove's recall is considerably lower with values

between 0.691 and 0.772. Upon manual inspection of Smoove's call sets, it was noticeable

that Smoove classi�ed up to 18 of its calls as breakends instead of inversions. These calls

were ignored during the evaluation. Even if one were to consider these breakend calls as

true positives this would only increase Smoove's recall by roughly 0.01. Detailed tables of

the measured results can be found Section A.4 of the Appendix.

All tested SV callers except Smoove show a stable performance across all batch sizes.

Smoove performs better for larger batch sizes but still achieves lower performance metrics

than the other SV callers.

With Consideration of Genotypes. Figure 4.10b shows the ratio of correct allele

predictions made by Delly, PopDel and Smoove. The highest ratio of correct alleles is

achieved by Delly with values between 0.937 and 0.938. PopDel follows with ratios between

0.89 and 0.9. Smoove's ratio of correct alleles lies between 0.793 and 0.884 and is therefore

lowest.

The ratios are stable across all batch sizes for all tools except Smoove. Smoove's increasing

ratio of correct alleles for larger batch sizes could be explained by its increasing recall for

larger batch sizes as observed in Figure 4.10a. Detailed tables of the measured results can

be found Section A.5 of the Appendix.
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Figure 4.11: Running time and memory consumption on inversion simulation data. a CPU
time for increasing number of simultaneously analyzed samples. b Maximum memory con-
sumption for increasing number of simultaneously analyzed samples.

Running Time and Memory Consumption. Running time and memory consump-

tion were measured as described for the uniform deletion simulation (see Subsection 4.3.3.1)

for Delly, PopDel and Smoove. The absolute measurements of the inversion simulation are

not directly comparable with those of the uniform deletion simulation. The running time

of the inversion simulation was measure on a virtual machine that was provided 10422MB

of RAM and 4 out of 12 CPUs (Intel Core i7-8700k 12 Ö 3.7GHz) of the host system. The

detailed tables of the running time and memory consumption are part of Section A.6 of

the Appendix.

Figure 4.11a shows the measured CPU time for processing batches of one to ten samples of

the inversion simulation data. The reduced CPU time of all tools is a notable di�erence to

the results of the duplication simulation. This could be explained by the small size of the

simulated samples and the high number of variants that were inserted into them. While

an inserted inversion does not alter the quantity of sequence in a genome, a duplication

introduces additional sequence. This is re�ected by the �le size of the simulated samples:

For example, the �rst simulated sample of the inversion and duplication simulation data

are identical with respect to the number and locations of inserted variants. They only

di�er in the type of variants that were inserted. The BAM �le of the simulated inversion

sample takes up 592MB of hard disc space. Due to the inserted duplications the simulated

duplication sample amounts to 661MB, which is an increase of 11.65%.

Despite the overall reduced CPU time, the general trends of the duplication and deletion

simulation benchmarks are also re�ected in the measured CPU time of the inversion sim-

ulation displayed in Figure 4.11a. PopDel requires between 20.54 s and 207.16 s for batch

sizes of one to ten samples. Smoove is the second fastest tool for one sample, taking 34.07 s,

but requires more time than Delly for all subsequent batch sizes. With 878.18 s CPU time,

Smoove is the slowest of the three tools for ten samples. Delly is the overall second fastest
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tool, requiring between 68.61 s and 521.95 s of CPU time. As in the previous test scenarios,

the CPU time of all tested tools increases linearly with respect to the number of samples

per batch.

Figure 4.11b shows the maximum residual set size of the tools when processing batches

of one to ten samples of the inverted simulation data. PopDel requires between 13.36MB

and 28.34MB RAM for one to ten samples, making it one order of magnitude faster

than Smoove and Delly. Smoove's required memory is very constant with values around

370.41MB for all batch sizes. Similarly, Delly shows only very little increase of its required

memory: Its values range from 628.94MB to 721.828MB RAM. Again, this indicates that

more samples are required for a full assessment of the scaling of the tools, like it has been

performed for the uniform deletion simulation in Subsection 4.3.3.1.

4.4 Genome in a Bottle Ashkenazi Jewish Trio

Because simulated data cannot fully capture the challenges of real WGS data, additional

benchmarks on well-studied WGS samples has been performed. One such data set is

the Ashkenazi Jewish trio that has originally been sequenced in the Personal Genome

Project [5]. The son of the trio, also known under its NIST ID HG002 or his Coriell ID

NA24385, has been thoroughly characterized and used by the GIAB consortium for creating

a set of SVs that is comprehensive in well-de�ned regions of the genome [92]. This allows the

assessment of metrics like precision and recall, which would be much less reliable without a

comprehensive ground truth. Further, the presence of the parental genomes allows for the

assessment of how the calling of variants in HG002 is in�uenced by the parental genomes.

The setup of the di�erent tools in the tested scenarios will be described in the following

subsections. Finally, the results of the deletion benchmarking on this data set will be

presented and discussed.

A similar comparison was performed using NGS read data of HG001/NA12878. As the

results are very similar to the ones presented here, they are part of Section A.7 of the

Appendix.

4.4.1 Single Sample Variant Calling Protocol

The reads of HG002 were mapped to the human reference genome GRCh37 using BWA-

mem. GRCh37 was chosen over GRCh38 because the GIAB reference call set is based on

GRCh37. Shorter split read alignments were �agged by applying the BWA-mem's '-M'

option. The conversion of the resulting SAM �les to BAM �les, sorting and indexing was

carried out using Samtools [58]. Picard Toolkit4 was used for marking optical duplicates.

4http: // broadinstitute. github. io/ picard/

http://broadinstitute.github.io/picard/
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SV detection was performed by Delly, Manta, PopDel and Smoove on the resulting BAM

�le as follows:

Delly was executed using its recommended options and the recommended �le of excluded

regions for GRCh37. Only deletions with the FILTER �eld set to �PASS� were kept.

Manta was applied using its recommended options. The calling was prepared with con-

�gManty.py, followed by the execution in local mode. Only deletions from the resulting

output �le containing high con�dence variants with the FILTER �eld set to �PASS� were

kept.

PopDel read pair pro�les were created using PopDel pro�le (1.2.2) with default options.

The variant calling by PopDel call (1.2.2) was performed on all autosomes in parallel using

the '-r' option (see Appendix Section A.1 for on overview of PopDel's parameters). Since

the coverage of the Ashkenazi Jewish trio is very high, PopDel's threshold for when a

region is considered to have high coverage was increased to three times the mean coverage

of the sample using the '-A' option. No additional �ltering based on the FILTER �eld was

performed.

Smoove was run with the recommended options and the recommended �le of excluded

regions for GRCh37. No additional �ltering based on the FILTER �eld was performed.

4.4.2 Trio Variant Calling Protocol

For the trio variant calling benchmark the reads of the parents of HG002 (HG003, father

and HG004, mother) were aligned and processed the same way as those of HG002 described

above to obtain the respective BAM �les. Calling on the trios was performed with the tools

Delly, Manta, PopDel and Smoove the same way as for the single-sample variant calling,

with the exception that all BAM �les of the trio were processed jointly.

4.4.3 Comparison Protocol

The comparison on the single and trio GIAB call sets consisted of an analysis of the overlaps

of the call sets created by the di�erent SV callers and the reference deletions provided

by GIAB. Before performing the individual analyses, all call sets were processed to only

contain the relevant information. Therefore, non-deletion variants were removed from all

call sets prior to evaluation and only deletions with a size between 500-10,000 bp were

considered. Further, the deletions were required to be located on one of the autosomes.

Overlap of the deletions with the GIAB high con�dence regions for HG002 regions was

determined using BEDtools intersect [71] and all deletions not completely falling into those
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Figure 4.12: Rule graph generated by Snakemake for the determination of call set overlaps.
Vertices indicate processing and evaluation functions, while arrows indicate which steps use
the results generated by the previous step.

regions were removed. Finally, the VCF �les were converted into BED format for easier

downstream processing.

To examine to what degree the sets of deletions created by the di�erent SV callers agree

with each other and the ground truth, Venn diagrams of the call set overlaps were cre-

ated. To this end, the overlaps of the call sets were determined in a hierarchical overlap

approach using BEDtools. For matching two variants, the de�nition given in Subsection

4.1.1 requiring at least 50% reciprocal overlap was applied. Snakemake [49] was used for

the management of the complex evaluation work�ow. An overview of the work�ow is given

in Figure 4.12.

4.4.4 Results

Call Set Overlap. The resulting Venn diagrams displayed in Figure 4.13 show that the

four SV callers reach a good consensus of detected deletions. PopDel shares 582/639/616

of its predicted variants with Manta/Smoove/Delly. The highest overlap with the ground

truth, i.e. true positives, is achieved by PopDel which correctly predicts 62/26/48 deletions

that Manta/Smoove/Delly do not detect. Those tools detect 4/4/7 true deletions not

detected by PopDel. There are only 40 out of 678 deletions in the truth set that are not

detected by any of the tested SV callers. The lowest number of predicted variants that

are not part of the truth set, i.e. false positives, is produced by Manta, which predicts

27 deletions that are not contained in the truth set due to its more conservative approach

that also comes with a lower number of detected true deletions.
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Figure 4.13: Call set overlaps of di�erent SV callers with the GIAB reference call set for
HG002 consisting of 678 high-con�dence deletions. Numbers in the overlapping areas of the
circles indicate that the deletions were detected in all of the overlapping call sets.

The predicted deletions result in a recall of 93.01% (PopDel), 84.51% (Manta), 89.82%

(Smoove) and 87.02% (Delly). The measured precision is 92.52% (PopDel), 95.5% (Manta),

87.75% (Smoove) and 89.12% (Delly). The F1-scores based on these values are 0.93

(PopDel), 0.9 (Manta), 0.89 (Smoove) and 0.88 (Delly), showing a good balance between

precision and recall achieved by PopDel.

These results demonstrate that PopDel good accuracy measure on simulated data also

applies to real data. The results are also re�ected in the precision and recall analysis of

the following section.

Precision and Recall for Varying Genotype Quality Thresholds. When �ltering

the predicted variants for increasingly strict genotype quality (GQ) thresholds, one can

observe the well-known trade-o� between precision and recall. The GQ provides a PHRED-

scaled con�dence measure for the correctness of the assigned genotype. A higher GQ

threshold leads to an increase in precision and a decrease in recall for all examined SV

caller. This indicates that the GQ is implemented in a meaningful way. On the other

hand, relaxing the threshold leads to an increase in recall at the cost of a reduced precision.

Finding the optimal balance between the two measures often depends on the individual use

case. Figure 4.14 shows this behavior for the variants detected by Delly, Manta, PopDel

and Smoove for the variants predicted on HG002 in a single-sample calling setup (dashed

lines) or together with the parental genomes in a trio-setup (solid lines).

A risk of including additional genomes in the calling is that this can also increase the risk

of false positive calls being made. Smoove and Delly both follow a merge and re-genotype

approach (see method descriptions of Smoove and Delly in Section 2.3) and exhibit a lower

precision when applied on the whole trio compared to the single-sample setup. This is

most likely because the calling of the variants per sample followed by the merging leads to
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Figure 4.14: Precision and recall of SV callers with GIAB reference call set for HG002 alone
(dashed lines) and jointly (solid lines) with his parents for varying genotype thresholds.

a bigger set of candidate variants than the variant calling on HG002 alone. Some of these

additional candidate variants are only present in the parental genomes and not in HG002.

With the aim of increasing the sensitivity, the re-genotyping phase places more relaxed

thresholds on variants than the calling phase. This is because a that variant has already

been detected in another genome, is more likely to be also real in the genome that is being

(re-)genotyped. On the analyzed data, Smoove and Delly do lose some precision when

operating on the while trio, without gaining additional recall. Delly loses up to 1.64%-

points in precision and Smoove loses up to 0.84%-points in precision. Manta's precision

and recall are hardly a�ected by the addition of the parental genomes and also PopDel's

precision does not decrease when performing the calling on the whole trio. Notably, only

PopDel's recall shows an increase in the trio-setup, underlining the bene�ts of the chosen

joint calling approach.

4.5 Polaris Diversity Cohort

The Polaris HiSeqX Diversity Cohort (PDC; BioProject accession PRJEB20654) was cre-

ated by Illumina in an e�ort to provide a publicly available resource for population-

genomics analyses. It consists of 150 WGS samples that have been sequenced with 2x150 bp

reads using a Illumina HiSeqX sequencer. The samples were selected from the resources of

the 1000 Genomes Project and originate from three di�erent continental groups, 50 sam-

ples each: African (AFR), East Asian (EAS) and European (EUR). This multi-population

setup enables the evaluation based on deletion allele count per population and principal

component analysis, as described in Subsection 4.1.4.

https://www.ncbi.nlm.nih.gov/bioproject/387148


CHAPTER 4. PERFORMANCE EVALUATION OF POPDEL 111

4.5.1 Variant Calling Protocol

The data of the 150 genomes was retrieved in FASTQ format and mapped to the human

reference genome GRCh38 in the same fashion as described in Subsection 4.4.1 using BWA-

mem. Downstream processing was performed using Samtools and Picard Toolkit. Variant

calling was performed using PopDel, Delly and Smoove. Manta was excluded from this

analysis because it did not complete the analysis within four weeks of compute time and

no description of a suitable single-sample based work�ow with subsequent merging and

re-genotyping was available for Manta.

Delly could not complete the joint calling on all 150 samples together within four weeks

of compute time. Therefore, a sample wise approach with subsequent merging and re-

genotyping was applied instead:

1. Single-sample variant calling for each individual sample using the '-n' option for

disabling small indel realignment

2. Removing all non-deletion variants using BCFtools [19] �lter

3. Merging all variants of all samples using Delly merge

4. Sample-wise genotyping of all samples using Delly genotype and the variant set create

in the previous step

5. Removing all variants with invalid positions

6. Sorting and indexing of the variants

7. Merging of the genotyped and sorted variants of all samples using BCFtools merge

8. Application of a germline �lter using Delly �lter to remove variants that are �agged

as likely somatic

Steps 5 and 6 had to be introduced due to a known bug in Delly [[https://github.

com/dellytools/delly/issues/106]] that caused some variants to have '0' assigned as a

position, making the required sorting and indexing of the BCF �les impossible. Removal

of those variants allowed the continuation of the work�ow.

PopDel pro�le (1.2.2) was applied with default options on each sample to create the

PopDel read pair pro�les. Joint calling with PopDel call (1.2.2) was performed on all

autosomes and the X chromosome in parallel using PopDel's '-r' option.

[https://github.com/dellytools/delly/issues/106]
[https://github.com/dellytools/delly/issues/106]
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Smoove was applied using the approach recommended by its authors in the same way as

described for the simulated data in Subsection 4.3.2, with the following exceptions: Only

the autosomes and the X chromosome were considered and all non-deletion variants were

removed after the single-sample calling.

4.5.2 Comparison Protocol

Like for the comparison on the GIAB data, only deletions between 500 and 10,000 bp were

considered. Since no high-con�dence regions like for the GIAB data were applied for �l-

tering, variants having any overlap with centromeric regions were determined and removed

using BEDtools intersect. The BED-�le of centromeric regions for GRCh38 was obtained

via the UCSC table browser (group: Mapping and Sequencing, track: Centromeres).

For the analysis of the variant counts, the variant call sets were subject to genotype quality

(GQ) �ltering based on thresholds that were determined using the Mendelian inheritance

error rate on the PKC described later in Section 4.6. Brie�y, the thresholds for the GQ

were selected as generous as possible such that the MIER dropped below 0.3%. Those

thresholds for the GQ were 26 (Popdel), 28 (Delly) and 78 (Smoove). All deletions with a

GQ below the respective threshold were removed from the call sets in order to focus the

analyses on variants of high quality.

4.5.3 Results

Deletion Count. Figure 4.15 shows the observed distributions of detected deletions for

the three compared SV callers across the three continental groups.

PopDel (Figure 4.15a) detects on average (arithmetic mean) 1,309 deletions per sample of

the PDC. 969 of the deletions detected by PopDel are genotyped as heterozygous and 340

as homozygous. PopDel detects signi�cantly more deletions in African (AFR) samples on

average than in East Asian (EAS) or European (EUR) samples, as a two-sided t-test with

a resulting p-value < 2.2 · 10−16 con�rms. This �nding is consistent with the expected

distribution of variants described in Subsection 4.1.4.

Delly (Figure 4.15b) detects on average 1,300 deletions per sample of the PDC. 1,011 of

Delly's deletions are genotyped as heterozygous and 289 as homozygous. The expected

higher abundance of deletions in AFR samples can also be observed for Delly.

Smoove (Figure 4.15c) detects on average 1,233 deletions per sample of the PDC. 981 of

Smoove's deletions are genotyped as heterozygous and 252 as homozygous. The expected

higher abundance of deletions in AFR samples can also be observed for Smoove.

All compared SV callers detect a similar number of deletions per genome and per population

and show the same trends. As one would expect, the number of heterozygous calls is lower
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Figure 4.15: Deletion counts per population in the Polaris Diversity Cohort. Each data point
indicates the number of deletions detected in one genome. Center lines of the box plots indicate
the median for the respective population. Boxes limit the upper and lower quartiles. The
whiskers denote the 1.5x interquartile ranges. Vertically non-overlapping notches in the boxes
indicate a strong evidence that the groups' medians di�er. Colors and abbreviations indicate
the continental groups of the samples: AFR, African; EAS, East Asian; EUR, European. a

PopDel deletion counts. b Delly deletion counts. c Smoove deletion counts.

than the number of homozygous calls. Notably, the number of heterozygous deletions

detected by PopDel is lower than the number of heterozygous calls given by Delly and

Smoove, while its number of homozygous calls is higher. Together with the observation

that the ratio of heterozygous variants divided by homozygous variants is rather 1
3 than

the theoretically expected 1
4 , this can be indicative of a bias towards genotyping samples as

homozygous instead of heterozygous in PopDel. Further examinations of the genotyping

performance on the trios of the Polaris Kids Cohort are presented in Section 4.6.

Principal Component Analysis. When calculating the PCA of the deletion allele

counts produced by PopDel, Delly and Smoove as described in Subsection 4.1.4, the re-

sults for all three SV callers are very similar, as shown in Figure 4.16. There is a clear

separation of AFR samples from EAS and EUR samples driven by the �rst principal com-

ponent and a further clear separation of the EAS samples from the EUR samples driven

by the second principal component. This leads to a very clear clustering of the samples

by their continental group, indicating that the deletions calls of all three SV callers re�ect

the di�erences between the three populations of the cohort and showing how populations

structure can be inferred from deletion alleles counts alone.
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Figure 4.16: PCA based on deletion allele counts on the PDC. Colors and abbreviations
indicate the continental groups of the samples: AFR, African; EAS, East Asian; EUR, Euro-
pean. a PCA based on PopDel deletion allele counts. b PCA based on Delly deletion allele
counts. c PCA based on Smoove deletion allele counts.

Table 4.1: Running time on 150 WGS samples of the Polaris Diversity Cohort.

Wallclock time CPU time

Delly 389:43 h 371:27 h
PopDel 56:17 h 111:12 h
Smoove 87:58 h 103:21 h

Delly and Smoove also report SVs other than deletions. These non-deletion variants were
removed after the single-sample calling phases of the respective work�ows (see Subsection
4.5.1) to reduce the impact on the running time.

Running Time. Running time on the PDC was measured for the complete work�ows

of the SV callers. The BAM �les of the samples were used as the starting input and the

VCF �les as the �nal output. The reported running time of all subprocesses was summed

up to get the �nal result. PopDel's calling process was run in parallel for all analyzed

chromosomes. Therefore, the running time for each chromosome was added. The resulting

wallclock times and CPU times are displayed in Table 4.1. The runs were performed on a

high-performance computing (HPC) cluster and may have been subject to �uctuations in

compute cluster performance due to changes in concurrent work load of the HPC cluster.

PopDel completes the analysis of the 150 samples of the PDC within 2 days and 8 hours of

wallclock time, requiring 4 days and 15 hours of total CPU time. This result is similar to

that of Smoove, which takes 3 days and 16 hours of wallclock time, or 4 days and 7 hours

of total CPU time. Consequently, both tools are several times faster than Delly, which

requires 16 days and 9 hours of wallclock time (15 days and 11 hours of CPU time). The

discrepancy in Delly's wallclock and CPU time might be explained by I/O bottlenecks that

force Delly's process to wait for the data to be read from the drive and written into the

main memory or vice versa.

Overall, the results show that PopDel performs very well in terms of running time. It
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allows the joint calling to be performed in short time even for large sample numbers,

especially when one considers the easy and e�ective parallelization on the sample level

(for the pro�ling process) or on the chromosome level (for the calling process). Owing

to PopDel's low memory consumption demonstrated in the Paragraph Running Time and

Memory Consumption of Subsection 4.3.3.1, this trivial parallelization is often feasible -

even for high sample numbers. This can reduce the wallclock time to a few hours instead

of days on most compute clusters.

4.6 Polaris Kids Cohort

While the PDC provides the possibility to inspect population structure, the Polaris HiSeqX

Kids Cohort enables the inspection of inheritance patterns. It expands the PDC by 50

genomes of children whose parents are part of the PDC, thereby providing 50 family trios.

Since one of the child genomes of the PKC (HG03170) was not available for download at

the time of this thesis, all results presented here are based on the 49 complete trios.

4.6.1 Variant Calling Protocol

Mapping of the FASTQ �les of the PKC genomes to the human reference genome GRCh38

was performed using the same tools and parameters as previously described for the PDC

(see Subsection 4.5.1). In the subsequent SV calling, all 147 WGS samples of the 49 family

trios were processed together. No pedigree information was provided to the SV callers. All

SV callers were provided the same shu�ed sample order to avoid any potential in�uence

of the sample order. Variant calling and genotyping were performed using Delly, PopDel

(1.2.2) and Smoove with the same work�ows as for the PDC (see Subsection 4.5.1).

4.6.2 Comparison Protocol

For the comparisons of the predicted genotypes of the PKC only the autosomes were

considered. This was done because in general only the genomes of biological females have

two copies of the X chromosome, invalidating the assumption that a variant allele can be

present in zero, one or two copies for the gonosomes of biological males. All call sets were

�ltered to only contain deletions of size 500 to 10,000 that did not have any overlap with

centromeric regions (see 4.5.2). To avoid an in�ation of the applied metrics, calls were

further �ltered based on their adherence to the HWE (see Subsection 4.1.3).

Mendelian Inheritance Error Rate. The call sets were subjected to a progressively

strict �ltering based on the genotype quality (GQ). A variant was considered to be present

in a trio if at least one member of the trio had a heterozygous or homozygous variant

genotype. A variant was removed for the whole trio if at least one member of the trio had
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a GQ below the currently tested threshold. Variants with undetermined genotypes for any

member of a trio were also removed for that trio. For the assessment of the MIER the

three genotypes of each trio were checked for their consistency with the Mendelian rules of

inheritance as described in Subsection 4.1.3. If a variant violated those rules (see Equation

4.8) it was considered as inconsistent or an error.

Transmission Rate. The transmission rate was calculated using only deletions that

were exclusive to single trios. This was done to assess the quality of genotypes for rare

variants. Calculations were performed as described in Subsection 4.1.3, Equation 4.10.

De Novo Variants. De novo variants describe variants that arise in the genome of the

o�spring without being present in the parental genomes and as such are relatively rare

events. A study by Kloosterman et al. on 258 family trios reported de novo mutation

rates of 2.94 indels (up to a size of 20 bp) per generation and 0.16 SVs (bigger than 20 bp)

per generation [46]. Despite their lower rate of occurrence they a�ect more nucleotides (91

times as much) and even more coding bases (52 times as much) than indels do. When

breaking down the mutation rates by SV type and size, one expects 1.33 de novo deletions

of size 500-10,000 in the PKC.

To check for the presence of de novo deletions in the PKC among the SVs detected by

PopDel, the GQ threshold was set to 50. Then, deletions with genotype combinations

where the child carried an allele not present in any of the parents were extracted.

4.6.3 Results

Mendelian Inheritance Error Rate. Figure 4.17a demonstrates that Delly, PopDel

and Smoove all achieve very low values for the MIER. When increasing the GQ threshold,

both the number of consistent deletions per trio as well as the MIER decrease. This

underlines the meaningful implementations of the GQ as a quality metric. All call sets can

be �ltered to achieve MIER values below 0.3%. The threshold of 0.3% MIER has been

suggested in an early version of the GIAB benchmark paper by Zook et al. (2020) [92]. The

most relaxed GQ thresholds that come with an MIER below 0.3% are 26 (PopDel), 28

(Delly) and 78 (Smoove). This shows that the GQ values of the di�erent tools, while all

measuring the certainty in the predicted genotypes, are not directly comparable between

di�erent SV callers, as their calculations and scaling can vary.

PopDel exhibits a higher number of consistent deletions per trio than the other SV callers

for the same MIER. This indicates an overall high quality of the genotypes calculated by

PopDel. When �ltering for a MIER just below 0.3%, PopDel detects 1,177 consistent
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Figure 4.17: Genotyping evaluation on 49 trios of the PKC. Cell sets were �ltered for
increasing GQ thresholds. Grey lines indicate the theoretical optima. a MIER by number of
consistent deletions per trio. b Transmission rate by the number of deletions that are unique
to one trio and one parent. c Transmission rate by MIER.

deletions per trio on average (arithmetic mean). Delly and Smoove report 1,161 and 1,128

report consistent deletions respectively.

Transmission Rate. Figure 4.17 shows the transmission rate for deletions that were

exclusive to single trios. When limiting the range of the number of transmissions to 2,349 -

3,595, which is the range in which all deletions detected by Smoove lie, PopDel's transmis-

sion rate lies between 49.47% and 54.2% with a median of 49.58%. This is 0.41%-points

below the theoretical optimum. Delly's transmission rate in this range lies between 49.02%

- 52.81% with a median of 49.52%, being 0.48%-points below the optimum. Smoove's

transmission rate is generally lower, with values ranging from 44.66% to 48.30% and a

median of 47.58%, which is 2.42%-points below the optimum. This is indicative of a slight

undertransmission in Smoove's genotypes. On the other hand, it can be observe that

Smoove's transmission rate is the most robust against over�ltering based on the GQs. As

shown in Figure 4.18c, increasing the GQ threshold for the call set created by Smoove has a

much smaller e�ect on the overall transmission rate than it has for PopDel and Delly. While

Smoove's transmission rate always lies between 44.66% and 48.29%, PopDel's transmission

rate shows a strong increase after a GQ threshold of about 50, going up to 92.27%. Delly

shows a stable transmission rate up to a GQ threshold of 70, after which it increases up

to 71.43%. This demonstrates how one has to be careful when increasing these thresholds

more and more, hoping to only keep the presumed 'best' SVs.

These upper boundaries for the GQ �ltering are not absolute in any way but heavily

depend on the data. For example, the GQ reported by PopDel is calculated from the

di�erence of the PHRED-scaled genotype likelihoods of the best and second best genotype.

It thereby depends on the number of read pairs supporting the SV in question. This in

turn depends on the overall coverage of the sample. Given a higher coverage sample, the

GQ of genotypes with much evidence from the sample in question can be higher, shifting
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Figure 4.18: Transmission rate by GQ threshold on 49 trios of the PKC. Grey lines indicate
the theoretical optimum of 50% transmission rate. a Transmission rate for PopDel. b Trans-
mission rate for Delly. c Transmission rate for Smoove.

the point of potential over�ltering to higher GQ values.

De novo Variants. Filtering PopDel's deletion calls for de novo variants as described

in Subsection 4.6.2 yielded a set of 12 de novo deletion candidates. The alignments of the

family trios at the locations of the candidates were manually inspected using the Integrative

Genomics Viewer [75](IGV). This inspection resulted in three likely real de novo deletions:

� A 8901 bp deletion at chr6:93,035,858�93,044,759 in HG01763.

� A 984 bp deletion at chr6:27,132,732�27,133,716 in an exon of the H2BC11 gene of

HG01683.

� A 769 bp deletion at chr7:105,505,500�105,506,269 in an exon of the PUS7 gene of

HG00615.

The deletion in HG01763 could further be con�rmed and phased thanks to the presence

of 25 SNVs at the locus of the deletion. As shown in Figure 4.19, both parents (HG01761,

father and HG01762, mother) are heterozygous carriers of various SNVs within the locus

of the deletion. Their daughter only exhibits homozygous SNVs in this locus, thereby

con�rming that she has one haplotype a�ected by the deletion and one una�ected haplotype

that exhibits the same SNVs as present in one of the paternal haplotypes. Consequently,

the deletion haplotype must have been inherited from the mother. The SNVs used for the

phasing of the deletion are marked with small black arrows in Figure 4.19.

Since all individuals of the PKC originate from the resources of the G1k project, all samples

are reported to be clinically healthy [17]. Therefore, non of the detected de novo variants

is expected to be of medical relevance. This detection of 1-3 de novo deletions is well in

line with the �ndings of Kloosterman et al. [46] and demonstrates how PopDel can be used

to detect de novo deletions in larger cohorts.
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Figure 4.19: De novo deletion found by PopDel. The light gray interval highlights the
location of the de novo deletion found in the child (HG01763, bottom). The father (HG01761,
top row) and mother (HG01762, middle row) do not carry the deletion and are heterozygous
carriers of various SNV at the locus of the de novo deletion. Colored bars indicate SNVs.
Arrows mark SNVs that were used for the phasing of the variant.

4.7 Simons Genome Diversity Project

The Simons Genome Diversity Project [62] (SGDP) data set consists of the public WGS data

of 300 individuals. As does the PDC, this data set aims at providing a resource for gaining

insight into human diversity and population structures [62]. While the PDC focuses on

providing a larger number of samples per continental group, the SGDP covers many more

populations. The 300 samples of the SGDP are distributed across 142 populations from

seven continental regions: Africa, America, Central Asia & Siberia, East Asia, Oceania,

South Asia and West Eurasia.

Similar to the analysis on the PDC, PopDel was run on the SGDP to assess what population

structures can be revealed only using the count of detected deletion alleles.

4.7.1 Variant Calling Protocol

The reads of the 300 samples of the SGDP were downloaded and mapped to GRCh38

using the same approach as described for the PDC in Subsection 4.5.1. The SV calling of

deletions of size 500-10,000 on the autosomes using PopDel (1.2.2) was performed with a

maximum coverage of 120 and the '�representative-contigs' option. This option lets PopDel

avoid loading redundant header information and is therefore useful for saving memory when

analyzing larger cohorts.
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Figure 4.20: PCA based on deletion counts on the SGDP data. The color of the data
points encode for the samples reported continental origin. a PCA without samples of African
origin. b PCA of all SGDP samples. c Detailed view of a cluster of 24 samples of African
origin reveals subclustering by population. The data points were labeled with their reported
population.

4.7.2 Results

PCA. The PCA was calculated based on the count of deletion alleles per sample and SV

as described in Subsection 4.7.2. The data points of the PCA plot in Figure 4.20b were

colored by the reported continental region of origin of the samples. A good clustering by

continental origin can be observed. The �rst principal component separates the African

samples from the other continental regions. This is well in line with the observations on

the PCA of the PDC in Figure 4.16. The second principal component separates the non-

African samples from each other. The samples of Central Asian & Siberian, East Asian

and Native American origin show no clear separation in this visualization due to a lack of

dimensions. When excluding the African samples from the analysis (see Figure 4.20a), the

separation becomes sharper.

The PCA on the deletion allele counts can reveal even �ner population structures. When

zooming further into the visualization (Figure 4.20c), one can see that the samples that

originate from the same population tend to be located in close vicinity of each other in the

PCA plot.

t-SNE. Figure 4.21a shows the t-SNE of the deletion allele counts for all continental

groups. The continental clusters are visible more clearly than in the PCA plot. The

detailed view on the cluster that contains almost all samples of African origin (Figure

4.21b) demonstrates that the subclustering by population has also been preserved. The

�ve African samples that are not part of the African cluster are of Mozabite (2), Saharawi

(2) and Somali (1) lineage. They are placed closer to the cluster of West Eurasian samples.
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Figure 4.21: t-SNE based on deletion counts on the SGDP data. The color of the data
points encode for the samples reported continental origin. a t-SNE of all SGDP samples. b
Detailed view of the cluster containing most samples of African origin reveals subclustering
by population. The data points were labeled with their reported population. c Overlay of the
t-SNE and a partial world map shows how the clusters coincide with their geographic regions
of origin. The t-SNE was placed over the world map without distortions.

These are the same �ve African samples that are placed closest to the West Eurasian

Cluster in the PCA plot in Figure 4.20b. The Mozabite and Saharawari samples a placed

closer together in the t-SNE, which matches their relative geographical vicinity of the two

populations (western and northern Sahara), while the Somali sample, whose population

resides in an area on the horn of Africa, is placed further away.

Figure 4.21c shows the t-SNE placed over a world map. This demonstrates how the con-

tinental clusters coincide (with some degree of tolerance) with their actual geographical

origin. The placement of the American cluster close to Siberia is also very accurate, consid-

ering that Alaska and Siberia were once connected via the Bering land bridge that allowed

multiple migration events between the continents [24;28;88].

The results for the SGDP show how the PCA or statistical methods like t-SNE on deletion

allele counts can be used to get insight into even �ne-grained (sub)population structures,

despite the deletion allele counts representing only a very small piece of information on
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the variation in the samples. The geographic vicinity of populations and ancient migration

routes that both play a key role in the genetic makeup of populations can also be revealed.

4.8 49,962 Icelandic Genomes

During development, an early version of PopDel (V0.1-alpha-c74a6c0) was tested on WGS

data of 49,962 Icelanders. The data was provided by deCODE genetics in Iceland where

the analysis was performed. The aim was to examine PopDel's performance on very big

data sets and compare its results with those of previous studies.

Furthermore, the Icelandic genomes included 6,794 family trios that were analyzed with

PopDel (1.0.6) to gain insights on transmission rate and MIER.

In a third application on the Icelandic data, PopDel was applied in a targeted fashion on

the genomic vicinity of the LDLR gene. This lead to the detection of a previously unknown

variant of medical interest in the LDLR gene. For details, refer to Section 1.8 discussing

the publication that resulted from this �nding.

4.8.1 Variant Calling Protocol

PopDel was applied on the Icelandic data set using mostly default parameters and the

minimum deletion length being set to 500. The joint deletion calling was performed in

multiple regions of the chromosomes in parallel using the '-r' option.

4.8.2 Results

Detection of Overlapping Deletions. As described in Subsection 3.3.3, PopDel ap-

plies sample-speci�c genotype weights (Equation 3.13). The weights guarantee that dele-

tions that occur only in a minority of the samples in a cohort are not missed because most

samples do not carry the respective deletion. Together with PopDel's multiple initializa-

tions of initial deletion lengths in the window-wise deletion detection (Algorithm 3.1) this

allows PopDel to detect di�erent deletions that are overlapping each other. This also holds

if one of the deletions has a much lower allele frequency than the other. Figure 4.22 shows

an example of such a case where a smaller deletion that was only present in 2 out of 49,962

samples was completely overlapped by a more common larger deletion. Both carriers of

the the small deletion had a heterozygous genotype. This resulted in an allele frequency of

only 2.02 ·10−4 for the small deletion. Despite the low allele frequency and the overlapping

larger deletion the small deletion was correctly detected and genotyped by PopDel.

Mendelian Inheritance Error Rate The MIER was calculated based on the PopDel

deletion genotypes on the 6,794 family trios of the Icelandic data. A �lter requiring a
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Figure 4.22: Overlapping deletions detected by PopDel in 49,962 Icelandic WGS samples
(IGV screenshot). Read pairs supporting a deletion are colored red. The larger deletion (top)
had a common allele frequency in the cohort, while the smaller deletion (bottom two samples)
was only present in two samples.

GQ of at least 26 in all members of a trio for the analyzed deletions was applied. This

resulted in an average of 1,963 deletions per trio that are consistent with the Mendelian

laws of inheritance. The resulting error rate was 1.4%, making 98.6% of the genotype

combinations compatible with the Mendelian rules.

Transmission Rate. The transmission rate on the 6,794 family trios was calculated on

all detected deletions that were exclusive to a single trio. One parent was required to be

a heterozygous carrier and the other parent had to be a non-carrier of the variant. The

same GQ threshold of 26 as for the calculation of the MIER was applied. This resulted

in a transmission rate of 49.2% in the remaining 4,256 deletions. A two-sided binomial

test showed no signi�cant di�erence from the expected 50% transmission rate (p-value =

0.32).
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Chapter 5

Conclusion and Outlook

This �nal chapter recapitulates and summarizes the contributions of this thesis. Further,

it discusses future applications and improvements to the approaches of this thesis.

5.1 Summary of Contributions

This thesis presents and implements the new joint calling approach PopDel and demon-

strates how PopDel scales to tens of thousands of genomes. The thesis further introduces

the PopDel read pair pro�le format for the e�cient storage and retrieval of information

from mapped paired-end NGS data. This thesis also presents a comprehensive multi-

sample SV calling and genotyping benchmark that compares various state-of-the-art SV

callers. Lastly, the thesis contributed to the detection of a novel deletion variant of medical

interest in the LDLR gene, to a comprehensive benchmark study of many SV callers and

to the evaluation of the new NRS insertions calling tool PopIns2.

The growing availability and amounts of NGS data poses big challenges and opportunities.

One of the main challenges lies in e�ciently processing the vast amounts of data. A big

opportunity of these growing amounts of data is the expansion of our knowledge about

structural variation and its consequences for the human health. This expanded knowl-

edge will ultimately lead to new therapeutic methods for the treatment of severe disease.

This thesis provides new approaches and tools for the detection and genotyping of SVs

in population-scale data by presenting the PopDel approach. PopDel is implemented as

a freely available and accessible program in the C++ programming language. PopDel ef-

�ciently scales to tens of thousands of WGS samples as shown by the analysis of almost

50,000 Icelandic genomes (see Section 4.8). PopDel's joint calling and genotyping of dele-

tions compares favorably to other established SV callers in terms of running time, memory

consumption and quality of the results. This quality holds on simulated and real data
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for both single samples or larger cohorts, as the benchmarks of Chapter 4 demonstrate.

PopDel achieves the demonstrated quality while being fully unaware of the actual sequence

of the NGS data and only relying on the positional information of the read pairs. The po-

sitional information of the read pairs of all samples in the cohort drives the joint calling

and genotyping of SVs in PopDel's likelihood ratio model. This statistical model does not

rely on rigid thresholds, but �exibly bases its predictions on the individual distributions

of insert sizes in the analyzed genomes.

In addition to the joint calling and genotyping of deletions, this thesis presents prototypes

for the joint detection and genotyping of duplications and inversions in PopDel. The

prototypes are not yet fully developed, but already demonstrate excellent detection rates

and good genotyping performance on simulated data. Further, the �rst steps for the

extension of PopDel towards the processing of translocations have already been undertaken.

Many tools rely on the extraction of read pairs that are later used as evidence for the

detection of SVs. This thesis advances this approach by the introduction of the PopDel

read pair pro�les. Instead of storing read pairs in a raw format like FASTQ, only the

most relevant information for the SV-calling is extracted and stored in a binary format.

The binary format drastically reduces the disk space requirements for storing the data

for later use. The structure and the self-contained index of the read pair pro�les allows

for e�cient searching of the read pair pro�les. The pro�les enable e�cient streaming and

targeted analyses of single genes as demonstrated by the detection of the new LDLR variant

described in Section 1.8.

The benchmarks presented in Chapter 4 are another contribution of this thesis. Most

benchmarks for SV callers focus on the performance in a single sample scenario. The

benchmarks of this thesis put an emphasis on large cohorts for the evaluation of SV callers.

The benchmarks show how the di�erent tools scale to growing sample numbers and how

the size of a cohort in�uences the quality of the results. Further, the benchmarks bene�t

from family-scale or population-scale metrics. The call sets that resulted from the deletion

benchmarks are publicly available along with all scripts necessary for the reproduction of

the results. The scripts, call sets and approaches of the benchmarks can be used in future

e�orts for the benchmarking of SV callers.

The analyses of the Polaris Diversity Cohort and the data of the Simons Genome Diversity

Project (Sections 4.5 and 4.7) have demonstrated the suitability of the PopDel approach

for the exploration of population structures. The analyses underline the power of PCA

and UMAP in the context of population genomics by showing how both methods yield

conclusive results despite being only applied on the count of deletion alleles per sample.

The work in the course of this thesis has further resulted in contributions to other publica-
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tions in the �eld of human genetics and SV detection. Application of the PopDel program

was directly responsible for the detection and publication of the previously unknown variant

of medical interest in the LDLR gene that has been described by Bjornsson et al. (2021) [8].

The work on the benchmarks of Sarwal et al. (2020) [77] provides an additional resource

for the assessment of di�erent SVs in di�erent data sets. The methods for the analysis of

population-scale data that have been developed during the work on the benchmarks for

PopDel have also been directly applied in the benchmarks of PopIns2 in Krannich et al.

(2022) [50].

5.2 Future Potential and Applications

As demonstrated in the respective sections, PopDel's deletion calling and genotyping is in

a reliable state and competitive with other state-of-the-art SV callers. The detection and

genotyping of duplications, inversions and translocations was a later addition to the scope

of this thesis as well as to PopDel and is still subject to improvements.

PopDel's model for the genotyping of duplications can be improved by adjusting the read

pair distance deviation for the in�uence of the distance between reads and the duplication

breakpoint. This adjustment has already been implemented for inversions (see Subsection

3.3.3.4) and can be transferred to duplications. Further, investigation of the deviation of the

observed and the theoretically expected ratio of read pairs that support the variant allele

or the reference allele will lead to a better understanding of the signatures of heterozygous

and homozygous carriers of duplications. This improved understanding can be used for the

implementation of a better, theoretically well-founded genotyping model for duplications

in PopDel.

PopDel does currently not characterize all possible breakpoints of inversions. By speci�-

cally analyzing each breakpoint of an inversion individually, the breakpoints can be de�ned

more accurately and called individually. This is necessary to account for the e�ect of micro-

deletions at the breakpoints. A possible approach for this improvement lies in separately

calling and genotyping the inversion breakpoints suggested by the presence of FF and RR

read pairs instead of processing FF and RR read pairs together.

Especially the detection and genotyping of translocation will have to undergo fundamental

improvements before it can be considered reliable. First, the high number of false positives

must be addressed by revising the current thresholds for read pairs in the di�erent chro-

mosomal and positional clusters that are used for generating the translocation hypothesis.

Additional internal tracking of the number of read pairs that map to di�erent chromosomes

as PopDel progresses along the genome are another potential solution for identifying regions

in which translocations cannot be reliably called. Secondly, the four possible breakpoints
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of a translocation must be characterized individually instead of the currently implemented

conjoint characterization. This individual characterization of breakpoints allows to better

assess the exact breakpoints and is necessary to account for the e�ect of micro-deletions

at the breakpoints.

Currently, PopDel does not calculate a joint variant likelihood for SVs other than deletions.

By adapting the sample-speci�c genotype weights that are already being used for the calling

of deletions, calculation of a joint variant likelihood becomes possible. This joint genotype

likelihoods can then be used in a likelihood ratio test for assessing the statistical signi�cance

of a detected non-deletion variant.

While the initial tests on simulated data have been performed as a proof of concept,

additional benchmarks on simulated and real data are required for a reliable assessment

of PopDel's performance regarding SVs other than deletions. To address the problem

of a comprehensive ground truth for duplications, inversions and possibly translocations,

the well-studied haploid assemblies of CHM1 [26] and CHM13 [81] can be used to form an

arti�cial diploid genome for the purpose of SV calling and genotyping benchmarks [35].

In the course of this thesis, the PopDel read pair pro�le format has already evolved from

only storing the locations of the read pairs and their insert sizes to also containing the

read pair orientations, the number of soft-clipped bases and read pairs mapping to di�erent

chromosomes. Further additions like the integration of coverage information or GC-content

for the integration of read depth as an additional signature for the detection of CNVs are

potential expansions of PopDel.

PopDel's capability of processing samples on population-scale and generating VCFs that

contain the genotypes of tens of thousands of samples o�ers further opportunities. With

enough samples, PopDel could integrate the calculation of metrics like the Hardy-Weinberg-

Equilibrium or the linkage between di�erent SVs for an additional annotation of its output.

These information could be used to assess the quality of variants or to �lter the variants

to meet the needs of the speci�c use case.

Linked-reads are a valuable data source for the detection of SVs but have not been discussed

in this thesis. Linked-reads are short-reads but provide long range information that can

be used for mapping reads more reliably in repetitive regions of the genome and for the

assessment of SVs. By applying PopDel on mapped linked-read data, it should be possible

to get more accurate SV calls in those repetitive regions of the genome. An expansion of

the read pair pro�le format to also hold information on the barcodes of the linked-read

data that hold the long-range information could further prove valuable for the phasing

of detected variants. The detection of large SVs can also bene�t from this long-range

information. For example, observing read pairs with the same barcode that are further
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apart than a sampled distribution of molecule sizes suggest, can be seen as a signal of a

large deletion. This approach of detecting deletions is similar to the currently implemented

deletion calling in PopDel, but would rely on the much larger molecule size on which the

linked-reads are based on. The large molecule size makes the molecules more likely to

contain deletions.

With the expected increase in population-scale studies and the ongoing decrease of se-

quencing costs, there will be a growing number of studies and data sets that can bene�t

from joint SV calling like implemented in PopDel. One of those data sets is already now a

promising point of future research involving PopDel: the new release of the UK Biobank.

Collaborators at deCODE genetics have applied PopDel successfully on 150,000 WGS sam-

ples of the new UK Biobank release and created a call set of many deletions. The coming

analysis of this call set promises to yield some interesting new deletions as additions to

catalogs of SVs and for the use in GWAS, thereby helping to deepen our understanding of

structural variation and its role in human health.
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Nomenclature

contig . . . . . Contiguous sequence

GWAS . . . . Genome-wide association study

bp . . . . . . . . . base pairs

CDBG . . . . Colored De Bruijn Graph.

CNV . . . . . . Copy Number Variant.

CNV . . . . . . Copy Number Variant

ddNTP . . . . Didesoxynukleosidtriphosphat

DNA . . . . . . Deoxyribonucleic Acid

FF . . . . . . . . . Forward-Forward orientation (of a read pair)

FR . . . . . . . . . Forward-Reverse orientation (of a read pair)

G1k . . . . . . . 1000 Genomes Project

GATK HC GATK Haplotype Caller

GATK RCM GATK Reference Con�dence Model

GoNL . . . . . Genome of the Netherlands

GQ . . . . . . . . Genotype Quality.

GRCh37 . . Genome Reference Consortium Human Build 37

HPC . . . . . . High-Performance Computing
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HWE . . . . . . Hardy-Weinberg-Equilibrium

I/O . . . . . . . . Input/Output

IGV . . . . . . . Integrative Genomics Viewer

indels . . . . . . Insertion or Deletions variants (typically < 50 bp).

LDL . . . . . . . Low-Density Lipoprotein

LDLR . . . . . Low-Density Lipoprotein Receptor

LRS . . . . . . . Long-Read Sequencing

Megabases Millions of bases

MIER . . . . . Mendelian Inheritance Error Rate.

MMBIR . . Microhomology-mediated break-induced replication

mRNA . . . . Messenger RNA

NAHR . . . . Non-Allelic Homologous Recombination

NGS . . . . . . . Next Generation Sequencing.

NHEJ . . . . . Non-Homologous End Joining

NRS . . . . . . . Non Reference Sequence. A piece of DNA sequence that is not observed

in the reference genome. When the sample genome is aligned to the refer-

ence NRS variants typically manifest as insertions even though the sequence

might in fact be ancestral and simply missing/deleted from the reference.

PCA . . . . . . Principal Component Analysis

PCR . . . . . . Poylmerase Chain Reaction

PDC . . . . . . Polaris HiSeqX Diversity Cohort

PKC . . . . . . Polaris HiSeqX Kids Cohort

RF . . . . . . . . . Reverse-Forward orientation (of a read pair)
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RNA . . . . . . Ribonucleic Acid

RR . . . . . . . . Reverse-Reverse orientation (of a read pair)

BAM . . . . . . Binary Alignment/Map

SAM . . . . . . Sequence Alignment/Map

SGDP . . . . . Simons Genome Diversity Project

SGDP . . . . . Simons Genome Diversity Project

SNVs . . . . . . Single Nucleotide Variants

SVs . . . . . . . . Structural Variants (typically a�ecting > 50 bp)

VCF . . . . . . . Variant Call Format

WGS . . . . . . Whole Genome Sequencing
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A.1 Overview of PopDel Parameters

A.1.1 PopDel Pro�le

PopDel [OPTIONS] BAM/CRAM-FILE

PopDel [OPTIONS] BAM/CRAM-FILE CHROM:BEGIN-END [CHROM:BEGIN-END

...]

Iterates over (user de�ned regions of) a BAM or CRAM �le in tiling windows of 256 bp.

For each window, PopDel promotes all read pairs whose ends pass the quality checks.

PopDel saves their insert size deviation form the mean together with their position in

'*BAM/CRAM-FILE*.pro�le', together with the insert sizes distribution of each read

group. Only insert sizes up to a maximum length (option --max-deletion-size) are con-

sidered.

-r, --reference REF Reference genome version used for the mapping. Not used when using

custom sampling intervals (option '-i'). One of 'GRCh37', 'GRCh38', 'hg19', 'hg38' (case-

insensitive). Default: GRCh38.

-b, --blacklist FILE BED �le of regions which will be ignored during translocation detection.

-d, --max-deletion-size NUM Maximum size of deletions. Default: 10000.

-i, --intervals FILE File with genomic intervals for parameter estimation instead of default

intervals (see README). One closed interval per line, formatted as 'CHROM:START-

END', 1-based coordinates.

-mrg, --merge-read-groups Merge all read groups of the sample. Only advised if they share

the same properties!

-n, --min-read-num NUM Minimum number of read pairs for parameter estimation (per

read group) Default: 50000.

-o, --out FILE Output �le name. Default: *BAM/CRAM-FILE*.pro�le.

-f, --�ags-set NUM Only use reads with all bits of NUM set in the bam �ag. Default: 1.

-F, --�ags-unset NUM Only use reads with all bits of NUM unset in the bam �ag. Default:

3852.

-ir, --index-region-size NUM Size of the index region intervals. Default: 10000.

-mq, --min-mapping-qual NUM Only use reads with a mapping quality above NUM. De-

fault: 1.
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-R, --reference-�le FILE FASTA �le of the reference genome. Only required for CRAM

�les whose header entries point to the wrong �le.

-s, --min-align-score NUM Only use reads with an alignment score relative to read length

above NUM. Default: 0.8.

-u, --min-unclipped NUM Only use reads of which at least NUM bases are not clipped.

Default: 50.

-sm, --sample-name STRING Set sample name.Default: @RG SM tag in BAM-�le. BAM-

�le name if tag is not present.

A.1.2 PopDel View

PopDel PROFILE-FILE

Displays a pro�le �le in human readable format.

-c, --clipping Print the number of clipped bases of the read pairs.

-e, --header Write the header.

-E, --onlyHeader Only write the header.

-i, --histograms Write insert size histograms.

-o, --orientation Print orientation of the read pairs.

-r, --region CHR:BEGIN-END Limit view to this genomic region.

-t, --translocations Print the block of translocated records.

-tt, --onlyTranslocations Only print the block of translocated records.

A.1.3 PopDel Call

PopDel [OPTIONS] ROFILE-LIST-FILE PopDel [OPTIONS] PROFILE-FILE1 PROFILE-

FILE2 [PROFILE-FILE3 ...]

Performs joint-calling of deletions using a list of pro�le-�les previously created using the

'popdel pro�le' command. The input pro�les are either speci�ed directly as arguments or

listed in PROFILE-LIST-FILE (one �lename per line).

-A, --active-coverage-�le FILE File with lines consisting of "ReadGroup maxCov". If this

value is reached no more new reads are loaded for this read group until the coverage drops

again. Further, the sample will be excluded from calling in high-coverage windows. A

value of 0 disables the �lter for the read group.
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-a, --active-coverage NUM Maximum number of active read pairs (~coverage). This value

is taken for all read groups that are not listed in 'active-coverage-�le'. Setting it to 0

disables the �lter for all read groups that are not speci�ed in 'active-coverage-�le'. In

range [0..inf]. Default: 100.

-d, --max-deletion-size NUM Maximum size of deletions. Default: 10000.

l, --min-init-length NUM Minimal deletion length at initialization of iteration. Default:

4 * standard deviation. -m, --min-length NUM Minimal deletion length during iteration.

Default: 95th percentile of min-init-lengths.

-o, --out FILE Output �le name. Default: popdel.vcf.

-r, --region-of-interest REGION Genomic region 'chr:start-end' (closed interval, 1-based

index). Calling is limited to this region. Multiple regions can be de�ned by using the

parameter -r multiple times.

-R, --ROI-�le FILE File listing one or more regions of interest, one region per line. See

parameter -r.

s, --min-sample-fraction NUM Minimum fraction of samples which is required to have

enough data in the window. In range [0.0..1.0]. Default: 0.1.

-x, --del-only Exclusively call deletions. Ignore other SVs.

-b, --bu�er-size NUM Number of bu�ered windows. In range [10000..inf]. Default: 200000.

-c, --min-relative-window-cover NUM Determines which fraction of a deletion has to be

covered by signi�cant windows. In range [0.0..2.0]. Default: 0.5.

-e, --representative-contigs Use the contig names and lengths of the �rst sample for all

samples. Reduces memory consumption, but requires all samples to have the same contig

names and lenghts.

-f, --pseudocount-fraction NUM The biggest likelihood of the background distribution will

be divided by this value to determine the pseudocounts of the histogram. Bigger values

boost the sensitivity for HET calls but also increase the chance of missclassifying HOMDEL

or HOMREF as HET calls. In range [50..inf]. Default: 500.

-F, --output-failed

-n, --no-regenotyping Outputs every potential variant window without re-genotyping and

merging.

-p, --prior-probability NUM Prior probability of a deletion. In range [0.0..0.9999]. Default:

0.0001.



v

-t, --iterations NUM Number of iterations in EM for length estimation. Default: 15.

-u, --unsmoothed Disable the smoothing of the insert size histogram.

A.2 Default Sampling Regions for the PopDel Pro�ling

chr1:35000000-36000000

chr2:174000000-175000000

chr3:36500000-37500000

chr4:88000000-89000000

chr5:38000000-39000000

chr6:38000000-39000000

chr7:38000000-39000000

chr8:19000000-20000000

chr9:19000000-20000000

chr10:19000000-20000000

chr11:19000000-20000000

chr12:19000000-20000000

chr13:25000000-26000000

chr14:25000000-26000000

chr15:25000000-26000000

chr16:25000000-26000000

chr17:31000000-32000000

chr18:31000000-32000000

chr19:31000000-32000000

chr20:33000000-34000000

chr21:21000000-22000000

chr22:25000000-26000000
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A.3 Parameters for NGS Data Simulation with art_illumina

-ss HS25 -p -l 150 -f 15 -m 300 -s 50 -rs ${RANDOMSEED}

A.4 Tables of Simulation Benchmarks without Genotype Con-

sideration

Table A.1: TP on uniform deletion simulation samples.

Samples PopDel Delly Manta Smoove GRIDSS

1 1157 1166 1145 1140 1148
2 1414 1408 1395 1380 1396
3 1530 1517 1509 1491 1515
4 1587 1583 1572 1553 1579
5 1633 1630 1616 1596 1625
6 1652 1645 1633 1611 1643
7 1672 1664 1652 1629 1663
8 1690 1678 1666 1643 1679
9 1696 1683 1671 1648 1685
10 1702 1687 1676 1653 1690
20 1748 1732 1723 1702 1736
30 1766 1748 1739 1718 1749
40 1775 1757 1746 1728 1756
50 1781 1763 1754 1734 1764
60 1783 1765 1755 1737 1767
70 1787 1767 1758 1739 1771
80 1789 1769 1759 1740 1771
90 1790 1770 1761 1741 1770
100 1790 1771 1762 1742 1772
200 1794 1777 1761 1748 1773
300 1794 1782 1761 1750 1777
400 1795 1785 1764 1751 1779
500 1795 1787 1763 1751 NA
600 1793 1790 1764 1753 NA
700 1795 1792 1765 1755 NA
800 1795 1793 1765 1755 NA
900 1795 1794 1762 1755 NA
1000 1794 1793 1762 1756 NA
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Table A.2: FP on uniform deletion simulation samples.

Samples PopDel Delly Manta Smoove GRIDSS

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 1 0 0
9 0 0 1 0 0
10 0 0 1 0 0
20 0 0 0 0 0
30 0 0 0 0 0
40 1 0 1 0 0
50 1 0 1 0 5
60 0 0 1 0 9
70 0 0 1 0 17
80 0 0 1 0 29
90 0 1 1 0 58
100 1 1 1 0 69
200 0 2 4 0 82
300 1 3 4 0 134
400 0 5 4 0 309
500 1 5 3 0 NA
600 2 6 4 0 NA
700 1 8 4 0 NA
800 1 11 4 0 NA
900 1 13 4 0 NA
1000 1 13 4 0 NA
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Table A.3: FN on uniform deletion simulation samples.

Samples PopDel Delly Manta Smoove GRIDSS

1 159 150 171 176 168
2 185 191 204 219 203
3 189 202 210 228 204
4 204 208 219 238 212
5 205 208 222 242 213
6 203 210 222 244 212
7 202 210 222 245 211
8 201 213 225 248 212
9 200 213 225 248 211
10 198 213 224 247 210
20 203 219 228 249 215
30 197 215 224 245 214
40 197 215 226 244 216
50 198 216 225 245 215
60 199 217 227 245 215
70 197 217 226 245 213
80 198 218 228 247 216
90 198 218 227 247 218
100 199 218 227 247 217
200 199 216 232 245 220
300 202 214 235 246 219
400 203 213 234 247 219
500 203 211 235 247 NA
600 205 208 234 245 NA
700 204 207 234 244 NA
800 204 206 234 244 NA
900 204 205 237 244 NA
1000 206 207 238 244 NA
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Table A.4: TP on G1k deletion simulation samples

Samples PopDel Delly Manta Smoove

1 176 163 178 192
2 290 262 287 303
3 379 343 369 388
4 417 378 410 427
5 456 408 456 470
6 491 441 492 505
7 520 466 528 537
8 541 483 551 559
9 558 502 569 581
10 582 524 592 604
20 773 717 790 803
30 913 855 938 952
40 999 948 1025 1042
50 1085 1040 1108 1127
60 1159 1126 1193 1215
70 1272 1248 1304 1331
80 1339 1313 1371 1400
90 1401 1371 1435 1464
100 1466 1443 1502 1534
200 2048 2029 2088 2138
300 2452 2431 2442 2559
400 2721 2699 2639 2846
500 2962 2944 2856 3111
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Table A.5: FP on G1k deletion simulation samples

Samples PopDel Delly Manta Smoove

1 0 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 1 1 0
5 0 1 1 0
6 0 1 1 0
7 0 1 1 1
8 0 1 1 1
9 1 1 1 1
10 2 1 1 1
20 2 1 7 0
30 5 1 8 0
40 4 2 9 0
50 4 1 8 0
60 5 3 12 0
70 9 3 13 0
80 8 3 15 0
90 8 4 16 0
100 8 4 16 0
200 13 10 18 0
300 16 13 20 0
400 13 17 24 0
500 15 26 28 0
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Table A.6: FN on G1k deletion simulation samples

Samples PopDel Delly Manta Smoove

1 35 48 33 19
2 42 70 45 29
3 46 82 56 37
4 48 87 55 38
5 47 95 47 33
6 47 97 46 33
7 51 105 43 34
8 54 112 44 36
9 59 115 48 36
10 60 118 50 38
20 86 142 69 56
30 100 158 75 61
40 110 161 84 67
50 112 157 89 70
60 129 162 95 73
70 138 162 106 79
80 140 166 108 79
90 144 174 110 81
100 150 173 114 82
200 202 221 162 112
300 239 260 249 132
400 255 277 337 130
500 284 302 390 135

Table A.7: TP on duplication simulation samples.

Samples PopDel Delly Manta Smoove

1 1182 1174 1139 1073
2 1441 1435 1387 1329
3 1554 1547 1506 1444
4 1616 1608 1570 1509
5 1662 1652 1614 1555
6 1677 1671 1628 1569
7 1695 1690 1651 1588
8 1713 1706 1666 1604
9 1719 1712 1672 1617
10 1723 1717 1676 1623
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Table A.8: FP on duplication simulation samples.

Samples PopDel Delly Manta Lumpy

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 1 0
6 0 0 2 0
7 0 0 2 0
8 0 0 2 0
9 0 0 2 0
10 0 0 2 0

Table A.9: FN on duplication simulation samples.

Samples PopDel Delly Manta Lumpy

1 134 142 177 243
2 158 164 212 270
3 165 172 213 275
4 175 183 221 282
5 176 186 224 283
6 178 184 227 286
7 179 184 223 286
8 178 185 225 287
9 177 184 224 279
10 177 183 224 277

Table A.10: TP on inversion simulation samples.

Samples PopDel Delly Smoove

1 1206 1208 909
2 1456 1460 1131
3 1566 1573 1255
4 1627 1636 1322
5 1674 1680 1372
6 1689 1696 1403
7 1708 1715 1432
8 1724 1731 1450
9 1730 1737 1460
10 1735 1741 1467



xiii

Table A.11: FP on inversion simulation samples.

Samples PopDel Delly Smoove

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0

Table A.12: FN on inversion simulation samples.

Samples PopDel Delly Smoove

1 110 108 407
2 143 139 468
3 153 146 464
4 164 155 469
5 164 158 466
6 166 159 452
7 166 159 442
8 167 160 441
9 166 159 436
10 165 159 433
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A.5 Tables of Simulation Benchmarks with Genotype Con-

sideration

Table A.13: Delly genotyping evaluation on uniform deletion simulation data. undercall:
number of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

Samples undercall overcall misscall total

1 219 0 219 2632
2 439 0 439 5288
3 657 0 657 7996
4 861 0 861 10700
5 1069 1 1070 13372
6 1304 1 1305 16050
7 1515 1 1516 18762
8 1735 1 1736 21444
9 1962 1 1963 24088
10 2187 1 2188 26766
20 4338 1 4339 53434
30 6401 1 6402 80022
40 8510 3 8513 106492
50 10546 4 10550 133172
60 12571 4 12575 159722
70 14561 4 14565 186438
80 16743 4 16747 213066
90 18850 5 18855 239608
100 20952 5 20957 266070
200 41631 10 41641 531866
300 61636 20 61656 798722
400 81562 336 81898 1065522
500 101205 714 101919 1330888
600 119772 846 120618 1597062
700 139925 1646 141571 1865548
800 159574 2694 162268 2133754
900 178793 3765 182558 2401086
1000 198413 4198 202611 2667468
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Table A.14: Manta genotyping evaluation on uniform deletion simulation data. undercall:
number of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

Samples undercall overcall misscall total

1 242 2 244 2634
2 470 4 474 5294
3 691 6 697 8006
4 927 7 934 10716
5 1145 9 1154 13392
6 1377 11 1388 16072
7 1597 13 1610 18790
8 1829 18 1847 21478
9 2058 20 2078 24126
10 2286 22 2308 26810
20 4499 35 4534 53496
30 6644 53 6697 80126
40 8987 79 9066 106580
50 11127 95 11222 133288
60 13324 113 13437 159866
70 15523 132 15655 186650
80 17737 152 17889 213304
90 19880 169 20049 239988
100 22073 189 22262 266512
200 45731 678 46409 533200
300 69113 1034 70147 800740
400 91844 1386 93230 1067598
500 114790 1717 116507 1333872
600 137801 2073 139874 1600730
700 159619 2454 162073 1867730
800 183208 3185 186393 2135058
900 207447 3564 211011 2401098
1000 230287 3959 234246 2667480
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Table A.15: PopDel genotyping evaluation on uniform deletion simulation data. undercall:
number of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

Samples undercall overcall misscall total

1 217 1 218 2630
2 410 2 412 5280
3 602 3 605 7972
4 811 3 814 10666
5 1005 3 1008 13326
6 1207 7 1214 15984
7 1393 9 1402 18666
8 1568 10 1578 21322
9 1757 11 1768 23940
10 1956 12 1968 26600
20 3894 18 3912 53088
30 5744 27 5771 79466
40 7580 43 7623 105630
50 9481 58 9539 132144
60 11313 60 11373 158448
70 13021 68 13089 184796
80 14890 75 14965 211114
90 16772 86 16858 237432
100 18649 94 18743 263634
200 37551 184 37735 526904
300 56268 276 56544 790214
400 75227 356 75583 1053784
500 92680 444 93124 1315784
600 112174 524 112698 1579032
700 130079 632 130711 1842264
800 148692 724 149416 2105302
900 167202 796 167998 2367550
1000 185604 886 186490 2630320
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Table A.16: Smoove genotyping evaluation on uniform deletion simulation data. undercall:
number of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

Samples undercall overcall misscall total

1 256 0 256 2632
2 524 0 524 5290
3 780 0 780 7990
4 1046 0 1046 10696
5 1304 0 1304 13364
6 1579 0 1579 16044
7 1843 0 1843 18756
8 2103 0 2103 21442
9 2366 0 2366 24084
10 2634 0 2634 26752
20 5124 0 5124 53384
30 7518 1 7519 79956
40 9985 1 9986 106402
50 12483 1 12484 133042
60 14875 1 14876 159540
70 17342 1 17343 186278
80 19767 1 19768 212830
90 22244 1 22245 239336
100 24695 1 24696 265756
200 48883 2 48885 531516
300 73368 4 73372 797868
400 97763 4 97767 1063926
500 122250 4 122254 1329472
600 145816 5 145821 1594722
700 170014 5 170019 1860402
800 194336 6 194342 2126116
900 218553 8 218561 2391032
1000 242594 11 242605 2656286
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Table A.17: Delly genotyping evaluation on G1k deletion simulation data. undercall: number
of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously classi�ed
as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 69 5 74 430
2 140 13 153 948
3 233 23 256 1468
4 301 27 328 1934
5 371 32 403 2384
6 438 37 475 2834
7 521 44 565 3298
8 609 50 659 3748
9 692 59 751 4224
10 773 74 847 4688
20 1568 161 1729 9456
30 2373 217 2590 14130
40 3069 261 3330 18630
50 3509 387 3896 23174
60 4152 478 4630 27934
70 4617 516 5133 32676
80 4896 589 5485 37238
90 5428 669 6097 41896
100 5832 740 6572 46564
200 10460 1681 12141 93252
300 15429 2632 18061 139948
400 19700 3259 22959 185778
500 22950 4097 27047 232502
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Table A.18: Manta genotyping evaluation on G1k deletion simulation data. undercall:
number of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 43 6 49 428
2 65 12 77 934
3 92 23 115 1448
4 98 26 124 1894
5 112 30 142 2354
6 108 35 143 2796
7 116 41 157 3254
8 110 48 158 3698
9 119 52 171 4152
10 129 58 187 4596
20 275 162 437 9316
30 375 234 609 13928
40 492 320 812 18530
50 491 377 868 22690
60 635 539 1174 27550
70 730 627 1357 32244
80 740 706 1446 36774
90 825 802 1627 41396
100 908 938 1846 46232
200 1813 1755 3568 91320
300 2987 2819 5806 138224
400 3459 3421 6880 182810
500 4092 4521 8613 229020
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Table A.19: PopDel genotyping evaluation on G1k deletion simulation data. undercall:
number of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 45 3 48 426
2 83 11 94 938
3 128 31 159 1474
4 163 35 198 1944
5 190 36 226 2396
6 221 51 272 2862
7 259 56 315 3328
8 287 55 342 3774
9 326 62 388 4226
10 349 70 419 4680
20 772 174 946 9474
30 1090 211 1301 14124
40 1454 256 1710 18708
50 1852 371 2223 23226
60 2299 455 2754 28030
70 2534 469 3003 32744
80 2955 573 3528 37426
90 3482 729 4211 42300
100 4030 803 4833 47084
200 8076 1731 9807 93790
300 12645 2647 15292 141038
400 16737 3442 20179 187344
500 21572 4528 26100 234890
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Table A.20: Smoove genotyping evaluation on G1k deletion simulation data. undercall:
number of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 28 6 34 428
2 50 18 68 938
3 70 31 101 1456
4 79 41 120 1914
5 87 50 137 2368
6 95 61 156 2812
7 106 70 176 3270
8 119 83 202 3724
9 130 90 220 4166
10 145 97 242 4614
20 285 204 489 9268
30 418 323 741 13918
40 554 434 988 18456
50 676 549 1225 22850
60 753 668 1421 27538
70 892 784 1676 32330
80 1012 887 1899 36884
90 1131 996 2127 41474
100 1241 1110 2351 46094
200 2493 2208 4701 91836
300 3960 3484 7444 138328
400 4851 4437 9288 183820
500 5939 5649 11588 229828

Table A.21: Delly genotyping evaluation on duplication simulation data. undercall: number
of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously classi�ed
as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 795 0 795 2632
2 1612 0 1612 5274
3 2400 0 2400 7964
4 3202 0 3202 10654
5 3997 0 3997 13316
6 4803 0 4803 15970
7 5610 0 5610 18680
8 6400 0 6400 21334
9 7209 0 7209 23960
10 8005 0 8005 26614
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Table A.22: Manta genotyping evaluation on duplication simulation data. undercall: number
of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously classi�ed
as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 824 0 824 2632
2 1682 0 1682 5274
3 2495 0 2495 7970
4 3324 0 3324 10664
5 4141 0 4141 13328
6 4989 0 4989 16000
7 5810 0 5810 18696
8 6643 0 6643 21376
9 7485 0 7485 24010
10 8318 0 8318 26682

Table A.23: PopDel genotyping evaluation on duplication simulation data. undercall: num-
ber of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 463 74 537 2484
2 941 136 1077 4998
3 1408 203 1611 7552
4 1893 263 2156 10114
5 2350 336 2686 12618
6 2837 394 3231 15172
7 3303 456 3759 17752
8 3756 514 4270 20290
9 4232 589 4821 22762
10 4726 653 5379 25298

Table A.24: Smoove genotyping evaluation on duplication simulation data. undercall: num-
ber of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously
classi�ed as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 389 78 467 2476
2 728 153 881 4960
3 1065 216 1281 7520
4 1415 286 1701 10072
5 1755 372 2127 12558
6 2128 443 2571 15080
7 2482 515 2997 17636
8 2831 581 3412 20180
9 3141 662 3803 22642
10 3510 726 4236 25182
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Table A.25: Delly genotyping evaluation on inversion simulation data. undercall: number of
alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously classi�ed
as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 166 0 166 2632
2 333 0 333 5282
3 500 0 500 7990
4 672 0 672 10692
5 837 0 837 13352
6 1014 0 1014 16026
7 1183 0 1183 18734
8 1338 0 1338 21410
9 1502 0 1502 24048
10 1682 0 1682 26722

Table A.26: PopDel genotyping evaluation on inversion simulation data. undercall: number
of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously classi�ed
as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 177 90 267 2452
2 359 168 527 4950
3 548 252 800 7484
4 740 336 1076 10022
5 912 421 1333 12512
6 1109 479 1588 15072
7 1301 552 1853 17640
8 1485 612 2097 20196
9 1667 690 2357 22678
10 1857 748 2605 25230

Table A.27: Smoove genotyping evaluation on inversion simulation data. undercall: number
of alleles erroneously classi�ed as non-variant. overcall: number of alleles erroneously classi�ed
as variant. misscall: undercal + overcall. Total: miscall + correctly classi�ed alleles.

SampleNum undercall overcall misscall total

1 544 0 544 2632
2 884 0 884 5290
3 1140 0 1140 7998
4 1431 0 1431 10706
5 1729 1 1730 13378
6 1999 1 2000 16060
7 2261 1 2262 18776
8 2520 1 2521 21462
9 2810 1 2811 24106
10 3095 0 3095 26788
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A.6 Tables of Running Times and Memory Consumption

Table A.28: Delly running time and memory consumption on uniform deletion simulation
data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 37.78 37.12 0.55 534456
2 64.94 63.73 0.84 565912
3 90.43 89.00 1.01 566968
4 115.26 113.61 1.46 567708
5 141.05 139.17 1.72 568628
6 166.45 164.17 2.13 571060
7 191.81 189.15 2.50 572848
8 217.69 214.92 2.61 573720
9 242.14 239.04 2.96 574624
10 267.82 263.61 4.00 579808
20 528.77 516.58 8.68 606624
30 784.02 767.99 12.99 615892
40 1041.84 1021.12 17.12 624200
50 1301.47 1276.70 21.63 637348
60 1564.27 1535.66 25.40 645856
70 1848.81 1815.06 29.88 654100
80 2078.57 2042.14 34.07 656096
90 2368.26 2328.77 38.36 676476
100 2606.81 2563.86 42.05 691072
200 7373.85 5657.48 299.69 1591604
300 12528.14 8851.43 696.62 1667668
400 17422.61 11786.26 1180.90 1771604
500 22212.83 14828.46 1646.83 1875212
600 24431.94 15428.14 1809.80 2083628
700 28925.30 18175.25 2347.50 2175476
800 33573.62 20950.58 2963.55 2280160
900 38037.54 23670.79 3503.84 2387408
1000 42290.08 26347.80 3840.05 2582868
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Table A.29: GRIDSS running time and memory consumption on uniform deletion simulation
data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 215.55 291.57 22.34 5364112
10 1768.86 2137.81 59.69 6808836
20 4158.96 4744.19 91.75 8243980
30 7414.23 8277.34 129.07 9905520
40 11537.82 12714.63 174.20 10901888
50 15816.34 17699.58 228.52 11599312
60 20704.71 23268.14 279.83 11826068
70 26032.19 29164.00 325.62 13034024
80 31751.32 35619.08 376.56 14972540
90 37163.67 41688.03 423.25 14937792
100 43099.55 48261.57 481.00 14080576
200 101457.43 114018.30 866.20 32238488
300 157812.09 187521.85 1396.76 63534080
400 215201.32 279437.37 1891.78 96184796
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Table A.30: Manta running time and memory consumption on uniform deletion simulation
data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 80.77 64.72 1.44 28180
2 170.71 145.72 1.97 28716
3 261.12 234.17 2.93 29268
4 351.19 323.45 3.70 29580
5 441.58 417.18 4.35 30148
6 531.51 503.04 4.82 30484
7 621.71 597.45 5.52 31044
8 712.03 685.98 6.11 32936
9 817.59[s] 777.09 6.99 35404
10 892.36 862.09 8.16 38196
20 1854.74 1794.37 17.22 62720
30 2817.53 2731.33 26.30 89044
40 3764.32 3671.23 35.18 113324
50 4741.15 4629.38 44.15 138748
60 5675.67 5535.52 53.64 158008
70 6575.44 6427.61 61.65 183796
80 7523.74 7347.66 73.54 206868
90 8380.44 8193.85 81.34 229236
100 9327.14 9117.92 89.47 251012
200 19861.51 18054.04 238.82 478776
300 30900.69 26681.30 402.83 706652
400 42007.73 35496.35 575.30 933608
500 52104.97 43990.26 738.52 1155872
600 62212.48 52660.12 901.60 1394396
700 73640.35 61731.40 1079.00 1623096
800 83876.54 70554.22 1249.73 1844356
900 95157.45 79531.51 1426.47 2067932
1000 107458.49 89403.08 1614.71 2291768
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Table A.31: PopDel Pro�le running time and memory consumption on uniform deletion
simulation data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel
mode. mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 6.07 15.5 1.49 30968
2 11.87 30.5 2.66 31036
3 17.87 45.42 4.15 31188
4 23.85 60.2 5.57 31188
5 30.11 75.03 7.16 31188
6 36.14 89.98 8.62 31188
7 42.04 104.81 10.14 31188
8 48.05 120.34 11.49 31188
9 53.83 134.83 12.88 31188
10 60.17 149.74 14.24 31188
20 119.94 299.34 28.4 31188
30 179.92 447.78 42.91 31188
40 240.1 598.05 56.81 31188
50 300.17 747.86 71.06 31188
60 360.52 896.92 84.82 31188
70 420.98 1046.63 98.84 31188
80 481.32 1195.97 112.65 31188
90 542.97 1348.1 126.9 31188
100 603.13 1497.39 140.57 31188
200 1202.26 2987.09 279.23 31188
300 1803.98 4483.86 418.63 31188
400 2407.08 5975.04 556.65 31188
500 3013.54 7468.69 696.09 31188
600 3617.85 8958.94 836.66 31188
700 4221.82 10457.46 975.96 31188
800 4827.96 11959.06 1116.42 31188
900 5436.13 13460.65 1258.84 31188
1000 6043.68 14955.49 1399.4 31188
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Table A.32: PopDel Call running time and memory consumption on uniform deletion sim-
ulation data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel
mode. mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 4.76 4.73 0.02 13268
2 10.62 10.50 0.12 18344
3 16.12 16.03 0.08 19520
4 21.95 21.79 0.13 20816
5 27.59 27.40 0.18 22228
6 33.10 32.88 0.21 23512
7 39.39 39.15 0.23 24484
8 45.02 44.62 0.28 25548
9 50.62 50.36 0.25 27132
10 56.49 56.20 0.28 27788
20 114.99 114.26 0.68 39460
30 174.07 173.17 0.85 48440
40 236.98 235.68 1.28 72932
50 298.58 296.89 1.57 89556
60 359.71 357.74 1.92 107480
70 421.84 419.47 2.33 118080
80 488.87 486.12 2.70 134832
90 552.43 548.92 3.30 149692
100 621.84 617.78 4.01 169016
200 1357.74 1349.54 8.10 321668
300 2124.22 2111.98 12.08 479440
400 2930.00 2913.54 16.22 629972
500 3707.36 3686.31 20.76 778852
600 4476.18 4451.79 24.08 931028
700 5264.08 5235.92 27.78 1079928
800 6066.68 6034.94 31.26 1224908
900 6845.06 6809.74 34.76 1374140
1000 7628.10 7588.80 38.69 1520464
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Table A.33: Smoove (all steps) running time and memory consumption on uniform deletion
simulation data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel
mode. mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 61.97 48.94 2.6 978800
2 174.17 147.36 10.83 978876
3 192.7 221.12 14.36 978876
4 261.79 296.35 19.31 979052
5 333.28 375.66 23.61 979052
6 396.74 454.36 27.95 979052
7 465.41 532.13 32.34 979052
8 535.45 612.98 36.58 979052
9 604.15 691.52 41.26 979052
10 672.82 768.78 45.84 979052
20 1417.72 1603.8 97.78 979052
30 2129.34 2420 144.32 979052
40 2848.22 3241.88 193.21 979052
50 3568.41 4063.82 240.93 979052
60 4318.47 4908.78 293.4 979116
70 5051.87 5764.71 343.43 979116
80 5777.22 6583.06 394.73 979116
90 6507.42 7420.97 443.79 979116
100 7233.02 8246.26 492.08 979116
200 14926.53 16944.67 1029.66 979128
300 22984.45 25926.73 1612.13 979128
400 30820.87 34782.32 2166.08 1095304
500 38723 43702.71 2721.21 1384332
600 46653.23 52667.53 3280 1678336
700 54885.91 61891.96 3873.64 2065132
800 62987.76 71157.29 4453.68 2398504
900 71116.08 80526.74 5034.73 2735192
1000 79152.38 89588.22 5584.06 3072048
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Table A.34: Running time and memory consumption for di�erent bu�er sizes in PopDel Call
(100 uniform deletion simulation samples). real: wallclock time. usr: time spend in usr mode.
sys: time spend in kernel mode. mem: maximum residual memory.

Bu�er size [30 bp windows] real [s] usr [s] sys [s] mem [kB]

10000 2801.09 2746.80 54.36 21572
20000 1684.78 1657.26 27.60 31952
30000 1284.71 1266.17 18.61 40372
40000 1103.74 1085.72 18.07 49440
50000 987.03 975.47 11.61 52752
100000 753.31 747.25 6.10 85428
200000 635.70 631.67 4.04 168688
300000 595.33 592.83 2.53 222772
400000 568.90 566.59 2.34 308032
500000 562.53 559.95 2.55 358964
600000 549.38 547.96 1.44 418428
700000 543.97 542.69 1.31 445112
800000 541.16 539.50 1.67 539636
900000 541.08 539.45 1.66 651184
1000000 538.34 536.65 1.72 673452
2000000 522.90 521.57 1.36 1250548
4000000 520.63 518.40 2.26 2151456
8000000 520.05 517.84 2.24 4222052

Table A.35: Delly running time and memory consumption on duplication simulation data.
real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode. mem:
maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 64.71 47.32 7.34 671192
2 122.74 85.38 13.03 704128
3 187.45 119.64 23.73 754500
4 234.45 157.39 28.94 755360
5 282.13 106.71 113.90 756208
6 344.71 155.63 92.82 757072
7 397.33 77.47 217.27 757932
8 451.34 238.23 92.24 760744
9 492.90 312.37 79.03 761468
10 571.62 326.40 110.45 762448
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Table A.36: Manta running time and memory consumption on duplication simulation data.
real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode. mem:
maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 153.63 57.47 45.77 28520
2 318.74 153.76 79.75 29084
3 513.97 250.61 133.96 29752
4 679.19 363.76 131.26 30124
5 859.18 480.42 179.33 30648
6 1039.25 558.30 246.18 31292
7 1249.50 702.58 205.62 31640
8 1429.94 834.86 218.72 32328
9 1549.94 923.16 304.45 35364
10 1760.31 964.75 394.34 37772

Table A.37: PopDel Pro�le running time and memory consumption on duplication simulation
data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 25.54 16.09 1.82 13344
2 50.44 33.35 4.86 13344
3 75.05 34 21.79 13344
4 100.94 46.19 27.62 13424
5 126.07 64.6 29.92 13424
6 150.97 82.96 32.09 13424
7 175.91 83.52 49.34 13424
8 200.93 102.02 51.46 13424
9 226.41 105.55 65.76 13424
10 252.35 123.11 67.43 13424

Table A.38: PopDel Call running time and memory consumption on duplication simulation
data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 3.66 2.58 0.38 10564
2 6.54 4.69 0.61 14224
3 9.75 6.93 0.92 15428
4 12.29 4.03 5.90 18240
5 15.14 10.58 1.74 21944
6 18.21 12.91 1.71 24572
7 20.26 15.65 2.14 27152
8 23.99 17.43 2.02 29368
9 26.59 19.04 2.56 32632
10 29.59 21.53 2.47 33199
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Table A.39: Smoove (all steps) running time and memory consumption on duplication
simulation data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel
mode. mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 151.1 107.93 48.67 6251328
2 426.04 258.34 126 6605444
3 642.91 367.15 202.82 6967992
4 853.91 494.82 265.86 6967992
5 1070.78 628.69 306.94 6967992
6 1243.42 722.25 402.06 6967992
7 1474.06 836.15 469.79 6967992
8 1682.42 979.71 512.86 6967992
9 1918.8 1088.59 567.91 6967992
10 2138.95 1246.99 602.86 6967992

Table A.40: Delly running time and memory consumption on inversion simulation data.
real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode. mem:
maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 78.73 64.70 3.91 628944
2 144.28 80.57 33.97 662640
3 214.52 131.79 30.72 713308
4 270.31 66.32 140.80 714640
5 337.65 122.65 141.35 715848
6 403.08 221.60 76.91 716904
7 454.65 280.42 84.46 719956
8 526.82 274.10 127.48 721180
9 598.12 222.52 227.05 720776
10 730.21 192.34 329.61 721828

Table A.41: PopDel Pro�le running time and memory consumption on inversion simulation
data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 24.64 14.81 1.99 13356
2 47.07 30.98 4.17 13356
3 70.16 35.97 15.17 13500
4 94.23 50.51 17.15 13500
5 117.36 66.67 19.95 13500
6 141.24 81.52 21.4 13500
7 165.25 96.27 23 13500
8 188.48 112.95 25.35 13500
9 211.69 129.68 27.63 13500
10 234.38 146.12 29.75 13500
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Table A.42: PopDel Call running time and memory consumption on inversion simulation
data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

Samples real [s] usr [s] sys [s] mem [kB]

1 4.44 3.21 0.53 10328
2 8.05 6.22 0.51 13480
3 11.67 9.01 0.74 15440
4 15.11 11.61 1.26 16668
5 18.60 14.33 1.67 18828
6 21.76 17.04 1.83 20452
7 26.59 20.17 2.33 22080
8 29.67 22.10 3.08 24948
9 32.60 25.02 3.26 26552
10 36.84 27.93 3.36 28344

Table A.43: Smoove (all steps) running time and memory consumption on inversion simula-
tion data. real: wallclock time. usr: time spend in usr mode. sys: time spend in kernel mode.
mem: maximum residual memory.

samples real usr sys mem

1 38.62 26.96 7.11 370404
2 211.47 117.57 55.18 370412
3 318.94 153.35 112.97 370412
4 417.56 219.81 121.23 370412
5 579.56 235.88 197.15 370412
6 728.56 305.18 193.47 370412
7 747.25 352.04 252.43 370412
8 886.25 402.9 299.49 370412
9 997.52 467.72 331.52 370412
10 1108.76 518.07 360.11 370412
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A.7 Evaluation the Illumina Platinum Genome HG001/NA12878

A.7.1 Variant Calling Protocol

Mapping, processing and SV calling for NA12878 was performed using the same tools and

settings as described for HG002 in Section 4.4.1. GRCh38 was used as a reference genome.

A.7.1.1 Call Set Overlaps

Call set overlaps for PopDel, Delly, Manta and Smoove were performed using two di�erent

GIAB truth sets: The Illumina short read reference set 1 and a PacBio long read reference

call set2. The resulting call set overlaps are presented in Figure A.1.

1ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/

Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
2ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/NA12878.

sorted.vcf.gz

 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/ Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/ Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ NA12878/NA12878_PacBio_MtSinai/NA12878.sorted.vcf.gz
 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ NA12878/NA12878_PacBio_MtSinai/NA12878.sorted.vcf.gz
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Figure A.1: Venn diagrams of call set overlaps on NA12878. a, b Comparison with Illumina
short read reference set. c, d Comparison with PacBio long read reference set. a, c Comparison
using a minimum reciprocal overlap of 80%. b, d Comparison using a minimum reciprocal
overlap of 0.1%.
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