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PopDel identifies medium-size deletions
simultaneously in tens of thousands of genomes

Sebastian Niehus® %3, Hakon Jénsson® 4, Janina Schénberger'?, Eythér Bjdrnsson®>©, Doruk Beyter?,
Hannes P. Eggertsson® ¢, Patrick Sulem® 3, Kéri Stefansson®?, Bjarni V. Halldérsson® 4/ &
Birte Kehr@ 12385

Thousands of genomic structural variants (SVs) segregate in the human population and can
impact phenotypic traits and diseases. Their identification in whole-genome sequence data of
large cohorts is a major computational challenge. Most current approaches identify SVs in
single genomes and afterwards merge the identified variants into a joint call set across many
genomes. We describe the approach PopDel, which directly identifies deletions of about 500
to at least 10,000 bp in length in data of many genomes jointly, eliminating the need for
subsequent variant merging. PopDel scales to tens of thousands of genomes as we
demonstrate in evaluations on up to 49,962 genomes. We show that PopDel reliably reports
common, rare and de novo deletions. On genomes with available high-confidence reference
call sets PopDel shows excellent recall and precision. Genotype inheritance patterns in up to
6794 trios indicate that genotypes predicted by PopDel are more reliable than those of
previous SV callers. Furthermore, PopDel's running time is competitive with the fastest tested
previous tools. The demonstrated scalability and accuracy of PopDel enables routine scans
for deletions in large-scale sequencing studies.
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omprehensive and reliable collections of genetic varia-

tion are a foundation for research on human diversity

and disease!. They facilitate a wide range of studies
investigating mutation rates?~4, mutational mechanisms>~7,
functional consequences of variants®-10, ancestry relation-
ships!l, disease risks!?, or treatment options!>. Due to
increased throughput and decreased cost, whole-genome
sequencing is now performed on cohorts of thousands of
individuals, for example, sequencing at the population level in
Iceland!4, the United Kingdom!®, or Crete!®, as well as
sequencing of large cohorts for specific diseases, such as aut-
ism!7 or asthma!®, and in the general health research context in
projects like GnomAD!® or TopMed?(. To create meaningful
collections of genetic variation, the data from these large
numbers of individuals need to be integrated. The most direct
way of achieving this is done in joint variant calling approaches:
detecting variant positions and inferring variant genotypes
from data of many individuals together.

For single-nucleotide variants (SNVs) and small insertions/
deletions (indels), joint calling has become the state of the art
with tools that scale to tens of thousands of individuals?!22. For
structural variants (SVs), the analysis of increasingly large
numbers of individuals remains a major bioinformatic chal-
lenge?3. Jointly detecting SVs in up to hundreds of individuals is
a great achievement of previous projects and tools?42>. However,
for larger cohorts, catalogs of SVs are generally created in a
multistep approach by first analyzing the data of each individual
separately or in small subsets of individuals, subsequently mer-
ging the resulting call sets and, finally, determining genotypes for
all individuals on the merged call set?%27. Merging of SV call sets
across individuals is often problematic and arbitrary when the
same SV is detected with shifted positions in several
individuals?®2. In addition, variants that are only weakly sup-
ported by the data may not be discovered using this multistep
approach. Furthermore, the aligned read data is accessed at least
twice in the process, for detecting and for genotyping SVs,
requiring substantial computational resources. A joint SV
detection approach simplifies the calling process, is computa-
tionally more efficient if accessing the large amounts of input
data only once, eliminates the need for an error-prone variant
merging step, and may reveal weakly supported variants if car-
ried by several individuals as the support can be accumulated
across individuals.

In this work, we overcome these limitations of current SV
callers by introducing a joint calling approach, PopDel, for
deletions of a few hundred up to tens of thousands of base pairs
(bp) in length. We specifically designed the approach to scale to
large cohorts and demonstrate that it jointly discovers SVs across
tens of thousands of individuals, thereby directly creating joint
call sets. Nevertheless, it can also be applied to a single genome or
small numbers of genomes, where it achieves comparable or even
better accuracy than widely used deletion callers. We demonstrate
the high accuracy on simulated data, public benchmark data from
the Genome-in-a-Bottle (GIAB) consortium, and on data of
parent-child trios, which allows us to validate predicted genotypes
using the genetic laws of inheritance. Our results demonstrate
that the joint deletion detection approach can yield reliable call
sets across very many genomes.

Results

Our main result is a computational approach that can detect and
genotype deletions in tens of thousands of genomes jointly. We
have implemented the approach in the tool PopDel and evaluate
PopDel’s performance in comparison to previous popular tools
for SV calling.

Computational approach for joint deletion calling. Deletions
can manifest themselves in the reference alignment of short-read
sequences as local drops in read depth, aberrations in the distance
between the alignment of two reads in a pair, and split-aligned
reads?0. To detect deletions, PopDel focuses on local changes in
the read pair alignment distance compared to the genome-wide
distribution of read pair alignment distances. Split-aligned reads
are used to infer a precise start position of detected deletions and
read depth is used implicitly during genotyping.

To achieve scalability to very large numbers of individuals,
PopDel has two steps: a profiling step, which reduces the aligned
input sequencing read data per individual into a small read pair
profile, followed by a joint calling step, which takes as input the
read pair profiles and outputs deletion calls with genotypes across
all individuals (Fig. 1; see “Methods”). While the two individual
steps are novel, the enclosing two-step design is reminiscent of
joint calling of small variants in the GATK HaplotypeCaller?! and
copy-number variant calling approaches that are based on read
depth profiles®!-32, Read pair profiles contain the sequencing
experiment’s distribution of read pair distances as well as
alignment start positions and distances of all read pairs that
match certain quality criteria (Supplementary Table 1). The joint
calling step processes the profiles of all individuals together in
small genomic windows (default 30 bp) to discover and genotype
deletions. For all windows, likelihood ratio tests are performed to
test if deletions overlap the window in any of the jointly analyzed
individuals. In the likelihood computation, we use weighted
genotype likelihoods to ensure that rare deletions can be found by
boosting the signal in carriers and down-weighting the contribu-
tion of noncarriers dependent on the allele frequency. Finally,
adjacent windows that support the same deletion are aggregated
and output together with genotype likelihoods of all individuals.

Most parameters of PopDel are calculated from the input data.
The input parameters for each likelihood ratio test are iteratively
estimated (Fig. 1; see “Methods”): the deletion length, allele
frequency, genotype weights, and genotype likelihoods for all
individuals for the three genotypes (noncarrier, heterozygous
carrier, and homozygous carrier). The minimum length of
deletions that can be identified with our likelihood ratio test
derives from the standard deviation of the read pair distances.

Assessment of scalability on simulated data. For an initial
assessment of PopDel’s precision and recall, we simulated two
cohorts of sequencing data: the first consisting of 1000 individuals
carrying random deletions and the second consisting of 500
individuals with deletions reported in the 1000 Genomes Project
(see “Methods”). Individuals in the first cohort carry on average
659 heterozygous and 673 homozygous deletions that are placed
densely on chromosome 21, while individuals in the second
cohort carry on average 167 heterozygous and 64 homozygous
deletions that are more sparsely distributed on chromosomes
17-22. On these data, we compared the recall, precision, running
time, and memory consumption of PopDel to that of four popular
SV callers that can identify SVs jointly in a limited number of
individuals or provide a pipeline for single-genome calling fol-
lowed by merging and genotyping (Delly??>, Lumpy>* via the
recommended Smoove pipeline (see URLs), Manta3®, and
GRIDSS3¢). We note that PopDel currently only reports deletions
while other callers also report other types of SVs.

The precision and recall of PopDel and most other tools is high
for both cohorts (Fig. 2) reflecting that the simulated data is easy
to analyze. Only GRIDSS performance in precision drops
significantly with increasing numbers of individuals, which is
why we excluded it from further joint calling comparisons. The
recall and precision on the 1000 Genomes Project deletions
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Fig. 1 Overview of the approach implemented in PopDel. First, the BAM file of one individual at a time is reduced into a small profile. The profiles of all
individuals are processed together by sliding a window (of size 30 bp by default) over the genome and assessing the likelihood of each window to overlap a
deletion in any individual. Sizes and allele frequencies of the deletions are estimated iteratively. Consecutive windows are combined into a single variant
call and genotypes of all individuals are output to a VCF file. Init initialization, AF allele frequency, Len deletion length, wl genotype weights per genome,

L(G4|Ds) genotype likelihoods per genome, LR likelihood ratio.
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Fig. 2 Performance of our approach on simulated data. \We compared PopDel to Delly, Lumpy (via Smoove), Manta, and GRIDSS for increasing numbers
of genomes. a Running time and memory on data with deletions randomly placed on human chromosome 21. b Recall and precision on data with random
deletions. ¢ Recall and precision with deletions reported by the 1000 genomes project simulated on chromosomes 17-22.

fluctuate more due to the smaller number of simulated deletions
per individual. Nevertheless, all tools show a clear trend of higher
recall with increasing numbers of individuals on the 1000
Genomes Project deletions. This suggests that these deletions
tend to be more difficult to identify than random deletions and,
here, deletion callers benefit from integrating data of several
individuals. Surprisingly, the recall of Lumpy is higher for the
1000 Genomes Project deletions than for the randomly generated
deletions.

PopDel is the only tool that we could run on all 1000 individuals
using our system’s default settings. For all other tools, we had to
increase the ulimit (maximum number of open file handles) in

order to complete the calling on >500 individuals jointly, indicating
that the other tools were primarily designed to jointly analyze
smaller numbers of individuals. With a running time of 397 min
and a peak memory of 1.5 GB for profiling and joint calling on the
first cohort of all 1000 individuals, PopDel is the fastest tool and
among the tools that require the least memory (Fig. 2).

Comparison to reference deletion sets from the GIAB con-
sortium. Next, we assessed PopDel’s performance compared to
Delly, Lumpy (via Smoove), and Manta on short-read whole-
genome sequencing data of the well-studied HG001/NA12878
and HG002/NA24385 genomes and their parent’s genomes (see
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“Methods”). For this assessment, we used reference sets of dele-
tion calls prepared by the GIAB consortium?’: the short-read-
based reference set and a set of deletions called from PacBio long
read data for HGO001, and the preliminary variant set for HG002
(see “Data availability”).

PopDel is competitive with the three other tools on the data of
HGO001 and HG002 (Fig. 3 and Supplementary Figs. 1 and 2). All
tools succeed to identify the majority of deletions reported in the
short-read HGOO1 reference set (661/778, 85.0%) with PopDel
identifying marginally more deletions (713, 91.6%) than Lumpy
(705, 90.6%), Delly (702, 90.2%), and Manta (680, 87.4%). The
fraction of PacBio deletions identified by all three tools is much
lower (731/3,831, 19.1%). This is expected as the long PacBio
reads reveal variants involving repeats that are invisible or hard to
detect in short-read data. PopDel identifies a similar number of
PacBio deletions (847, 22.1%) as Lumpy (838, 21.9%), Delly (871,
22.7%), and Manta (786, 20.5%). Including those deletions that
are not part of the two HGOO1 reference sets, PopDel reports
fewer deletions than Delly, a similar number of deletions as
Lumpy, and more deletions than Manta. As the NA12878
reference sets do not claim to be complete, the additional
deletions can either be true or false positives.

The preliminary HG002 deletion set has been released as the
first reference set that is near complete within defined high-
confidence regions of the genome and, hence, allows us to
evaluate the precision and recall of PopDel compared to the other
tools (Fig. 3). The call set of PopDel, when run on the data of
HGO002 and its parental genomes jointly, comprises 629 of the 678
reference deletions (93.7% recall) with a precision of 93.1%
resulting in an F,; score of 93.4%. Only Manta’s precision is higher
(95.5%) at the cost of a much lower recall (84.5%), resulting in an
F, score of only 89.7%, which is similar to that of Delly (88.1%)
and Lumpy (88.9%). Thus, PopDel outperforms the other tools by
3.7 to 5.3 percentage points in terms of F; score. PopDel’s recall is
higher when adding the parental genomes compared to running it
on the data of HG002 alone (91.6%), indicating a benefit of joint
calling. While Manta’s performance is hardly affected by adding
the parental genomes to the calling, Delly and Lumpy lose
precision on our data without the recall being affected.

4

Analysis of population structure based on deletions in the
Polaris Diversity cohort. We applied PopDel to the 150 genomes
in the Polaris HiSeq X Diversity cohort (BioProject accession
PRJEB20654) to evaluate if the deletions identified by PopDel
reflect population structure (see “Methods”). The cohort consists
of three continental groups: Africans, East Asians, and Europeans.
PopDel identifies an average of 969 heterozygous and 340
homozygous deletions per individual overall. Consistent with
previous studies, Africans carry significantly (P value <2.2 x 10716),
two-sided ¢ test) more deletions than Europeans and East Asians
(Fig. 4a). Principal component analysis of PopDel’s deletion calls
shows a clear separation between the three continental groups
(Fig. 4b) mirroring the well-known clustering resulting from small
variants?438, In particular, the first principal component separates
the African genomes from the other continental groups, while the
second principal component additionally pulls apart the European
and East Asian genomes. These findings indicate that the deletions
detected and genotyped by PopDel well reflect the biological dif-
ferences between the continental groups. Similar results were
obtained for Delly and Lumpy via Smoove (Supplementary Fig. 3).

Evaluation of genotyping using data of 49 Polaris trios. By
combining the Polaris Diversity cohort with the Polaris HiSeq X
Kids cohort (BioProject accession PRJEB25009), we obtain a set
of 49 trios that allow a thorough evaluation of the genotype
predictions. After running PopDel, Delly, and Lumpy via Smoove
(see “Methods”), we analyzed inheritance patterns of deletions
and their genotypes in the 49 trios. In particular, we calculated the
Mendelian inheritance error rate and transmission rates for each
tool (see “Methods”). The Mendelian inheritance error rate
effectively assesses the genotyping of common variants. The
transmission rate is also meaningful for rare variants measuring
how often a deletion allele is inherited from a heterozygous
parent (Supplementary Fig. 4), in particular when it is calculated
for deletions unique to one trio and the second parent being a
noncarrier. As we noted an overabundance of heterozygous
deletions in all call sets, we removed deletions that are not in
Hardy-Weinberg equilibrium (P value 0.01) before all other
calculations.
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Fig. 4 Analysis of PopDel's deletion calls on the Polaris Diversity cohort. The Polaris Diversity cohort consists of 50 individuals from three continental
groups each. a Principal component analysis. b Number of deletions per genome. Africans carry significantly (P value <2.2 x 10~16, two-sided t test) more
deletions than Europeans and East Asians. Each point represents an individual. Center line denotes median. Boxes limit upper and lower quartiles. 1.5x
interquartile ranges are given as whiskers. AFR, African; EAS, East Asian; EUR, European.
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The genotyping of PopDel is very well calibrated in our
comparison to Delly and Lumpy (Fig. 5). The deletions called
by all three tools can be filtered to Mendelian inheritance error
rates below 0.1% using reported genotype quality values.
Notably, PopDel reports a larger number of deletions consistent
with Mendelian inheritance than Delly and Lumpy when
filtering to any Mendelian inheritance error rate. For example,
PopDel reports an average of 1177 consistent deletions per trio
compared to 1161 (Delly) and 1128 (Lumpy) when filtering to
an error rate just below 0.3%. Similarly, PopDel reports more
deletions unique to one trio than Delly when filtering by
genotype quality to any given transmission rate, for example,
3167 PopDel deletions compared to 2935 Delly deletions when
filtering to the best transmission rate closest to 50%.
Furthermore, PopDel has a lower Mendelian inheritance error
rate than Delly when filtering to the expected transmission rate
of 50%. Lumpy’s transmission rate shows a pattern that may be
indicative of false positives (Supplementary Note 2) and never
reaches 50%.

We further assessed the genotyping performance based on the
rate of transmission from parents to children including scenarios
where more than one parent is heterozygous and the deletion was
found in several trios. For each tool, we chose genotype quality
thresholds that filter the deletions to a Mendelian inheritance
error rate just below 0.3% (Table 1). Using these filters, the rate of
deletions transmitted from parent to child that are private to a
single trio is not significantly different from 50% for PopDel and
Delly (two-sided binomial test, P value threshold 0.05). When
considering deletions found in several trios where only one parent
is heterozygous, the transmission rate of PopDel is not
significantly different from the expected 50% (two-sided binomial
test, P value threshold 0.05), whereas it is different for Delly when
one parent is a homozygous carrier. When both parents are
heterozygous, all three tools show an overabundance of hetero-
zygous calls in the child, indicating that this is the most
challenging configuration for genotyping. The transmission rate
of Lumpy is significantly different from the expected value for all
considered genotype configurations. This analysis suggests that
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Genotype of PopDel (GQ = 26)

Table 1 Transmission of deletions in the 49 Polaris trios after filtering for Hardy-Weinberg equilibrium (P value 0.01) and
genotype quality (GQ) to a Mendelian inheritance error rate just below 0.3%.

Delly (GQ = 28) Lumpy (GQ =78)

Parent 1 Parent 2 Child
Deletions present in any number of trios
0/0 01 0/0 17,153 50.02% 16,584 49.57% 17,376 51.06%
0/1 17,135 49.97% 16,863 50.41% 16,652 48.94%
11 2 0.01% 8 0.02% 0 0.00%
0/1 0/1 0/0 2057 24.47% 2189 24.10% 2153 26.10%
0/1 4474 53.22% 4961 54.62% 4479 54.30%
11 1875 22.31% 1932 21.27% 1616 19.59%
0/1 11 0/0 1 0.02% 8 0.12% 2 0.04%
01 3080 50.80% 3392 51.94% 2853 51.92%
1 2982 49.18% 3130 47.93% 2640 48.04%
Deletions present in only a single trio
0/0 0/1 0/0 1714 50.50% 1573 50.63% 1714 51.91%
01 1680 49.50% 1534 49.37% 1588 48.09%
11 0 0.00% 0 0.00% 0 0.00%

Underlined percentages are not significantly less or greater than the expected value 50% or 25%, respectively, according to a two-sided binomial test with a P value threshold of 0.05.
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PopDel’s genotyping accuracy is superior to that of Delly and
Lumpy.

Application to population-scale data from Iceland. We applied
PopDel to whole-genome data of 49,962 Icelanders, including
6794 parent-offspring trios (see “Methods” and Supplementary
Note 2). The average number of deletions PopDel reports per
Icelander on the autosomes is 1504 heterozygous and 209
homozygous deletions (genotype quality threshold 25). The
Mendelian inheritance error rate in the 6794 trios is 1.4%
(1963 consistent deletions on average per trio). The transmission
rate for 4256 deletions unique to a single trio is 49.2%, which is
again not significantly different from the expected 50% (two-
sided binomial test, P value 0.32). This implies that the majority
of errors appear as common deletions shared by several
individuals.

Identification of a de novo deletion in the Polaris data. We
searched for de novo deletions (see “Methods”) in the Polaris

Kids cohort and identified 12 candidate de novo variants.
Manual inspection suggests that three of them are true de novo
events: a 8901 bp deletion at chr6:93,035,858-93,044,759 in
the Spanish female HG01763 (Fig. 6), an exonic 984 bp deletion
at chr6:27,132,732-27,133,716 in the Spanish male HG01683 in
the H2BCII gene, and an exonic 769bp deletion at
chr7:105,505,500-105,506,269 in the Chinese female HG00615 in
the PUS7 gene. The 8901 bp deletion in HG01763 is flanked and
overlapped by SNVs that allow us to phase and confirm the de
novo event. An SNV that overlaps with read pairs supporting the
deletion indicates that the deletion haplotype was inherited from
the mother (HG01762). Further evidence for this to be a true de
novo event is given by 25 SNVs within the deletion that confirm
the child to carry a single haplotype where both parents are
heterozygous. All three individuals are heterozygous for numer-
ous SNVs upstream of the deletion. Four of the SNVs within the
deletion confirm that the event happened on a maternal haplo-
type. Given that this deletion is intergenic and HG01763 is part of
a cohort of healthy individuals!, we expect the de novo deletion
not to be of medical relevance. The closest transcript annotations
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Table 2 Running times (wall clock time, CPU hours in
parentheses) on NA12878 and the Polaris Diversity cohort.

NA12878 Polaris Diversity cohort
(single individual) (150 individuals)
PopDel 0:25 (0:58) 56:17 (111:12)
Delly 1:42 (1:40) 389:43 (371:27)2
Lumpy (via 0:18 (0:30) 87:58 (103:21)2
Smoove)
Manta 7:09 (7:09) —

Note that Delly, Lumpy, and Manta report other types of SVs apart from deletions. These SVs
were excluded after single-sample calling before merging to reduce running times.
aSingle-sample calling with subsequent variant merging and sample-wise genotyping.

in Gencode v293° are the IncRNA AL138731.1 at a distance of
25.6 kb and the EPHA7 gene at a distance of 195.3 kb.

Running times on public benchmarking data. We assessed the
running time of PopDel compared to Delly and Lumpy via
Smoove on the data of the NA12878 genome and the 150 genomes
in the Polaris Diversity cohort (see “Methods” and Table 2). With
a total wall clock running time of ~25 min for profile creation and
deletion calling of the NA12878 genome, PopDel is almost as fast
as Lumpy via the Smoove pipeline and four times faster than
Delly. A similar behavior can be observed on the 150 genomes of
the Polaris Diversity cohort confirming scalability: PopDel com-
pletes deletion calling within <2 days and 9 h, which is similar to
the running time of Lumpy via Smoove (3 days and 16h) and
several times faster than Delly (16 days, 6 h). PopDel can be tri-
vially parallelized by creating profiles of different individuals in
parallel and splitting the joint calling by genomic region.

Discussion

Identification and genotyping of structural variation in large
sequencing cohorts is a major computational challenge. To enable
the joint analysis of the increasingly large cohorts that are being
sequenced, we developed a deletion calling approach imple-
mented in the tool PopDel. Compared to existing approaches, the
joint calling approach in PopDel greatly simplifies the analysis
workflow, shows comparable if not better accuracy, and has a
competitive running time. PopDel scales to very large cohorts as
our tests on population-scale data from Iceland substantiate.

PopDel has high accuracy independent of the number of jointly
analyzed individuals and across the deletion allele frequency
spectrum. On data of a single genome, PopDel shows higher
recall than other tools at high precision. On the Polaris Diversity
cohort, the deletions called by PopDel recapitulate previous
population genetic results showing that Africans carry on average
more deletions than other continental groups and confirming that
joint calling can be used to identify population structure. On the
Polaris Kids cohort, PopDel identifies more deletions at a better
transmission rate compared to other tools and reports a de novo
deletion of about 9kb. On Icelandic data, PopDel identifies
deletions jointly in almost 50,000 genomes maintaining an
excellent transmission rate for rare variants. All results confirm
that the joint calling approach in PopDel is accurate across the
allele frequency spectrum and the number of individuals
analyzed.

The de novo deletion in the Polaris Kids cohort together with
the good transmission rate of rare variants in a large number of
Icelandic genomes demonstrates that PopDel’s joint calling
approach provides a basis for studying rarely observed de novo
deletion events. A previous study?’ verified in 258 healthy trios
seven de novo deletions that fall into the size range addressed by

us. Given their rate of de novo deletions, we expect to observe
1.33 de novo deletions of medium size in the 49 Polaris trios. This
is well in line with our finding of three candidate de novo events
including one that we could confirm based on nearby SNVs.

When we tested an early version of PopDel on a selected 54 kb
region covering the LDLR gene in 43,202 Icelanders, we identified
a previously unknown 2.5kb deletion in three closely related
Icelanders shown to affect LDL levels*!. This finding shows that
PopDel is able to identify variants of biomedical interest even if
they are present at a very low allele frequency in a population-
scale cohort, and showcases the importance of SVs in human
health.

PopDel consists of two steps: creation of read pair profiles per
individual and joint deletion calling. The computational advan-
tage of this two-step design is that the large input BAM files
containing aligned read data need to be processed only once. The
joint calling step takes the information needed for deletion
detection and genotyping from the small read pair profiles. This
implies that additional genomes, the N+ 1lst genome, can be
added to the analysis without the need to access all input BAM
files reducing the computational burden considerably. PopDel is
currently limited to deletions. However, the two-step design and
the likelihood ratio test can be generalized to junctions of other
types of SVs. We are aiming for extending our approach
accordingly in the near future.

Methods

Read pair profile creation. PopDel reduces a coordinate-sorted BAM file of each
sample into a read pair profile in a custom binary format (Supplementary Note 1).
This profile stores positions and insert sizes of read pairs that align confidently
(Supplementary Table 1) to the reference genome. In addition, the profile file
contains meta information, including distribution of insert sizes across the sample
and an index, which allows for jumping to genomic positions in the profile. We
define the insert size as the distance between the leftmost alignment position of the
forward read to the rightmost alignment position of the reverse read in the pair
extended by any clipped bases (Supplementary Fig. 5). The null distribution of
insert sizes is estimated by sampling the BAM file using pre-defined but user-
configurable genomic regions with good mappability (Supplementary Note 1). If
more than one library has been sequenced for a sample, PopDel writes separate
profile data per read group to the profile file. An excerpt of an example profile is
shown in Supplementary Table 2. The profiling vastly reduces I/O during joint
calling as the size of the profiles is on average only 1.76% of the original BAM file
size (Supplementary Figure 6).

Likelihood ratio test for joint deletion calling. For a given genomic window, our
likelihood ratio test compares the relative likelihood that a deletion of a particular
length I overlaps the window, against the relative likelihood of observing the
reference haplotype:

L(nodel)
A= F(del of Tength 1 )

Our null hypothesis is that the data observed in a window is drawn from the
reference model (numerator) rather than the deletion model (denominator). We
reject the null hypothesis in PopDel using a cutoff for A calculated from —2 log A ~ x?
with a P value threshold of 0.01 (one-tailed) and 1 degree of freedom in order to
decide if the window overlaps a deletion of length 1.

Let S € S be a single sample from the set of all samples S and let IS be the list of
insert sizes for all the read pairs of S overlapping the given window (Supplementary
Fig. 5). Furthermore, let AS = (i — pgli € I) be the deviations of the insert sizes
from the mean insert size of the sample ys. We assume independence of samples
and calculate the relative likelihood of the reference model as the product of the
samples’ likelihoods £(G,|A®) for the reference genotype G,

L(nodel) = (1 —n) Sl;[gﬁ(Go‘As) (2)

where 7 is the prior probability of observing a deletion (default 10~4). For the
likelihood of the deletion model, we use the weighted sums of all three genotype
likelihoods in a similar product

L(delof lengthI) = 7 [] a§£(Go|A%) + a{L£(G,|A%) + aSL(G,|AS) (3)
Ses
where the a; are sample- and genotype-specific weights (see below) with genotypes

g €{0,1,2} corresponding to 0, 1, or 2 variant alleles and ag + a5 + a5 = 1 for
any S€ S.
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Iterative estimation of parameters for the likelihood ratio test. The likelihood
ratio test requires as input a deletion length [, genotype likelihoods C(Gg\AS) for all
samples S and sample- and genotype-specific weights ag. PopDel estimates these
values for each window iteratively from the profiles together with an allele fre-
quency f that is needed for updating the weights (Fig. 1). For simplicity, the
following assumes one read group per sample. Our implementation in PopDel also
handles multiple read groups (Supplementary Note 1). To be able to detect dele-
tions of different lengths from different haplotypes overlapping the same window,
the iteration and likelihood ratio test are performed for several initializations of the
deletion length. Initial lengths are estimated by identifying samples with similar
third quartiles of AS via greedy clustering (Supplementary Note 1). The initial allele
frequencies f are set to the fraction of deletion-supporting read pairs of all samples
in the window (Supplementary Note 1). To calculate the genotype likelihoods of
the three genotypes Gy, Gy, and G, of a single sample S, PopDel transforms the
insert size histogram of S to reflect how many read pairs with a given insert size
deviation 8 € AS are expected to overlap a window of size w (Supplementary
Note 1). We denote the resulting relative likelihood of observing a read pair with
insert size deviation § as HS (9).

PopDel calculates the likelihoods L(Gg\AS>as
L(GO‘AS) = [1 H(8 —¢5) (4)

sen’

S(8— e S(a
Loya) = [ PO 0D o

dens

L(G,|8%) = TT HS(6 1) ©)
sen’
where € is a sample-specific reference shift (Supplementary Note 1) that accounts
for local biases of the data such as GC (guanine—cytosine) content?243,

Our sample- and genotype-specific weights a; are designed to give low weight
to samples with a small likelihood for the genotype and a high weight to those with
a good likelihood for the genotype. Furthermore, the weights make it more likely to
observe a carrier genotype when the allele frequency is high:

o E(Ggms)ﬁ(f,Gg) ”
T e )

with E(f s Gg> as the expected genotype frequencies given the population allele

frequency f:
L(f,Gy) = (1~ f)? ©)
L(f,G) = 2f(1 = f) ©)
L(f% GZ) :fz (10)

Given the weights, we update the allele frequency f using:

fre :ﬁZ(“‘HMi) (11)

ses

To update the deletion length J, probabilities st,g‘ (8)reflecting that a given insert
size deviation & resulted from a distribution shifted by [ rather than by eg are
calculated as

H5(8—1)

N=a
©0) = g5 = es) + HS(6 — )
and used to update [ jointly across all samples as the weighted sum over all insert
size deviations:

PS

l.es

+d5 (12)

_ Zses Z&eAS BPIS&S(‘;)
ESES EaeAS Pf.é's (9)

The iteration for parameter estimation terminates when both the allele
frequency and deletion length converge or additional termination conditions are
met (Supplementary Note 1), for example, reaching the maximum number of
iterations (default 15). A start position of the potential deletion is estimated during
above calculations by keeping track of the rightmost aligned positions of the
forward reads of read pairs whose & support the deletion estimate (Supplementary
Note 1).

new

(13)

Combining consecutive deletion windows. The likelihood ratio tests are per-
formed per initialized deletion length for each genomic window (of size 30 bp by
default). The deletions identified by PopDel typically overlap several consecutive
windows and in each window the null hypothesis of the likelihood ratio test may be
rejected. To provide the user with a nonredundant list of deletion variants, adjacent
windows that support the same deletion are combined. PopDel sorts all pairs of
windows and deletion lengths, for which the null hypothesis of the likelihood ratio
test can be rejected, in ascending order of the predicted deletion start position,

deletion length, and deletion likelihood ratio. Traversing this sorted list of windows
Wo,W1s..., @ window w;i 2 0 is combined with another window w; , 4, k > 0 if their
start positions and deletion sizes are similar enough (Supplementary Note 1).
When no more windows can be combined with w;, a deletion is output with a start
position and length calculated as the median over all combined windows. The
algorithm continues with the next window w; , . ; that has not been combined
with any other window so far.

Deletion output. We report the mean PHRED-scaled genotype likelihoods across
the combined windows of one sample in the output. Samples without sufficient
data or much higher than average coverage at the locus are not genotyped (Sup-
plementary Note 1). The allele frequency is estimated by counting the number of
alleles predicted to carry the variant, divided by the total number of genotyped
alleles. We report a genotype quality as the difference of the best and second best
PHRED-scaled genotype likelihoods.

Simulation of sequencing data with deletions. We simulated two cohorts of
sequencing data, the first consisting of 1000 diploid individuals carrying random
deletions and the second consisting of 500 individuals carrying deletions reported
in the 1000 Genomes Project (G1k). For the first cohort, we simulated a set of 2000
deletion variants with uniformly distributed lengths between 100 and 10,000 bp,
uniformly distributed allele frequencies between 0 and 1, and uniformly distributed
positions on chromosome 21 of GRCh38. Regions containing N’s were excluded
and deletion were required to be at least 1000 bp apart. For the second cohort, we
downloaded deletions identified in the 1000 Genomes Project (see “Data avail-
ability”) on chromosomes 17-22 of GRCh37 and their reported allele frequencies.

Using the random deletion set, we created 2000 haplotypes by sampling
deletions according to their allele frequency and inserting them into GRCh38.
Using the G1k deletions, we created 1000 haplotypes by sampling deletions
according to their allele frequencies and inserting them into GRCh37. The
haplotypes were combined into 1000 and 500 diploid samples, respectively. These
samples were used to simulate NGS reads with art_illumina** and the reads aligned
to GRCh38 or GRCh37 using BWA-mem*°.

Setup of SV callers on simulated data. PopDel (1.2.2) and Manta (1.6.0) were run
with an option to limit the calling to chromosome 21. Smoove (0.2.4 with Lumpy
0.2.13 and SVtyper 0.7.0, obtained from https://github.com/brentp/smoove) was
applied as recommended by its authors using the provided exclude regions for
GRCh38 and GRCh37, and excluding mappings not on the simulated chromo-
somes. Delly (0.7.8) was applied without small indel realignment (option -n).
GRIDSS (1.8.1) was provided a maximum heap size of 8 GB. All tools were applied
on increasing numbers of BAM files (up to 1000 or until failure) in steps of 1 up to
10, steps of 10 up to 100, and steps of 100 up to 1000.

Evaluation on simulated data. Running time and memory consumption were
measured on a dedicated workstation (Intel Xeon E5-1630v3 8 x 3.5 GHz, 64 GB
RAM) using the Unix time command. For tools consisting of multiple steps, the
running times are the sum of the time taken by all steps from input BAM files to
output variant call format (VCF) file. The memory consumption is stated as the
maximum memory consumption of all steps. As GRIDSS (Genomic Rearrange-
ment IDentification Software Suite) produces two break-ends per deletion, corre-
sponding pairs of break-ends were collapsed into a single call and LOW_QUAL
variants were removed. The calls of Delly were not filtered for variants that have
the filter field set to PASS as this has a negative impact on its performance. A call is
considered to match a simulated variant in case of a reciprocal overlap of at least
50%. Each simulated variant is allowed to be matched with only one predicted
variant. See Supplementary Note 2 for results using alternative match criteria.

Sample preparation and setup of SV callers on GIAB and Polaris data. All
samples were aligned to the human reference genome GRCh384¢ using BWA-
mem*748, except for the data of HG002/NA24385 and his parents, which was
aligned to GRCh37. All SV callers were applied as recommended by the authors
and, if possible, limited to the reference sequence of the 22 autosomes. Delly was
run with the option -n. All tools could be run jointly on the GIAB trio data.
Smoove, the recommended pipeline for running Lumpy, recommends a workflow
consisting of single-sample calling, merging, and sample-wise re-genotyping for
cohorts of 40 or more individuals and was applied accordingly. Joint calling with
Delly and Manta did not finish within 4 weeks on the Polaris data. Therefore, Delly
was run using single-sample calling with merging and sample-wise re-genotyping
following the germline SV calling workflow described by the authors (Supple-
mentary Note 2). For Manta, we could not find a description of a similar workflow,
so we excluded it from the analysis of the Polaris data. Calls other than deletions
were removed as early as possible in Delly’s and Smoove’s workflows to reduce the
running time (Supplementary Note 2). The sample order of the Polaris Diversity
and Kids cohorts was shuffled, but the same for all tools and no tool was provided
pedigree information.
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Variant filtering on real data. The reference call sets were filtered for deletion
variants. All variants on contigs apart from chromosomes 1-22 and chromosome X
were removed and VCF-to-BED conversion was performed for the PacBio refer-
ence set. Liftover from GRCh37 to GRCh38 was performed for HG001/NA12878
using the NCBI Genome Remapping Service (https://www.ncbi.nlm.nih.gov/
genome/tools/remap).

Deletions identified by the tested tools in HG002/NA24385 and his parents
were filtered using the high-confidence regions prepared by the GIAB consortium
(see “Data availability”). All other deletion sets were filtered for centromeric
regions. Centromeric regions were obtained through the UCSC table browser
(group: Mapping and Sequencing, track: Centromeres) for GRCh38. Any deletions
in a reference set or call set having any overlap with a centromeric region or a
region outside the high-confidence regions were removed. Overlap was determined
using bedtools intersect?® (Supplementary Note 2).

Only deletions on the 22 autosomes were considered for analysis. Deletions
were filtered to the size range from 500 to 10,000 bp. Two deletions were
considered the same if they had a reciprocal overlap of 50% or more. The Polaris
data was filtered to high-confidence deletions with genotype quality scores above a
fixed threshold. This threshold was chosen once per tool on the Polaris Kids cohort
such that the Mendelian inheritance error rate dropped below 0.3%37: 26 for
PopDel, 28 for Delly, and 78 for Lumpy. To search for de novo deletions, the
genotype threshold for PopDel was set to 50 and all 12 resulting candidate
deletions were inspected manually in Integrative Genomics Viewer>?. In all real
data analyses, Delly variants were only considered if they had the FILTER field set
to PASS.

Principal component analysis. Predicted genotypes of the Polaris Diversity cohort
were converted into a variant/sample matrix containing deletion allele counts.
Uninformative deletions and those in linkage disequilibrium were removed (Sup-
plementary Note 2). Principal component analysis was computed using the

R function prcomp.

Mendelian inheritance error rate and transmission rate. All deletions that are
not in Hardy-Weinberg equilibrium (P value threshold 0.01) were removed. For all
reported deletions, the three genotypes in each trio were inspected for Mendelian
consistency (Supplementary Fig. 4). Trios with one or more missing genotypes and
trios with all three samples genotyped as 0/0 were ignored. The transmission rate
was calculated as the number of deletion alleles transmitted from the heterozygous
parents to the children divided by the number of considered deletions. If indicated,
we calculated the transmission rate considering only deletions that were called in a
single trio, where one parent is a heterozygous carrier and the other parent carries
the reference allele on both haplotypes.

Sequence data from 49,962 Icelanders. DNA was isolated from both blood and
buccal samples. All participating subjects signed informed consent. The personal
identities of the participants and biological samples were encrypted by a third-party
system approved and monitored by the Data Protection Authority. The National
Bioethics Committee and the Data Protection Authority in Iceland approved these
studies. The Icelandic samples were whole-genome sequenced at deCODE genetics
using Illumina GAIIx, HiSeq, HiSeq X, and NovaSeq sequencing machines, and
sequences were aligned to the human reference genome (GRCh38)#¢ using BWA-
mem?*748, Details of the sample preparation, paired-end sequencing, read proces-
sing and alignment, and selection of the final set of BAM files have been previously
described”!.

Running time measurements on real data. The running time on NA12878 was
measured using the Unix time command on a dedicated workstation (Intel Xeon
E5-1630v3 8 x 3.5 GHz, 64 GB RAM). Due to limited storage capacities on our
workstations, running times for the Polaris Diversity cohort were measured on the
BIH high-performance compute cluster as reported in SGE log files.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The generated VCF files used for evaluation of all simulated and real data sets have been
deposited in Zenodo (https://doi.org/10.5281/zenodo.3992607)2. The deletion set of the
1000 Genomes Project we used for simulating data was obtained from ftp://
ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.
v8.20130502.svs.genotypes.vcf.gz. The short-read data from the HG001/NA12878
genome is publicly available under ERA run accession ERR194147. The short-read data
from the HG002/NA24385 genome and parental genomes HG003/NA24149 and
HGO004/NA24143 are available under BioProject accession PRINA200694. The precise
list of run accession numbers we used for HG002 and his parents is given in the
Supplementary Note 2. The GIAB short-read reference set for HG001/NA12878 was
obtained from ftp:/ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/
Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
and the long read reference call sets from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

NA12878/NA12878_PacBio_MtSinai/NA12878.sorted.vcf.gz. The preliminary variant set
for HGO002 is available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tierl_v0.6.vcf.gz and the high-
confidence regions for HG002 at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tierl_v0.6.bed. The
short-read data of the Polaris HiSeq X Diversity cohort is publicly available under
BioProject accession https://www.ebi.ac.uk/ena/browser/view/PRJEB20654 and the
Polaris HiSeq X Kids cohort under BioProject accession PRJEB25009. We obtained the
human reference genome GRCh37 from ftp:/ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/
reference/phase2_reference_assembly_sequence/hs37d5.fa.gz and downloaded GRCh38 on
June 14th, 2017 from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/
GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/
GCA_000001405.15_GRCh38_full_analysis_set.fna.gz using bwakit (0.7.15). Access to raw
Icelandic sequence data is restricted by Icelandic state law and can be given through
collaboration with KS.

Code availability

PopDel is available for installation through Bioconda®3. The source code is available at
https://github.com/kehrlab/PopDel (v1.2.2, GNU GPLv3 license, https://doi.org/10.5281/
zenodo.4282041)4. PopDel was implemented using the SeqAn C++ library®>. Scripts
used for evaluating PopDel are available at https://github.com/kehrlab/PopDel-scripts.
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