756 research outputs found

    Geochemistry and deposition of Be-7 in river‐estuarine and coastal waters

    Get PDF
    The atmospheric flux of cosmogenic Be-7 (53.3-day half-life) and the mode of ?Be deposition in river- estuarine and coastal environments have been examined. The atmospheric flux of ?Be commonly sup- ports inventories ranging from 1.0 to 2.0 pCi/cm 2 (1 pCi = 0.037 Bq). Beryllium 7 concentrations in water phase samples, collected across salinity gradients in several estuaries along the eastern coastline of the United States, range from 0.03 to 0.53 pCi/L and primarily reflect variations in Be-7supply and sorption kinetics. The major process controlling the concentration of Be-7 on estuarine suspended particles appears to be the length of time that these particles remain in the water column. Field particle-to- water distribution coefficients for Be-7have a median value of about 4 x 10 \u27• but range over an order of magnitude reflecting short-term variations in 7Be input, particle dynamics, and particulate iron content rather than equilibrium sorption-desorption responses to changes in water salinity or particle type. Residence times of 7Be in the water column range from a few days in estuarine areas of rapid fine-particle deposition, to several weeks in high-energy environments where pronounced sediment resuspension reintroduces deposited 7Be back into the water column. Inventories of ?Be in sediments range-from nondetectable to 3.3 pCi/cm 2, with the highest inventories in areas where fine particles are accumulating rapidly. Such sites are also major repositories for other particle-reactive substances. A ?Be budget for the James estuary indicates that less than 5% of the expected ?Be input is in the water column and that the short-term estuarine trapping efficiency for atmospherically derived ?Be is somewhere between 50 and 100%

    Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot?

    Get PDF
    Forests in Southeast Asia are rapidly being logged and converted to oil palm. These changes in land-use are known to affect species diversity but consequences for the functional diversity of species assemblages are poorly understood. Environmental filtering of species with similar traits could lead to disproportionate reductions in trait diversity in degraded habitats. Here, we focus on dung beetles, which play a key role in ecosystem processes such as nutrient recycling and seed dispersal. We use morphological and behavioural traits to calculate a variety of functional diversity measures across a gradient of disturbance from primary forest through intensively logged forest to oil palm. Logging caused significant shifts in community composition but had very little effect on functional diversity, even after a repeated timber harvest. These data provide evidence for functional redundancy of dung beetles within primary forest and emphasize the high value of logged forests as refugia for biodiversity. In contrast, conversion of forest to oil palm greatly reduced taxonomic and functional diversity, with a marked decrease in the abundance of nocturnal foragers, a higher proportion of species with small body sizes and the complete loss of telecoprid species (dung-rollers), all indicating a decrease in the functional capacity of dung beetles within plantations. These changes also highlight the vulnerability of community functioning within logged forests in the event of further environmental degradation

    The Origin and Distribution of Cold Gas in the Halo of a Milky Way-Mass Galaxy

    Full text link
    We analyze an adaptive mesh refinement hydrodynamic cosmological simulation of a Milky Way-sized galaxy to study the cold gas in the halo. HI observations of the Milky Way and other nearby spirals have revealed the presence of such gas in the form of clouds and other extended structures, which indicates on-going accretion. We use a high-resolution simulation (136-272 pc throughout) to study the distribution of cold gas in the halo, compare it with observations, and examine its origin. The amount (10^8 Msun in HI), covering fraction, and spatial distribution of the cold halo gas around the simulated galaxy at z=0 are consistent with existing observations. At z=0 the HI mass accretion rate onto the disk is 0.2 Msun/yr. We track the histories of the 20 satellites that are detected in HI in the redshift interval 0.5>z>0 and find that most of them are losing gas, with a median mass loss rate per satellite of 3.1 x 10^{-3} Msun/yr. This stripped gas is a significant component of the HI gas seen in the simulation. In addition, we see filamentary material coming into the halo from the IGM at all redshifts. Most of this gas does not make it directly to the disk, but part of the gas in these structures is able to cool and form clouds. The metallicity of the gas allows us to distinguish between filamentary flows and satellite gas. We find that the former accounts for at least 25-75% of the cold gas in the halo seen at any redshift analyzed here. Placing constraints on cloud formation mechanisms allows us to better understand how galaxies accrete gas and fuel star formation at z=0.Comment: 13 pages, 8 figures. Accepted for publication in Ap

    Differential expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light

    Full text link
    The expression of two types of sucrose synthase-encoding genes, Ss1 and Ss2, in hexaploid wheat (Triticum aestivum, L.), has been investigated using type-specific probes, corresponding to the 250–270 bp C-terminal portions of the respective cDNA clones. Both types of genes are highly expressed in developing endosperm, where the expression of the Ss2 type slightly precedes in time that of the Ss1 type. Expression of Ss genes is lower in etiolated leaves and in roots than in endosperm. In the first two tissues, the Ss1 mRNA is much more abundant than the Ss2 mRNA, and the Ss1 mRNA level sharply increases in response to anerobiosis and to cold shock (6°C), while the level of Ss2 mRNA is not significantly affected. Upon illumination of etiolated leaves, the Ss1 level mRNA decreases significantly and the Ss2 mRNA level increases

    Free Field Appoach to String Theory on AdS_3

    Full text link
    We discuss the correlation functions of the SL(2,C)/SU(2) WZW model, or the CFT on the Euclidean AdS_3. We argue that their calculation is reduced to that of a free theory by taking into account the renormalization and integrating out a certain zero-mode, which is an analog of the zero-mode integration in Liouville theory. Based on the resultant free field picture, we give a simple prescription for calculating the correlation functions. The known exact two- and three-point functions of generic primary fields are correctly obtained, including numerical factors. We also obtain some four-point functions of primaries by solving the Knizhnik-Zamolodchikov equation, and verify that our prescription indeed gives them.Comment: LaTeX, 16 pages, version to appear in Nucl.Phys.

    A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses

    Get PDF
    To combat emerging coronaviruses, developing safe and efficient platforms to evaluate viral protease activities and the efficacy of protease inhibitors is a high priority. Here, we exploit a biosafety level 2 (BSL-2) chimeric Sindbis virus system to evaluate protease activities and the efficacy of inhibitors directed against the papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV), a biosafety level 3 (BSL-3) pathogen. We engineered Sindbis virus to coexpress PLpro and a substrate, murine interferon-stimulated gene 15 (ISG15), and found that PLpro mediates removal of ISG15 (deISGylation) from cellular proteins. Mutation of the catalytic cysteine residue of PLpro or addition of a PLpro inhibitor blocked deISGylation in virus-infected cells. Thus, deISGylation is a marker of PLpro activity. Infection of alpha/beta interferon receptor knockout (IFNAR−/−) mice with these chimeric viruses revealed that PLpro deISGylation activity removed ISG15-mediated protection during viral infection. Importantly, administration of a PLpro inhibitor protected these mice from lethal infection, demonstrating the efficacy of a coronavirus protease inhibitor in a mouse model. However, this PLpro inhibitor was not sufficient to protect the mice from lethal infection with SARS-CoV MA15, suggesting that further optimization of the delivery and stability of PLpro inhibitors is needed. We extended the chimeric-virus platform to evaluate the papain-like protease/deISGylating activity of Middle East respiratory syndrome coronavirus (MERS-CoV) to provide a small-animal model to evaluate PLpro inhibitors of this recently emerged pathogen. This platform has the potential to be universally adaptable to other viral and cellular enzymes that have deISGylating activities
    corecore