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The demand for timber products is facilitating the degradation and opening up of large areas of intact habitats
rich in biodiversity. Logging creates an extensive network of access roads within the forest, yet these are com-
monly ignored or excluded when assessing impacts of logging on forest biodiversity. Here we determine the im-
pact of these roads on the overall condition of selectively logged forests in Borneo, Southeast Asia. Focusing on
dung beetles along N40 km logging roadswe determine: (i) themagnitude and extent of edge effects alongside log-
ging roads; (ii) whether vegetation characteristics can explain patterns in dung beetle communities, and; (iii) how
the inclusion of road edge forest impacts dung beetle assemblages within the overall logged landscape. We found
that while vegetation structure was significantly affected up to 34 m from the road edge, impacts on dung beetle
communities penetrated much further and were discernible up to 170 m into the forest interior. We found larger
species andparticularly tunnelling species respondedmore thanother functional groupswhichwere also influenced
bymicro-habitat variation.We provide important new insights into the long-term ecological impacts of tropical log-
ging. We also support calls for improved logging road design both during and after timber extraction to conserve
more effectively biodiversity in production forests, for instance, by considering the minimum volume of timber,
per unit length of logging road needed to justify road construction. In particular, we suggest that governments
and certification bodies need to highlightmore clearly the biodiversity and environmental impacts of logging roads.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Large areas of intact habitats rich in biodiversity are being opened up
through extractive industries, including selective logging. Logging con-
cessions account for ≈50% of the total area of tropical forests (Blaser
et al., 2011), yet a largely overlooked impact of timber extraction is
the creation of logging roads. Roads are an integral part of extractive in-
dustries, which require not only large transportation routes, but also
secondary haulage trails and smaller access pathways, creating a
sprawling ‘fishbone’ pattern of compressed barren surfaces mostly un-
paved. For instance, in Borneo alone it is estimated there are over
270,000 km of such logging roads (Gaveau et al., 2014).

Roads can have negative ecological consequences by removing and
degrading adjacent habitat, acting as barriers to dispersal, creating
edge effects, and increasing the risk of road kill, fire, hunting and the
. This is an open access article under
colonisation by invasive species (Laurance et al., 2009; Benitez-Lopez
et al., 2010; Rytwinski and Fahrig, 2013; Clements et al., 2014;
Padmanaba and Sheil, 2014; Dar et al., 2015). The construction of
roads across the tropics is therefore an urgent concern for conservation
(Laurance and Balmford, 2013; Bicknell et al., 2015; Barber et al., 2014;
Laurance et al., 2014), but further attention is needed to evaluate the
long-term impacts of logging roads, which remain in the landscape
long after logging has been completed (Gullison and Hardner, 1993;
Ernst et al., 2016). Few studies, however have focused on the impacts
of roads in tropical forests, let alone specific logging roads. Understorey
bird communities were observed to decline, while termite community
composition differedwith proximity to unpaved road clearings in Ama-
zonia (Laurance, 2004; Dambros et al., 2013). Dung beetle communities
were negatively affected by logging dumps, skid trails and access roads
shortly after logging in Malaysia (Hosaka et al., 2014a), and small
mammal community composition differed between logging road
types (variations in size, use and time since adandonment) in Central
Africa (Malcolm and Ray, 2000). However, most studies of the impacts
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of logging on biodiversity have either explicitly or implicitly avoided
roads in their sampling protocols, leading to calls for further studies of
their impacts on biodiversity and ecosystem functioning (Hamer et al.,
2003; Broadbent et al., 2008; Laufer et al., 2013).

This study is based within a 1 Mil ha logging concession in Sabah,
Malaysian Borneo. Selective logging has been widespread in this region
with extraction levels some of the highest globally (Cleary et al.,
2007). In Sabah alone the total length of logging roads is estimated at
N37,000 km, with a density of 0.65 km per km2 (Gaveau et al., 2014).
Timber extraction in the immediate area of our study site was complet-
ed 23 years ago, which provides an ideal opportunity to examine the
long-term impacts of logging roads across a large scale and through con-
tinuous forest. We use dung beetles (Coleoptera: Scarabaeidae,
Scarabaeinae) as our model taxon, as they are a key indicator group
that contributes to diverse ecosystem processes (Gardner et al., 2008;
Nichols et al., 2008) and is sensitive to environmental changes
(Nichols et al., 2007).

The question of how far edge effects alongside roads penetrate into
the forest is vital for understanding the overall impacts of logging on
biodiversity. We address this key question by investigating the magni-
tude and extent of edge effects along logging roads (Harper et al., 2005;
Harper andMacdonald, 2011), focusing onkey vegetation and soil charac-
teristics, and the species richness, community composition and abun-
dance of different dung beetle functional groups. We then assess
whether changes in vegetation characteristics can explain the observed
changes in dung beetle community structure from the road edge to the
logged forest interior. Finally, we compare logged forest with nearby pri-
mary forest to assess the additional impact of roads on dung beetle biodi-
versity, beyond that directly attributable to harvesting of timber.

2. Material and methods

2.1. Study location

The study site was the Yayasan Sabah (YS) logging concession in
eastern Sabah (4° 58′ N, 117° 48′ E). Most of this concession (95%) has
been selectively logged, including the 238,000 ha Ulu Segama-Malua
Forest Reserve (US-MFR) of which 97,000 ha (41%) has undergone a
single rotation of timber extraction (once-logged forest). Harvesting
took place between 1987 and 1991, with a yield ≈115 m3 of timber
per ha (Fisher et al., 2011), and 17% of the land area was marked by
roads and skid trails (Pinard and Cropper, 2000). All roads used in this
study are un-paved and are still in use and maintained, though not for
logging activities. Vegetation along the road edge varies in height and
complexity due to initial logging activities and more recent mainte-
nance (e.g. repairing of collapsed bridges).

2.2. Dung beetle and vegetation sampling

Fieldworkwas conducted between August and October 2009,March
and September 2011, and June and August 2014. To quantify changes in
dung beetle assemblages in proximity to roads, we created 24 sampling
plots which were widely spaced across the landscape with a minimum
distance of 650 m (mean± SD: 5.9 km± 3.7) between plots. Each plot
contained six traps at distances of 0m, 6m, 12m, 25m, 50m and 100m
from the road edge (144 traps in total). To ensure independence of sam-
ples, traps were aminimum of 50m apart (Larsen and Forsyth, 2005) in
a staggered design following Barnes et al. (2014) (see Fig. A1). We con-
sidered that edge effects were unlikely to extend beyond 100 m
(Benedick et al., 2006; Broadbent et al., 2008; Lucey and Hill, 2011;
Gray et al., 2016) but to check whether or not this was the case and to
determine how dung beetle assemblages differed between road edges
and the interior of logged forest, we also placed traps (n = 58) 100 m
apart along 14 transects at distances of 170m to 550m from the nearest
road edge, with 4–5 traps per transect and a minimum distance of
500 m (mean = 11.9 km ± 8.5) between transects. We also sampled
in primary forest, using 60 traps placed a minimum of 100 m apart
along 12 transects of five traps each (mean distance between tran-
sects = 4.5 km ± 3.0)(see Fig. 1). We used standardised baited pitfall
traps for all sampling. In each case a single trap, baited with human
dung, was placed for four days and re-baited after 48 h,with beetles col-
lected every 24 h (Edwards et al., 2011). We used reference collections
(T. Larsen) housed at the Forest Research Centre, Sandakan, Malaysia
and SmithsonianMuseum,Washington DC, USA to assist identification.

Species vary greatly in their contributions to community biomass,
which in turn can affect ecosystem functioning (Slade et al., 2007). To
determine biomass per trap, we calculated the average mass (g) of
each dung beetle species, multiplied this by the number of individuals
in a trap, and summed across species. To determine body masses, indi-
viduals (up to a maximum of 15 per species) were dried for four days
at 60 °C and weighed to the nearest 0.001 g using a precision balance
(SBC 31; Scaltec Instruments GmbH, Germany). We also measured
body length (base of head to tip of elytra) and width (distance between
outer margins of elytra), to the nearest 0.1 mm using dial callipers and
calculated body size (length ∗ width) to allow extrapolation of body
mass for species that could not be weighed (Text B1, Fig. B1).

Additionally, 15 micro-habitat variables were measured at each
sampling locationwithin 100mof the road edge (n=144) and a subset
of interior forest locations (n = 24) to determine how soil characteris-
tics, leaf litter depth and vegetation structure, including tree character-
istics, varied with distance from the road edge (Text C1).
2.3. Data analysis

2.3.1. Edge effects
To examine how species richness, abundance and biomass of dung

beetles, the abundance of different functional groups, vegetation struc-
ture and soil characteristics variedwith distance from the road edge, we
firstly used a piecewise regression to determine if a breakpoint (an
abrupt change in a relationship) in our data was present. We ran a
GLMwith negative binomial error distribution (or in the case of certain
vegetation variables a LM) with distance as a continuous variable, and
then using thismodelwe rana piecewise regression (using the segment-
ed package in R). To determine if the piecewise regression was the best
model we compared AIC values (following Ochoa-Quintero et al., 2015;
Magnago et al., 2015). The piecewise regression allowed us to deter-
mine whether there was a significant influence of distance and to iden-
tify any discrete breakpoint in a particular variable (P b 0.05).

Secondly, we assessed the magnitude of edge influence (MEI:
Harper and Macdonald, 2011; Dodonov et al., 2013), described as the
amount a particular variable differs at the ‘edge’ compared to the ‘inte-

rior’, using the calculation ofMEI ¼ ðe−iÞ
ðeþiÞ where e represents the average

of a given variable at a particular distance from the edge, and i represents
the average of a given variable within the interior habitat away from the
edge. If a given distance from the edge (e) is equal to the interior (i) then
MEI = 0, MEI is bounded by 1 and−1 allowing for ease of comparison
between variables. To examine the distance over which edge effects
penetrated into the forest adjacent to roads (referred to as the distance
of edge influence - DEI) we used a randomised method of edge influ-
ence (RTEI: Harper andMacdonald, 2011), described as the range of dis-
tances away from the edge (towards the interior) where there is a
significant edge influence (Harper et al., 2005). This method follows
three steps; i) observed MEI is calculated, ii) then randomised values
of MEI are calculated from a complete variable pool (edge plus interior
values) where the number of edge and interior sites are kept constant,
and iii) then randomised values ofMEI are compared to observed values
to determine the significance of observed MEI (see Harper and
Macdonald, 2011 for further details). The analyses were run separately
for each distance (e) away from the road edge. This randomisation tech-
nique reduces type 1 errors by accounting for variation between sam-
pling sites at a specific distance from the edge. We used 10,000
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Fig. 1. (a) A map of Sabah, Malaysian Borneo. The box outlines our study area. (b) A map of the study area. The grey solid area represents primary rainforest with the adjacent white area
representing selectively logged rainforest. The symbols on themap identify sampling sites; open circles are within primary forest, solid black circles are within logged forest N100m from
the road edge (interior logged forest), and solid black triangles arewithin logged forest up to 100m from the road edge (road edge forest). In all cases, themid-point of the sampling traps,
at a given site, is represented on the map.
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randomisations with a significance level of 0.05 for determining p-values.
We also used this technique to assess the change in soil characteristics,
leaf litter depth and vegetation structure away from the road edge.

Functional groups were determined using categories described by
Slade et al. (2007),which represent themain behavioural guilds, diel ac-
tivities and size categories of dung beetles, whichhave been found to re-
late to dung beetle functional activity within the study area (Slade et al.,
2007; Slade et al., 2011).

2.3.2. Community composition
To investigate how species composition changed with increasing

distance from road edges, I used a non-metric multidimensional scaling
ordination (Clarke and Warwick, 2001), using the Bray-Curtis dissimi-
larity measure (metaMDS function in Vegan; Oksanen et al., 2011).
Communities were standardised as a proportion of the total number
of individuals per distance class. To test for significant changes in com-
munity composition with distance from the road edge, I used a multi-
variate generalised linear model (GLM) framework, which allowed
more accurate modeling of mean–variance relationships compared to
pairwisematrix techniques (e.g. Bray–Curtis index), reducing type II er-
rors (Warton et al., 2012). I used a negative binomial GLM, where mul-
tivariate p-values were calculated using PIT-trap bootstrapping with
1000 permutations, and were adjusted for multiple testing
(anova.manyglm in Mvabund; Wang et al., 2014).

2.3.3. Relationship of dung beetles to vegetation
To test whether there was a relationship between the changes in

dung beetle community metrics and the observed vegetation changes,
we ran generalised linear mixed effects models (GLMM) for each com-
munity metric (i.e. abundance, biomass) with a negative binomial error
distribution. Each model included eight vegetation measures as predic-
tors (successional vegetation, ground cover, canopy cover, the number
of large and small trees, the height of large and small trees, and the
girth of large trees) and ‘plot’ as a random factor to account for repeated
measures. Those vegetation measures that showed no variation in the
MEI analysis (see ‘edge effects’ above) were not included. We used a
subset of the overall data where both vegetation and community data
were available (n = 144 road edge plots with 24 plots per distance
class plus 24 plots in the interior of logged forest, all surveyed in
2014). The vegetation variables were standardised to allow for analysis
across different scales using the formula (x−mean(x)) / SD(x) where x
is the vegetation variable to be standardised. To test whether or not our
results were influenced by spatial autocorrelation we used a Monte-
Carlo permutation test for Moran's I statistic (moran.mc function in
spdep: Bivand and Piras, 2015), using our model residuals with 1000
repetitions. There was no evidence of spatial auto-correlation for any
of the models (Moran's I: P ≥ 0.3).

2.3.4. Spatial extent of logging roads and edges
To determine how far edge effects persisted away from the road

edge, we examined at what distance, if any, there was a distinct change
in each of our biodiversitymetrics andmicro-habitat variables.We then
used a GIS layer of major and minor hard roads (excluding skid trails)
across the YS logging concession to determine the area comprising log-
ging roads and edges. This layer covers themajority of the YS concession
andwas themost detailed layer available to us. The area (km2) compris-
ing logging roads and edges, beyond the linear feature of the road sur-
face itself, was estimated as:

Totalroadlength� limitofedgeeffects� 2½ �ð Þ ð1Þ

All statistical analyses were run in R v.3.1.1 (R Development Core
Team, 2016 and all spatial analyses were run in ArcGIS 10.1 (ESRI,
2011).

3. Results

Wesampled 23,570 individual dungbeetles of 74 species. Those spe-
cies recorded in the interior of logged forest were a subset of primary
forest species, but we recorded an additional eight species at road
edges, which were not found elsewhere in the study (or from previous
studies in the same study area, Edwards et al., 2014) (Table D1).

3.1. Magnitude and extent of edge effects

Successional vegetation declined significantly with increasing dis-
tance from the road (piecewise regression: t = −4.28, p b 0.001)
while the number of small and large trees (t = 2.82, p = 0.005 and
t = 2.78, p = 0.006 respectively), and the height and girth of large
trees (t= 4.0, p b 0.001 and t= 2.86, p= 0.005 respectively) increased
along the same gradient (Tables C1, C4, Fig. C2). A randomization test of
edge influence (RTEI) supported these models but with the addition of
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canopy cover, ground cover and small tree height showing a significant
decrease compared to interior logged forest (Table C4). Therewas, how-
ever, no effect of distance from edge on soil characteristics or leaf litter
depth (Tables C1, C4, Fig. C1).

Abundance and biomass of dung beetles per trap both increased
with increasing distance from the road (t = 3.73, P b 0.001 and t =
4.26, P b 0.001, respectively), with the greatest increase occurring
around 130 m (Fig. 2). RTEI confirmed that themagnitude of the differ-
ence in each of these two response variableswas significant up to 100m
from the road edge (Table C3, Fig. C3).

In terms of functional groups, large nocturnal tunnellers, large diur-
nal rollers and both large and small diurnal tunnellers all increased sig-
nificantly in abundance with increasing distance from the road edge
(t = 5.32, P b 0.001, t = 4.86, P b 0.001, t = 4.82, P b 0.001, and t =
4.30, p b 0.001 respectively) up to a distance 130 m (Fig. 3). Large noc-
turnal rollers and small nocturnal tunnellers (t = 2.78, p = 0.006 and
t = 3.10, p b 0.002, respectively) changed in abundance much closer
to the road edge (b50 m, Fig.3d, g), whereas small diurnal rollers were
unaffected (P = 0.19, Fig. 3f). The magnitude of edge effects and the
RTEI confirmed similar patterns, highlighting significantly different
abundances up to 100 m from the road edge compared to interior
logged forest for the majority of functional groups, with the exception
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Fig. 2. The effect of distance from the road edge (m) on the a) abundance, b) species
richness, and c) biomass of dung beetles communities. Solid red lines are based on
piecewise regression, dashed vertical lines represent significant breakpoints (P b 0.05),
and grey shaded areas represent SE around breakpoint distance. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)
of small nocturnal tunnellers (DEI of 25 m) and small diurnal rollers
which were found not to differ (Table C3, Fig. C3). Finally, community
composition indicated that beetle assemblages within 100 m of the
road were significantly different from those at greater distances
(Fig. 4; manyglm: Wald statistic = 26.25, P = 0.001). There was no ev-
idence of spatial auto-correlation for any of the above models (Moran's
I: P ≥ 0.1).

3.2. Relationship of dung beetles to vegetation

The overall biomass of dung beetles and the abundance of large diur-
nal and nocturnal tunnellers were all significantly positively related to
ground cover, while the abundance of large and small nocturnal
tunnellers were significantly negatively related to the density of early
successional vegetation (Table C5). Some additional variables also in-
creased significantly with increasing densities or sizes of tress but
there was no relationship between the abundance or biomass of rollers
and any of the measured vegetation characteristics (Table C5).

3.3. Spatial extent of logging roads and edges

We estimated that the area affected by logging roads within the YS
concession (i.e. including edge effects) was 817 km2, which is 9.0% of
the total area of logged forest within the concession. Accounting for
this area of road edge forest resulted in an additional decline of 3–8%
in overall community metrics and in the abundance of different func-
tional groups in the logged landscape compared to the effect of timber
removal only (Table 1).

4. Discussion

4.1. Edge effects

This study provides one of the first examples of how tropical biodi-
versity responds to logging roads per se (Laurance, 2004; Hosaka et
al., 2014a), and also assesses what the broader impact of timber extrac-
tion is by accounting for the hidden additional effects of logging roads.
These results show clear evidence that while vegetation structure and
composition were significantly affected up to 34 m from the road
edge, impacts on dung beetle communities penetrated much further
and were discernible up to 170 m into the forest interior (Figs. 2, 3,
C3b). Moreover, these changes were observed N20 years after timber
extraction ended, supporting previous findings of the long term impacts
of roads in Central Africa and Amazonia (Malcolm and Ray, 2000;
Laurance et al., 2004) and highlighting a need for longstanding conser-
vation efforts.

These results for dung beetles accordwith themedian extent of edge
effects within forest fragments in the Brazilian Amazon (100 m;
Broadbent et al., 2008), suggesting that transection of forest by logging
roads could be considered akin to fragmentation in terms of edge ef-
fects. We also found that the distances of edge influence extended
much further than previously recorded in Southeast Asian forests that
had been selectively logged b18 months previously (b10 m; Hosaka
et al., 2014b), possibly indicating a time lag in species' responses.
More broadly, the declines we recorded in dung beetle community
and functional metrics between road edges and elsewhere within
logged forest exceeded the difference between primary forest and the
interior of logged forest, highlighting the stark decline in biodiversity
in proximity to roads (Table 1).

4.2. Impact of roads on logged forest biodiversity

The changes we recorded in community composition indicate po-
tential changes in the ecosystem functions provided by dung beetles
within logged forest. The magnitude of edge influence was greater for
diurnal tunnellers and larger species compared to rollers and smaller
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Fig. 3. The effect of distance from the road edge (m) on the abundance of seven key dung beetles functional groups; a) large diurnal tunneller, b) large diurnal roller, c) large nocturnal
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the reader is referred to the web version of this article.)
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species (Fig. 2, Table C3, Fig. C3). Notably the decline of large tunnellers,
which have been shown to removemore dung than the other functional
groups (Slade et al., 2007), could have important implications for the
overall rate of dung removal. Furthermore the decline in larger species
may contribute to changes in local-scale species interactions including
the greater numerical dominance of smaller species, particularly diurnal



Fig. 4.The relationship between non-metricmultidimensional scaling (NMDS) ordination axis 1 and axis 2. Open circles represent traps between 0 and100m from the road edge, and solid
diamonds represent traps in the interior logged forest, N170 m from the road edge.
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rollers, in road edge forest (Table 1). Tunnelling species, including larger
species, were shown to associatewith greater tree density and structure
but with ground cover present. Micro-habitat and micro-climatic
changes, have been highlighted as a key determinant in changes in
smallmammal and dung beetle populations, specifically a loss of canopy
cover, following road creation (Malcolm and Ray, 2000; Hosaka et al.,
2014b) but also in other extreme environments (oil palm plantations
and logging yards) which represent similar extreme changes in habitat
structure as with roads and logged forest edge (Edwards et al., 2014;
Hosaka et al., 2014a). These findings highlight the unknown interac-
tions between functional traits and community assembly, and the
need for a greater understanding of assembly filters in varied disturbed
habitats (Pollock et al., 2012; Van der Plas et al., 2012).

4.3. Management implications

Roads are an essential butfinancially costly element of logging activ-
ities (Putz et al., 2008; Medjibe and Putz, 2012), and this study high-
lights the long-lasting ecological consequences of road creation during
selective logging, above and beyond the direct effects of the removal
Table 1
Biodiversity metrics (mean [SE]) for dung beetles sampled within primary forest, N100m
from the nearest road within logged forest (interior), within 100m of logging roads (road
edge) and the combined logged landscape⁎ in Sabah, Malaysian Borneo.

Metric Primary forest Logged forest

Interior Road edge Combined

Overall community
Species richness 18.5 (0.7) 15.8 (0.8) 10.7 (0.4) 13.9 (0.4)
Abundance 147.7 (14.3) 129.3 (14.0) 48.6 (4.5) 122.0 (7.4)
Biomass (g) 24.7 (2.3) 14.1 (1.4) 3.4 (0.3) 14.7 (0.8)

Abundance of functional
groups
Large diurnal tunnellers 9.6 (1.1) 13.0 (1.9) 0.9 (0.2) 6.2 (1.0)
Large nocturnal
tunnellers

8.5 (1.0) 11.3 (1.2) 3.1 (0.3) 11.9 (0.7)

Small diurnal
tunnellers

43.5 (5.0) 55.6 (7.4) 12.7 (1.3) 51.7 (3.8)

Small nocturnal
tunnellers

17.5 (1.6) 6.4 (1.2) 4.4 (1.0) 10.6 (0.8)

Large diurnal rollers 26.8 (3.3) 20.4 (3.1) 4.3 (0.6) 19.0 (1.6)
Large nocturnal rollers 5.4 (0.9) 1.5 (0.3) 0.6 (0.1) 1.4 (0.2)
Small diurnal rollers 33.7 (5.8) 21.0 (4.3) 22.6 (2.5) 21.1 (2.3)

⁎ Means for combined logged forest are weighted by the proportions of interior and
road edge forest within the logged landscape of the study concession area.
of trees. Consequently, there are incentives and benefits to both conces-
sion holders and biodiversity conservation to improve the design and
implementation of logging roads.

The logging concession we studied is a relatively closed area with
tightly controlled access, low traffic volumes and minimal human set-
tlements (principally three well-contained forest research stations and
a tourist lodge), and thus further degradation has been minimal while
promoting forest recovery. Our results show that even under this
‘best-case scenario’ there are significant impacts of logging roads. Fur-
thermore, where logging roads facilitate uncontrolled access to the for-
est long after logging has ceased, edge effects could be greatly
exacerbated and penetrate further into the logged forest interior. Thus
we support suggestions for the closure (permanent or temporarily) of
logging roads,where appropriate, once timber extraction has been com-
pleted, to facilitate forest recovery and discourage encroachment
(Bicknell et al., 2015; Kleinschroth et al., 2016).

In conclusion we suggest that governments and certification bodies
(e.g. the Forest Stewardship Council - FSC) need to highlightmore clear-
ly the biodiversity and environmental impacts of logging roads.We also
encourage the increased use of reduced impact logging techniques (RIL;
Edwards et al., 2012; Putz et al., 2012; Bicknell et al., 2014) and suggest
that the planning of roads within logging concessions needs to take fur-
ther steps to preserve forest, for instance by considering the minimum
volume of timber thatwould need to be extracted per unit length of log-
ging road in order to justify road construction. This is a timely and im-
portant discussion as large logging concessions open up across South-
east Asia, South America and tropical Africa, and there is a need and de-
sire to encourage more sustainable and conservation-focused planning
for logging activities.
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Appendix A: the methodological design of trap placements within
plots measuring edge effects (Fig. A1). Appendix B: a description of bio-
mass calculations for species where extrapolation was required (Text
B1), and the relationship between dry mass and body size, which was
used in biomass calculations (Fig. B1). Appendix C: the micro-habitat
variables recorded to assess soil characteristics, leaf litter depth and veg-
etation structure (Text C1), a summary of piecewise regression outputs
for micro-habitat variables (Table C1), a summary of RTEI output for
micro-habitat variables (Table C2), a summary of RTEI output for com-
munity and functional metrics (Table C3), a summary table of micro-
habitat variables per distance category (Table C4), a summary of
GLMM model outputs investigating the relationship between commu-
nity metrics and the abundance of functional groups with key micro-
habitat variables (Table C5), the relationships between MEI and DEI
for vegetation characteristics (Fig. C1), the relationships between MEI
and DEI for tree characteristics (Fig. C2), and the relationships between
MEI and DEI for community and functional metrics (Fig. C3). Appendix
D: a summary table of the mean species abundances per number of
traps per distance category, interior logged forest and primary forest
(Table D1). Supplementary data associated with this article can be
found in the online version, at http://dx.doi.org/10.1016/j.biocon.2016.
11.011.
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