12 research outputs found

    Multi-site Integrated Optical Addressing of Trapped Ions

    Full text link
    One of the most effective ways to advance the performance of quantum computers and quantum sensors is to increase the number of qubits or quantum resources used by the system. A major technical challenge that must be solved to realize this goal for trapped-ion systems is scaling the delivery of optical signals to many individual ions. In this paper we demonstrate an approach employing waveguides and multi-mode interferometer splitters to optically address multiple 171Yb+^{171}\textrm{Yb}^+ ions in a surface trap by delivering all wavelengths required for full qubit control. Measurements of hyperfine spectroscopy and Rabi flopping were performed on the E2 clock transition, using integrated waveguides for delivering the light needed for Doppler cooling, state preparation, coherent operations, and detection. We describe the use of splitters to address multiple ions using a single optical input per wavelength and use them to demonstrate simultaneous Rabi flopping on two different transitions occurring at distinct trap sites. This work represents an important step towards the realization of scalable integrated photonics for atomic clocks and trapped-ion quantum information systems.Comment: 7 pages, 4 figures (+2 supplementary figures

    A natural little hierarchy for RS from accidental SUSY

    Full text link
    We use supersymmetry to address the little hierarchy problem in Randall-Sundrum models by naturally generating a hierarchy between the IR scale and the electroweak scale. Supersymmetry is broken on the UV brane which triggers the stabilization of the warped extra dimension at an IR scale of order 10 TeV. The Higgs and top quark live near the IR brane whereas light fermion generations are localized towards the UV brane. Supersymmetry breaking causes the first two sparticle generations to decouple, thereby avoiding the supersymmetric flavour and CP problems, while an accidental R-symmetry protects the gaugino mass. The resulting low-energy sparticle spectrum consists of stops, gauginos and Higgsinos which are sufficient to stabilize the little hierarchy between the IR scale and the electroweak scale. Finally, the supersymmetric little hierarchy problem is ameliorated by introducing a singlet Higgs field on the IR brane.Comment: 37 pages, 3 figures; v2: minor corrections, version published in JHE

    nu Seesaw Uses: UV Insensitive Supersymmetry Breaking without Tachyons

    No full text
    This document contains a systematic analysis of supersymmetric left-right models in the context of anomaly mediated supersymmetry breaking starting with the high-scale, left-right theory and ending with the supersymmetry-scale theory. It is shown that the combination of supersymmetric left-right models and anomaly mediated supersymmetry breaking retains the attractive features of anomaly mediation while simultaneously providing a solution to the tachyonic slepton problem of the minimal supersymmetric standard model with anomaly mediated supersymmetry breaking. The supersymmetric left-right theory introduces new yukawa couplings that permit positive slepton mass-squares while retaining the ultra violet insensitivity of anomaly mediated supersymmetry breaking as well its economy. The new couplings are introduced by independent considerations of explaining neutrino oscillation experiments through the seesaw mechanism, and survive below the seesaw scale from an accidental symmetry of the potential. Furthermore, the seesaw mechanism is implemented in such a way that R-parity is a natural residual symmetry--leading to a stable, weakly-interacting particle to explain dark matter. The resulting mass spectrum is detailed, both qualitatively and quantitatively, providing comparisons with other popular supersymmetry breaking scenarios. It is demonstrated that the model contains gaugino masses that are much closer in size than other schemes, as well as the possibility of a mild squark-slepton mass degeneracy. The issue of higgsino masses is also explored, and attention is paid to the dark matter composition. The model is shown to have a viable dark matter candidate that evades current direct detection bounds but will be probed by future planned experiments. The low-energy consequences of the model are analyzed, and the matter of electroweak symmetry breaking is expounded. It is shown that the problem of a higgsino mass below the LEP II bound in the next-to minimal supersymmetric standard model with anomaly mediated supersymmetry breaking is easily avoided by this theory. Finally, prospects for confirmation of this theory at the LHC are investigated, as well as potential signatures in lepton flavor violation experiments
    corecore