565 research outputs found

    Dissociating the functions of superior and inferior parts of the left ventral occipito-temporal cortex during visual word and object processing

    Get PDF
    During word and object recognition, extensive activation has consistently been observed in the left ventral occipito-temporal cortex (vOT), focused around the occipito-temporal sulcus (OTs). Previous studies have shown that there is a hierarchy of responses from posterior to anterior vOT regions (along the y-axis) that corresponds with increasing levels of recognition - from perceptual to semantic processing, respectively. In contrast, the functional differences between superior and inferior vOT responses (i.e. along the z-axis) have not yet been elucidated. To investigate, we conducted an extensive review of the literature and found that peak activation for reading varies by more than 1 cm in the z-axis. In addition, we investigated functional differences between superior and inferior parts of left vOT by analysing functional MRI data from 58 neurologically normal skilled readers performing 8 different visual processing tasks. We found that group activation in superior vOT was significantly more sensitive than inferior vOT to the type of task, with more superior vOT activation when participants were matching visual stimuli for their semantic or perceptual content than producing speech to the same stimuli. This functional difference along the z-axis was compared to existing boundaries between cytoarchitectonic areas around the OTs. In addition, using dynamic causal modelling, we show that connectivity from superior vOT to anterior vOT increased with semantic content during matching tasks but not during speaking tasks whereas connectivity from inferior vOT to anterior vOT was sensitive to semantic content for matching and speaking tasks. The finding of a functional dissociation between superior and inferior parts of vOT has implications for predicting deficits and response to rehabilitation for patients with partial damage to vOT following stroke or neurosurgery

    SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment.

    Get PDF
    Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in (13)C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments.HS was supported by a UK Natural Environment Research Council Advanced Fellowship NE/E013333/1), ÖE by a postgraduate scholarship from the University of Warwick and an Early Career Fellowship from the Institute of Advanced Study, University of Warwick, UK, respectively. Lawrence Davies is acknowledged for help with QIIME

    HSPG-Binding Peptide Corresponding to the Exon 6a-Encoded Domain of VEGF Inhibits Tumor Growth by Blocking Angiogenesis in Murine Model

    Get PDF
    Vascular endothelial growth factor VEGF165 is a critical element for development of the vascular system in physiological and pathological angiogenesis. VEGF isoforms have different affinities for heparan sulphate proteoglycan (HSPG) as well as for VEGF receptors; HSPGs are important regulators in vascular development. Therefore, inhibition of interactions between VEGF and HSPGs may prevent angiogenesis. Here, we demonstrate that an HSPG-binding synthetic peptide, corresponding to exon 6a-encoded domain of VEGF gene, has anti-angiogenic property. This 20 amino acids synthetic peptide prevents VEGF165 binding to several different cell types, mouse embryonic sections and inhibits endothelial cell migration, despite its absence in VEGF165 sequence. Our in vivo anti-tumor studies show that the peptide inhibits tumor growth in both mouse Lewis-Lung Carcinoma and human Liposarcoma tumor-bearing animal models. This is the first evidence that a synthetic VEGF fragment corresponding to exon 6a has functional antagonism both in vitro and in vivo. We conclude that the above HPSG binding peptide (6a-P) is a potent inhibitor of angiogenesis-dependent diseases

    Influence of national culture on the adoption of integrated medical curricula

    Get PDF
    Integrated curricula have been implemented in medical schools all over the world. However, among countries different relative numbers of schools with integrated curricula are found. This study aims to explore the possible correlation between the percentage of medical schools with integrated curricula in a country and that country’s cultural characteristics. Curricula were defined as not integrated if in the first 2 years of the program at least two out of the three monodisciplinary courses Anatomy, Physiology and Biochemistry were identified. Culture was defined using Hofstede’s dimensions Power distance, Uncertainty avoidance, Masculinity/Femininity, and Individualism/Collectivism. Consequently, this study had to be restricted to the 63 countries included in Hofstede’s studies which harbored 1,195 medical schools. From each country we randomly sampled a maximum of 15 schools yielding 484 schools to be investigated. In total 91% (446) of the curricula were found. Correlation of percent integrated curricula and each dimension of culture was determined by calculating Spearman’s Rho. A high score on the Power distance index and a high score on the Uncertainty avoidance index correlated with a low percent integrated curricula; a high score on the Individualism index correlated with a high percent integrated curricula. The percentage integrated curricula in a country did not correlate with its score on the Masculinity index. National culture is associated with the propensity of medical schools to adopt integrated medical curricula. Consequently, medical schools considering introduction of integrated and problem-based medical curricula should take into account dimensions of national culture which may hinder the innovation process

    Changes in multi-segment foot biomechanics with a heat-mouldable semi-custom foot orthotic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semi-custom foot orthoses (SCO) are thought to be a cost-effective alternative to custom-made devices. However, previous biomechanical research involving either custom or SCO has only focused on rearfoot biomechanics. The purpose of this study was therefore to determine changes in multi-segment foot biomechanics during shod walking with and without an SCO. We chose to investigate an SCO device that incorporates a heat-moulding process, to further understand if the moulding process would significantly alter rearfoot, midfoot, or shank kinematics as compared to a no-orthotic condition. We hypothesized the SCO, whether moulded or non-moulded, would reduce peak rearfoot eversion, tibial internal rotation, arch deformation, and plantar fascia strain as compared to the no-orthoses condition.</p> <p>Methods</p> <p>Twenty participants had retroreflective markers placed on the right limb to represent forefoot, midfoot, rearfoot and shank segments. 3D kinematics were recorded using an 8-camera motion capture system while participants walked on a treadmill.</p> <p>Results</p> <p>Plantar fascia strain was reduced by 34% when participants walked in either the moulded or non-moulded SCO condition compared to no-orthoses. However, there were no significant differences in peak rearfoot eversion, tibial internal rotation, or medial longitudinal arch angles between any conditions.</p> <p>Conclusions</p> <p>A semi-custom moulded orthotic does not control rearfoot, shank, or arch deformation but does, however, reduce plantar fascia strain compared to walking without an orthoses. Heat-moulding the orthotic device does not have a measurable effect on any biomechanical variables compared to the non-moulded condition. These data may, in part, help explain the clinical efficacy of orthotic devices.</p

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle

    Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance

    Get PDF
    Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    A first-principles theoretical study of the electronic and optical properties of twisted bilayer GaN structures

    Get PDF
    Gallium nitride (GaN) is a well-investigated material that is applied in many advanced power electronic and optoelectronic devices due to its wide bandgap. However, derivatives of its monolayer form, such as bilayer structures, have rarely been reported. We study herein the electronic and optical properties of GaN bilayer structures that are rotated in the plane at several optimized angles by using the density functional theory method. To maintain the structural stability and use a small cell size, the twisting angles of the GaN bilayer structures are optimized to be 27.8°, 38.2°, and 46.8° using the crystal matching theory. The band-structure analysis reveals that the bandgap is wider for the twisted structures compared with the nontwisted case. The simulation results provide the absorption coefficient, extinction coefficient, reflectivity, and refractive index at these angles. The spectra of all these optical properties match with the bandgap values. The simulated refractive index of the bilayer structures at all the twisting angles including 0° is smaller than that of bulk GaN, indicating a reduced scattering loss for optoelectronics applications. Considering the results of this analysis, the possible applications may include low-loss integrated electronic and optical devices and systems

    Relationship between home care service use and changes in the care needs level of Japanese elderly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the introduction of long-term care insurance (LTCI) in Japan, more home care services are available for the community-dwelling elderly. To deliver effective home care services, it is important to know the effects of service use. In this study, as the first step to determine this, we sought to describe different home service use in the sustained/improved group and deteriorated group in their care needs levels, and to report the relationship between the use of home care services and changes in care needs levels.</p> <p>Methods</p> <p>The participants included 624 of a total of 1,474 users of LTCI services in one city in Japan. Home care service users were stratified into a 'lower care needs level subgroup' and a 'higher care needs level subgroup' based on the baseline care needs level. Simple statistical comparison and multiple logistic regression analyses in which the change in care needs level was set as a dependent variable were performed. Gender, age, and baseline care needs level were designated as control variables. Home based services were treated as independent variables. In this study, home care services consisted of home help, home bathing services, a visiting nurse, home rehabilitation, nursing home daycare, health daycare, loan of medical devices, respite stay in a nursing home, respite stay in a health care facility, respite stay in a sanatorium-type medical care facility, and medical management by a physician.</p> <p>Results</p> <p>In the lower care needs level subgroup, age (OR = 1.04, CI, 1.01-1.08), use of respite stay in a nursing home (OR = 2.55; CI, 1.43-4.56), and the number of types of long-term care services (OR = 1.33; CI, 1.02-1.74) used during an 11 month period were significantly related to a deterioration of the user's care needs level. In the higher care needs level subgroup, use of medical management by a physician (OR = 6.99; CI, 1.42-41.25) was significantly related to a deterioration of the user's care needs level. There were no home based services significantly related to sustaining or improving the user's care needs level.</p> <p>Conclusion</p> <p>There were different home service use in two groups (the sustained/improved group and the deteriorated group). Respite stay in a nursing home service use and more types of service use were related to experiencing a deterioration of care needs level in lower care needs level community-dwelling elderly persons in Japan. Further, medical management by a physician service was related to experiencing a deterioration of care needs level in higher care needs level community-dwelling elderly persons.</p
    corecore