20 research outputs found

    From forests to microbiomes : The mediation of plant-soil systems by root-symbiotic fungi

    Get PDF
    Plant-microbial symbioses play crucial roles in ecological and biogeochemical processes such as carbon and nutrient cycling, plant-soil feedback, and evolutionary dynamics. However, less is known about how these symbioses influence the broader soil microbial communities (microbiomes) that they interact with, which is essential to understanding the ecosystem processes they facilitate.In this thesis, I investigate the effect of mycorrhizal type and other root symbioses on the structure and potential function of belowground microbiomes, as well as leaf microbiomes and leaf element concentrations. To accomplish this, I used a variety of techniques, including metabarcoding and metagenomic analysis of microbial communities and their functional genes from field studies at various scales, from single vegetation communities to a European latitudinal gradient.Regionally, I found that sites dominated by arbuscular mycorrhizal (AM) vegetation had relatively more AM fungi, bacteria, fungal saprotrophs, and pathogens in their soils compared to ectomycorrhizal (EcM) vegetation, and that coniferous EcM vegetation was a particularly important determinant of soil conditions and microbiome features. I also found that root colonization by dark septate endophytic (DSE) fungi was strongly associated with the composition of microbial communities and functional genes, including a negative relationship with the relative abundance of fungal pathogens and bacteria across Europe. Lastly, I found that tree species with different root symbioses and levels of colonization and their leaf element profiles were a key factor shaping leaf microbial communities and diversity compared to climate, with contrasting relative abundances of bacterial and fungal guilds and taxa between and within tree species.Overall, my findings suggest that the biotic interactions between plants and their root symbionts are important factors determining the structure and function of microbiomes across vegetation communities and tree species, with implications for wider ecosystem processes

    Fungi as mediators linking organisms and ecosystems

    Get PDF
    The unique set of traits that fungi exhibit, and the versatility of these traits facilitate the mediating role that fungi play in host and ecosystem functioning through the establishment of dynamic evolutionary and ecological interactions.Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems

    Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions

    Get PDF
    Plant nutrient acquisition strategies involving ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations, are key plant functional traits leading to distinct carbon (C) and nutrient dynamics in forests. Yet, little is known about how these strategies influence the structure and functioning of soil communities, and if such mycorrhizal effects may be more or less pronounced depending on the type of forest and various abiotic factors. Here we explore the potential interactions occurring between plant-EcM and plant-AM systems with the diverse soil organisms occurring in forest soils, and in the process draw attention to major issues that are worthy for future research directions. Based on these potential interactions, we suggest that EcM systems, especially those involving gymnosperms in colder climates, may select for a soil community with a narrow set of functions. These EcM systems may exhibit low functional redundancy, dominated by symbiotic interactions, where EcM fungi maintain low pH and high C/N conditions in order to tightly control nutrient cycling and maintain the dominance of EcM trees. By contrast, AM systems, particularly those involving deciduous angiosperm trees in mild and warmer climates, may facilitate a functionally more diverse and redundant soil community tending towards the dominance of competitive and antagonistic interactions, but also with a range of symbiotic interactions that together maintain diverse plant communities. We propose that the contrasting belowground interactions in AM and EcM systems act as extended nutrient acquisition traits that contribute greatly to the prevailing nutrient and C dynamics occurring in these systems

    Metagenomic assessment of the global distribution of bacteria and fungi

    Get PDF
    Bacteria and fungi are of uttermost importance in determining environmental and host functioning. Despite close interactions between animals, plants, their associated microbiomes, and the environment they inhabit, the distribution and role of bacteria and especially fungi across host and environments as well as the cross‐habitat determinants of their community compositions remain little investigated. Using a uniquely broad global dataset of 13 483 metagenomes, we analysed the microbiome structure and function of 25 host‐associated and environmental habitats, focusing on potential interactions between bacteria and fungi. We found that the metagenomic relative abundance ratio of bacteria‐to‐fungi is a distinctive microbial feature of habitats. Compared with fungi, the cross‐habitat distribution pattern of bacteria was more strongly driven by habitat type. Fungal diversity was depleted in host‐associated communities compared with those in the environment, particularly terrestrial habitats, whereas this diversity pattern was less pronounced for bacteria. The relative gene functional potential of bacteria or fungi reflected their diversity patterns and appeared to depend on a balance between substrate availability and biotic interactions. Alongside helping to identify hotspots and sources of microbial diversity, our study provides support for differences in assembly patterns and processes between bacterial and fungal communities across different habitats

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms

    FungalTraits:A user-friendly traits database of fungi and fungus-like stramenopiles

    Get PDF
    The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold

    Connecting the multiple dimensions of global soil fungal diversity

    Get PDF
    How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes

    Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe

    Get PDF
    Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.While mycorrhizal-plant interactions are widely studied, other root symbionts may also be ecologically important. Here, the authors show that dark septate endophytes are a strong predictor of rhizosphere and associated soil microbiomes in broad-leaved tree across Europe
    corecore