2,154 research outputs found

    Integrated assurance assessment of a reconfigurable digital flight control system

    Get PDF
    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety

    LONG-TERM CHANGES IN CANADA GOOSE NEST SUCCESS AND NEST DENSITIES AT AN IOWA WETLAND COMPLEX

    Get PDF
    Giant Canada geese (Branta canadensis maxima) were extirpated from Iowa by the early 1900s due to unregulated hunting, egg gathering, and wetland drainage in the nineteenth century (Bishop 1978). Ef- forts to reintroduce Canada geese in Iowa began in 1964 (Bishop and Howing 1972) and involved releasing flightless adults and goslings at nearly 30 sites across the state (Zenner and LaGrange 1998a). In 1972, 13 flightless pairs were released at Rice Lake Wildlife Management Area (WMA; Bishop 1978). By 1989, the breeding population of Canada geese at Rice Lake WMA had increased to 420 nesting adults (G. G. Zenner, Iowa Department of Natural Resources, unpublished data). Canada goose nest success and nest densities were documented from 1989–1991 on extant islands at Rice Lake WMA (Zenner and LaGrange 1998b). Rice Lake WMA (43.379497, –93.472715) is located in north-central Iowa and lies within the southernmost portion of the Prairie Pothole Region. This wetland complex consists of Rice Lake, a 409-ha shallow, natural lake with a maximum depth of 3 m and 20 natural islands ranging in size from 0.04 to 3.9 ha, and Joice Slough, a 73-ha marsh with a maximum depth of 1 m and 15 natural islands ranging in size from 0.02 to 3.19 ha (Zenner and LaGrange 1998b). During 1989–1991, potential Canada goose nest sites included islands, elevated structures, and muskrat houses. Over the course of that study, drought conditions left Joice Slough completely dry and dramatically lowered water levels at Rice Lake, exposing islands to increased predator activity. Despite the drought, nest densities were high (68–158 nests/ha) and nest success ranged from 40–58% (Zenner and LaGrange 1998b)

    Astrophysical Fluids of Novae: High Resolution Pre-decay X-ray spectrum of V4743 Sagittarii

    Full text link
    Eight X-ray observations of V4743 Sgr (2002), observed with Chandra and XMM-Newton are presented. The nova turned off some time between days 301.9 and 371, and the X-ray flux subsequently decreased from day 301.9 to 526 following an exponential decline time scale of (96±3)(96 \pm 3) days. We use the absorption lines present in the SSS spectrum for diagnostic purposes, and characterize the physics and the dynamics of the expanding atmosphere during the explosion of the nova. The information extracted from this first stage is then used as input for computing full photoionization models of the ejecta in V4743 Sgr. The SSS spectrum is modeled with a simple black-body and multiplicative Gaussian lines, which provides us of a general kinematical picture of the system, before it decays to its faint phase (Ness et al. 2003). In the grating spectra taken between days 180.4 and 370, we can resolve the line profiles of absorption lines arising from H-like and He-like C, N, and O, including transitions involving higher principal quantum numbers. Except for a few interstellar lines, all lines are significantly blue-shifted, yielding velocities between 1000 and 6000 km/s which implies an ongoing mass loss. It is shown that significant expansion and mass loss occur during this phase of the explosion, at a rate M˙(35)×104 (LL38) M/yr\dot{M} \approx (3-5) \times 10^{-4} ~ (\frac{L}{L_{38}}) ~ M_{\odot}/yr. Our measurements show that the efficiency of the amount of energy used for the motion of the ejecta, defined as the ratio between the kinetic luminosity LkinL_{\rm kin} and the radiated luminosity LradL_{\rm rad}, is of the order of one.Comment: 25 pages, 9 figures. Accepted in book: Recent Advances in Fluid Dynamics with Environmental Applications, pp.365-39

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Data were analyzed for variations in eastern South Dakota. Soil moisture in the 0-4 cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop (% cover ranging from 30% to 90%) with an r squared = 0.81. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the 1-mm soil temperature, r squared = 0.88. The corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the 0-4 cm soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. HCMM data were used to estimate the soil moisture for four dates with an r squared = 0.55 after correction for crop conditions. Location of shallow alluvial aquifers could be accomplished with HCMM predawn data. After correction of HCMM day data for vegetation differences, equations were developed for predicting water table depths within the aquifer (r=0.8)

    Microscopic mechanisms of dephasing due to electron-electron interactions

    Full text link
    We develop a non-perturbative numerical method to study tunneling of a single electron through an Aharonov-Bohm ring where several strongly interacting electrons are bound. Inelastic processes and spin-flip scattering are taken into account. The method is applied to study microscopic mechanisms of dephasing in a non-trivial model. We show that electron-electron interactions described by the Hubbard Hamiltonian lead to strong dephasing: the transmission probability at flux Φ=π\Phi=\pi is high even at small interaction strength. In addition to inelastic scattering, we identify two energy conserving mechanisms of dephasing: symmetry-changing and spin-flip scattering. The many-electron state on the ring determines which of these mechanisms will be at play: transmitted current can occur either in elastic or inelastic channels, with or without changing the spin of the scattering electron.Comment: 11 pages, 16 figures Submitted to Phys. Rev.

    M31N 2008-05d: A M 31 disk nova with a dipping supersoft X-ray light curve

    Full text link
    Classical novae (CNe) represent a major class of supersoft X-ray sources (SSSs) in the central region of our neighbouring galaxy M 31. Significantly different SSS properties of CNe in the M 31 bulge and disk were indicated by recent X-ray population studies, which however considered only a small number of disk novae. We initiated a target of opportunity (ToO) program with XMM-Newton to observe the SSS phases of CNe in the disk of M 31 and improve the database for further population studies. We analysed two XMM-Newton ToO observations triggered in Aug 2011 and Jan 2012, respectively, and extracted X-ray spectra and light curves. We report the discovery of an X-ray counterpart to the M 31 disk nova M31N 2008-05d. The X-ray spectrum of the object allows us to classify it as a SSS parametrised by a blackbody temperature of 32+/-6 eV. More than three years after the nova outburst, the X-ray light curve of the SSS exhibits irregular, broad dip features. These dips affect primarily the very soft part of the X-ray spectrum, which might indicate absorption effects. Dipping SSS light curves are rarely observed in M 31 novae. As well as providing an unparalleled statistical sample, the M 31 population of novae with SSS counterparts produces frequent discoveries of unusual objects, thereby underlining the importance of regular monitoring.Comment: 6 pages, 4 figures, 1 table; accepted by Astronomy and Astrophysic

    A remarkable recurrent nova in M 31: The predicted 2014 outburst in X-rays with Swift

    Get PDF
    The M 31 nova M31N 2008-12a was recently found to be a recurrent nova (RN) with a recurrence time of about 1 year. This is by far the fastest recurrence time scale of any known RNe. Our optical monitoring programme detected the predicted 2014 outburst of M31N 2008-12a in early October. We immediately initiated an X-ray/UV monitoring campaign with Swift to study the multiwavelength evolution of the outburst. We monitored M31N 2008-12a with daily Swift observations for 20 days after discovery, covering the entire supersoft X-ray source (SSS) phase. We detected SSS emission around day six after outburst. The SSS state lasted for approximately two weeks until about day 19. M31N 2008-12a was a bright X-ray source with a high blackbody temperature. The X-ray properties of this outburst were very similar to the 2013 eruption. Combined X-ray spectra show a fast rise and decline of the effective blackbody temperature. The short-term X-ray light curve showed strong, aperiodic variability which decreased significantly after about day 14. Overall, the X-ray properties of M31N 2008-12a are consistent with the average population properties of M 31 novae. The optical and X-ray light curves can be scaled uniformly to show similar time scales as those of the Galactic RNe U Sco or RS Oph. The SSS evolution time scales and effective temperatures are consistent with a high-mass WD. We predict the next outburst of M31N 2008-12a to occur in autumn 2015.Comment: 13 pages, 7 figures, 3 tables; accepted for publication in A&

    GW approximations and vertex corrections on the Keldysh time-loop contour: application for model systems at equilibrium

    Get PDF
    We provide the formal extension of Hedin's GW equations for single-particle Green's functions with electron-electron interaction onto the Keldysh time-loop contour. We show an application of our formalism to the plasmon model of a core electron within the plasmon-pole approximation. We study in detail the diagrammatic perturbation expansion of the core-electron/plasmon coupling on the spectral functions of the so-called S-model which provides an exact solution, concentrating especially on the effects of self-consistency and vertex corrections on the GW self-energy. For the S-model, self-consistency is essential for GW-like calculations to obtain the full spectral information. The second- order exchange diagram (i.e. a vertex correction) is crucial to obtain a better spectral description of the plasmon peak and side-band peaks in comparison to GW-like calculations. However, the vertex corrections are well reproduced within a non-self-consistent calculation. We also consider conventional equilibrium GW calculations for the pure jellium model. We find that with no second-order vertex correction, we cannot obtain the full set of plasmon side-band peaks. Finally, we address the issues of formal connection for the Dyson equations of the time-ordered Green's function and the Keldysh Green's functions at equilibrium in the cases of zero and finite temperature.Comment: Published in PRB November 22 201

    Nova M31N 2007-12b: Supersoft X-rays reveal an intermediate polar?

    Get PDF
    For the He/N nova M31N 2007-12b, we analyzed XMM-Newton EPIC and Chandra HRC-I observations of our monitoring program performed at intervals of ten days and added results of a XMM-Newton target of opportunity observation and Swift XRT observations. The supersoft source (SSS) emission started between 21 and 30 d after the optical outburst and ended between 60 and 120 d after outburst, making M31N 2007-12b one of the few novae with the shortest SSS phase known. The X-ray spectrum was supersoft and can be fitted with a white dwarf (WD) atmosphere model with solar abundances absorbed by the Galactic foreground. The temperature of the WD atmosphere seems to increase at the beginning of the SSS phase from ~70 to ~80 eV. The luminosity of M31N 2007-12b during maximum was at the Eddington limit of a massive WD and dropped by ~30% in the observation 60 d after outburst. The radius of the emission region is ~6x10^8 cm. In the four bright state observations, we detected a stable 1110 s pulsation, which we interpret as the WD rotation period. In addition, we detect dips in three observations that might represent a 4.9 h or 9.8 h binary period of the system. Nova envelope models with <50% mixing between solar-like accreted material and the degenerate core of the WD can be used to describe the data. We derive a WD mass of 1.2 Msun, as well as an ejected and burned mass of 2.0x10^{-6} Msun} and 0.2x10^{-6} Msun, respectively. The observed periodicities indicate that nova M31N 2007-12b erupted in an intermediate polar (IP) system. The WD photospheric radius seems to be larger than expected for a non-magnetic WD but in the range for magnetic WDs in an IP system. (abridged)Comment: 10 pages, 5 figures, A&A accepte
    corecore