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CHAPTER I: EXECUTIVE SUMMARY

Section 1: Need for Study

Various investigations and model calcuiations yield evidence that
thermal infrared remote sensors are useful in assessing water-related
surface and near-surface land conditions. Soil moisture is highly
dynamic having extreme spatial and temporal variability. This charac-
teristic makes jround point-sampliing observation programs expensive and
relatively ineffective for the sequential and synoptic, yet detailed,
information required in management :rograms. Remote sensing systems have
the capability to provide these data characteristics if the information
content of the data can be quantitatively used to assess moisture related
ground variables.

The agriculturalist has an interest in soil moisture which is
available to the growing plants. This varies with season and crop but
ranges from surface moisture to profile soil moisture at depths of a
meter or more. Conversely, the hydrologist may have an interest only
in the surface few centimeters of the land surface. Of speciz] interest
in South Dakota is the depth to the zone of saturatinn. Where this
depth is within a few centimeters to approximately one meter, the soils
may have a limited rooting depth and may tend to develop soil salinity
caused by upward mobility of the water table mo{sture with subsequent
evaporation and deposition of salts. ihe contamination of water table
water associated with .. 1ing of the soil horizons has a higher poten-

tial if the water table is near the iand surface.
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The depth to the saturated zone provides an indication of the water
budget of surficial aquifers. Where discharge through evapotranspiration
of phreatrophytes or of irrigated crops and the domestic consumption of
water in combinat'on with other loss factors cxceeds recharge, water
tables will lower. The importance of understanding aquifer water budgets
is acknowledged since tedious ground observation programs are already in
place in eastern South Dakota. A remote sensing program could potentially
ai¢ these programs for appropriate placement of sounding wells or infer-
ring contours among the point observations for final mapping.

rcr many areas in Soith Dakota and other regions, monftoring the
depth to the saturated zone, where it occurs in the top 2-3 meters of
the land surface, would provide a valuable input into water and land
management. Remote sensing approaches to a moritoring program would
use surface or near-surface measurements (i.e. thermal or microwave) to
infer certain water-related properties. Therefore, changes in the energy
budget of the surface which result from a variety of factors must be
evaluated and understood before thermal-infrared remote sensing data can
provide the desired information. The shading effects of the crop canopy,
water use by evapotrancpiration, incomplete canopy cover, temperature
indicators associated with variations of thermal diffusivity, slope, etc.,
are all candidate topics which must be addressed and understood to fully
utilize the data derived from thermography.

The objectives pursued under this investigation were to:

(1) Deveiop a finite-difference simulation model for specific

application to HCMM data which simulates and predicts the

thermal regime associated with occurrence of shallow groundwater.
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(2) Evaluate HCMM data for locating regions of shallow groundwater

and estimating the depth to the water table.

Saction 2: Report Format

Detailed results are presented as various chapters. Each chap*er
fncludes published or submitted panars which identify results relevant
to the dual objectives. An additional topic beyond the original objec-
tives was investigated which was to determine the uses of HCMM or
similar data in soil geography studies.

The specific background, procedures, and discussion are presented
within each chapter. A generalized summary of the investigation results
is presented in the following section. Since potential applications of
HCMM-type data have many questions to be resolved, any number of valid
experimental topics could be addressed. Many were pursued under this
program using ground or aircraft observations since it was questionable
during the investigation 1f appropriate HCMM data would be received in a
timely manner to use the data for a.alysis. Therefore, results and pub-
lications were fragmented ind are presented in entirety in this report
since procedures, test sites, etc. were not consistent for all investi-

gations.

Section 3: Summary of Significant Results
Section 3.1. - Introduction

Landforms associated with areas of challow groundwater in glaciated
eastern South Dakota can be recognized using standard image interpretation

techniques of multidate Landsat data. Therefore, this investigation was
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to determine, once these regions were identified and magred, 1f svauptic
thermal data from HCMM could be used to assess the depth to the water
table. Since the thermal signal measured by HCMM is a function of
emitted radiation from the atmosphere and from the land surface, both
must be considered when relating HCMM data to land or water features.
The approach to reduce atmospheric variation used spatial differences
within dates for analysis. No further attempts were utilized to reduce
the influence of the atmosphere on the thermal signal even though the
authors realize this as a significant problem in quantitative rerate
sensing using thermography. Therefore, most equations and statistical
relationships presented in this report require that some form of
quantitative field data are required to implement xny of the algorithms.
Since the composite "surface" radiance is that which is sensed
from the remote sensor, evaiuations of the effects of vegetation cover
and 011 moisture were investigated. Sections 1-5 of Chapter II detail
each specific stud: . In general, the topics ir Tuded the use of thermal
data for assessing actual soil temperatures under conditions of incom-
plete and complete canopy covers and the assessment of near-surface soil
moisture. Chaper IIl follows with the relationship of ground, aircraft,
and HCMM data to the depth-to-water tables. Since the program had
considerable delays in dissemination of HCMM data, another objective was
pursued trn evaluate HCMM for use in operational soil surveys. Chapter IV
clearly 1llustrates and demonstrates exampies where HCMM or similar data
could provide input to the field soil surveyor. The final Chapter V

defines a model and ‘ts results for developing a theoretical base to
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understand thermal infrared potentialities in water resources monitoring.

Section 3.2 - Qualitative Monitoring of Wet Vers:s Dry Surfaces

In its simplest form, daytime thermography should provide a qualita-
tive mapping tool to locate regions which have a water saturated surface
versus & surface where the soil moisture is at less than saturation.

The effects of higher thermal inertia and increas.d partitioning of in-
coming energy into latent heat (increased evapotranspiration' result in
cooler surface temperatures. Chapter II, Section 1 (II-1) and Figures
1-3 {1lustrate the phenomena. The predawn image in Figure 1 demonstrates
that the area of a cool anomaly presented in Figure 2 was probably both

a function of differences in evapotranssiration and of thermal inertta.
The warmer appar: ‘= temper-tures predawn results from a thermal inertia
change of increased moisture when compared to surrounding regions. The
cooler apparent temperatures of the saturated area during daytime hours
resuits from both thermal inertia variations and increased evapotrans-

piration.

Section 3.3 - Thermography of Incomplete Canopy Cover

The remotely measured land surface emission includes radiation
emitted from both soil and vegetated surfaces. If the intended applica-
tion requires either soil or vegetation temperature; independently, a
method to separate and calibrate the contribution of each emitting com-
ponent must be developed. For the water table monitoring objective,
the need is to measure soil surface temperature. If the application is

to monitor transpiration of plants as an indicator of moisture or other
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Figure 1.
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ORIGINAL PAGE
AL % AND WHITE PHOTOGRAPH

Photographic enlargement of a May 14, 1978 night thermal infra-
red image (scene I.D. A-A0018-08420) showing a high soil mois-
ture area (arrows) in southeastern South Dakota. Thermal

inertia is apparently causing a warmer signature during the
predawn cooling portion of the diurnal cycle. Dark is cool.



Figure 2.

ORIGINAL PAGE N 7
BLACK AND WHITE PHOTOGRAPH

Photographic enlargement of a May 15, 1978 day thermal infrared
image (scene I.D. A-A0029-19575) showing a high soil moisture
area (arrows) in southeastern South Dakota. Tie area is
approximately that of Figures 1 and 3. Increased evapotranspira-
tion and increased thermal inertia are probably responsible

for the cooler apparent temperatures of the wetter area. Dark
is cool.
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Figure 3.

Photographic enlargement of a May 15, 1978 Landsat MSS7
1mage (scene 1.D. E-21207-16083) of the same approximate
area as Figures 1 and 2. The area ir question does not
have standing surface water but ha¢ ther bare or vege-
tated fields as the emitting surface.
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stress, the vegetation component must be estimated. Section 2 in Chapter
I1 presents an algorithm to extract canopy temperature from radiometric
measurements at incomplete cover,

A ground-based study was conducted on a developing barley canopy
in which canopy temperatures were measured “*‘th an infrared radiometer
at 30° from horizontal. Contact soil temperatures at a 1-mm depth were
measured using thermocouples. Composite radiometric temperatures which
included radiance contributions both from the soil and from the barley
vegetation were measured with a radiation thermometer at 2-m above the
canopy. This measurement simulates that of vertical remote sensors.
Emissivity and sky irradiance corrections were applied to the data. The
measurements were acquired at approximateiy 1330 LST . ..M overpass time)
throughout the barley growing season. The canopy covers seasonably
varied from 30% to 90% (=LAI 0.3 to 3.2).

The radiometric temperatures of the composite radiating surface,
including both soil and crop canopy, were 0.5 to 11.5 C higher than
canopy temperatures alone. Surface soil temperaiures were 1.5 to 20.0 C
higher than canopy temperatures. Correlation between measured canopy
temperatures and composite temperatures was not statistically signifi-
cant.

The difference between composite and canopy temperatures was highly
correlated with percent canopy cover (r2 = 0,52). Therefore, an approxi-
mation equation was applied which separated the radiance contributions
of the bare soil and the canopy. The equation incorporated terms for

canopy and soil emissivities, percent crop cover, longwave sky irradiance,
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and composite temperatures. Applying the correction resulted in a
rz = 0.88 for relating predicted versus observed values for estimating
the temperature of the canopy. Differences betwee: nredictzd and ob-
served values ranged ‘rom -1.84 to 2.5 C for the data acquired throughout
the barley growing season.

The significance of the procedure was.even at low canopy covers
estimates of canopy or soil temperatures can be successfully measured
using remote sensors. Figure 4 summarizes the data for the barley study.
Remote sensing estimates of percent cover and composite temperatures
are avaiiable with existing technology. When emissivity corrections
were rot applied, prediction accuracy varied yith percent cover. The
largest errors occurred at low caiopy cover. Canopy emissivity was
measured as 0.98 and was assumed constant throughout the growing season.
Soil emissivity varied with water content. Measured values ranged be-
tween 0.95 and 0.97. Wider ranges of soil emissivities can be experi-
enced since the value is soil specific. I[f emissivities were assumed
to be one for the calculations in this field experiment, predicted
canopy temperatures would range from 6.4 C lower to 1.7 higher than
actual observed values. Where measuedemissivities were used in the
equation but the longwave sky irradiance was ignored, differences be-
tween predicted and observed canopy temperatures ranged from 0.& to
10.7 C.

The significance of the study was that canopy temperatures at in-
complete covers can be estimated using a nadir-viowing radiometer if

appropriate considerations are given to soil background radiance,
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emissivities, and sky irradiance. Techniques are available for measur-
ing or estimating some of the inputs required for the canopy model.
Various models which have been developed for simulating bare surface
soil temperatures can feasibly be extended to soil surfaces including
crop canopies.

Sertion 3.4 - Diurnal Surface Temnperature Change as a Measure of Near-
Surface Soil Moisture

The basic assumption in using thermography to estimate near-surface
soi]l moisture is that surface temperatures or their changes in time are
related to the thermal properties of soils in a predictable fashion when
other components of the energy budget are not accounted for or can be
accounted by use of auxiliary data which are easily available. The
paper presented in Chapter II, Section 3 describes in detail the experi-
mental framework to determine if AT of the surface relates to near-surface
noistuve and if this relationship is maintained with the variability
introduced throughout a barley growing season having variations in cancpy
cover, The same rainfed barley field as described in the previous sec-
tion was instrumented and measured on 22 dates over a 45-day period.

Volumetric soil water content of the 0-4 cm layer was the variable
to be predicted by thermography. The field data were crllected through-
out a barley growing season where percent cover ranged from 30% to 90%
and leaf area index from 0.3 to 3.2. Diurnal changes in 1-mm soil
temperatures between 1330 and 0230 LST (ATS) were used in an exponential
equation to predict soil moisture content of the 0-4 cm soil layer. An

rz = 0.81 was derived for the equation which incorporated data from the
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total season. The resulting equation and plot is illustrated in Figure
5. Attempts to normaiize among dates using air temperatures provided
no significant improvement to the results.

The quantitative relationship is significant in i1lustrating that
if an estimate of actual daily surface temperature difference is available,
it is statistically highly significant in direct relation to near-surface
moisture. The diversity in canopy cover, ai, *zmperature and humidity,
and other energy budget terms did not mask the relationship.

Section 3.5 - Surface Soil Temperature and Moisture Estimates Using
Radiometry.

The same barley canopy and experimental data were evaluated to
determine if radiometric temperatures of "composite" land surfaces (in-
cluding both canopy and bare soil) could be used to quantitatively re-
late to the 0-4 cm soil moisture. The actual 0230 LST composite temp-
eratures ranged from 1.1 - 2.2 C higher than canopy temperatures (ex-
cluding soil background). This predawn background soil irradiance
was typically higher than the canopy temperature. The surface soil
temperatures were higher by 1.1 - 5.4 C than canopy temperatures. This
trend remains during the 1330 LST measurements. The composite radio-
metric temperatures were 0.5 - 17.0 C higher and surface soil tempera-
tures 1.5 - 20.0 C higher than tzmperatures of the vegetation in the
canopy. Therefore, changing canopy cover affects the ability to esti-
mate the actual soil surface temperature which is the temperature that

F‘q is related to near-surface moisture.
¥
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Regression equations were developed using the seasonal data of the
barley canopy to relate composite (or remotely sensed temperatures) to
the actual soil surface temperatures. For the 0230 LST measurement time,
the resulting equation included modifying the thermography measurement
with National Weather Service daily minimum air temperature. For the
1330 LST measurement, the equation included a term modifying the
thermography with an exponential term of fraction of vegetation cover.

The two equations had R2 = 0.78 and rz

= 0.86, respectively. "igure 6
{1lustrates the corrected data after application of the canopy cover
correction equations.

The equations were derived empirically and should be questioned and
evaluated over a larger set of environmental variables than were included
in this original data set. However, the need for some type of correction
of the thermal radiance measure is required to relate to actual soil
surface conditions where partial or incomplete cover by a crop canopy
is present.

The equations presented in this study illustrate that easily derived
field properties such as air temperature or percent canopy cover may pro-
vide the necessary information. The equaticns developed were 1imited
in geographic extent but did encompass data throughout a complete

growing cycle of one crop.

Section 3.6 - Aerial Thermography as an Estimate of Near-surface Soil
Moisture Under a Variety of Land Covers. :

The correction equations developed from the barley study were
applied to an aircraft study of a larger region in eastern South Dakota

which included a diversity of canopy covers (50%-95% cover including
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corn, soybeans, millet, and pasture) and differences in soifl textures
and other soil properties (Chapter Il, Section 3). The day/night air-
craft thermal data were collected on only ane date. Soil moisture was
estimated as percent of field capacity to reduce variations associated
with soils. The average difference between measured and predicted
values was 1.6% of field capacity. Figure 7 provides a plot of the
measured versus predicted soil water contents.

Thz significance of the study was that the correction equations
were applicable to a wide range of crop cover conditions. This range
is normally prevalent when applying the techniques over large agricul-
tural areas where soil moisture monitoring programs might be established.

Section 3.7 - HCMM Thenaography as an Estimate of Near-surface
Moisture Under a Variety of Land Covers

Satellite applications have the advantage of covering large regions
in a short time period. When the theme to be estimated is confused with
other scene variables, the compl:xity caused by heterogeneity of the
terrain normally increases as larger areas are osserved. The same
correction procedures were tested using data as thermography covering
multiple dates over a sizable area in eastern South Dakota having a com-
plex agricultura’ landscape.

HCMM data were treated with correction equations similar to those
discussed in the previous paragraph (Chapter II, Section 5). Soil
moisture data from the 0-4 cm soil layver were acquired from 23 fields
having a variety of crop covers for four daes ranging from June

through early September. The HCMM radiometric temperatures without
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correction for land cover did not significantly relate to sofl moisture.
However, when actual surface soil temperatures were empirically estimated
from HCMM radiometric temperatures using land cover corrections, a highly
significant correlation (r = 0.74) was obtained betwven the estimated
soil temperatures and 0-4 ¢m soil moisture content. Figure 8 {l1lustrates

the derived relationship.

Sect.on 3.8 - Depth to Water Table

If the water table or zone of saturation is at a greater depth than
the diurnal damping depth, the amplitude of the diurnal temperature curve
iz not affected but a shift in the curve up or down in absolute magnitude
will be noticed where the depth to saturation is within the depth of
annual temperature variations. Many investigations, as reported in
Chapter III, Sections 1 and 2, have demonstrated that 50-cm deep soil
temperatures will vary with depth to water table. The saturated zone
acts as a heat sink or source which delays warming ia the summer and
retards cooling in the winter.

The Big Sioux River Basin in eastern South Dakota is a surficial
shallow water table aquifer of glacial origin. The land use {s predomi-
nantly agriculture including small grains, pasture, hayland, and row
crops. A considerable difference in the thermography can be expected
as associated with land cover. Contact temperature measurements at a
50-cm depth were acquired to determine if a significant relationship
between the soil profile temperatures and depth to water table was

retained even under varying land cover (Figure 9). Similar to
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observations =eported in the 1iterature, a significant relationship be-
tween measuread 50-cm soil temperatures and depth to water table was
observed for water tables in the Big Sioux Basin of eastern South
Dakota. Three meters was the depth limitation of a significant correlation.
These correlations were observed during early September near the annual
maximum downward temperature gradient. The saturated soil materials

act as a heat sink as the annual temperature mark progresses into the
summer in the northern latitude of Souvh Dakota. This creates cooler

land surfaces over the water saturated zore. However, both soil moisture
and vegetation cover may obscure any surface expression of this tempera-
ature anomaly.

The range of 50-cm temperutures was about 5 C for the data acquired
under this investigation. The 50-cm temperature anomaly predicted by
modeling and fieid observations has previously been shown in the litera-
ture to be 1-2 C as associated with water tables. However, data points
in this study were in soil profiles having a variaty of crop cover
conditions on the surface which also affested the 50-cm temperatures.

High soil moisture and shallow groundwater tend to affect surface tempera-
tures in the same direction - the surface remains cooler during the day
(in periods of maximum downward temperature gradients - August or
September) - but in opposite directions at night. At night, the high

s0i1 moisture areas should remain warmer when considering thermal inertia,
and the shallow groundwater areas should remain cooler.

Previous investigations have shown that aircraft radiometric

temperatures were related to water table properties. Predawn HCMM
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imagery was effectively used with cooler anomalies delineating the
alluvial basin when the water tables were shallow in Figure 10. Land-
form recognition from Landsat or aircraft image data was also used to
locate these potential areas. During the day, the HCMM thermal data
did not reveal the locations of the basin as illustrated in Figure 11.

The landforms (alluvium and terraces) where high water tables are
commonly located were delineated using a combination of Landsat and
HCMM predawn data. Since the depth to the water table had significant
correlations to the 50-cm temperatures, HCMM data were evaluated to de-
termine if the radiometric surface temperatures were correlated with
water tab’e depths. Uncorrected HCMM data were evaluated for estimating
water table depths within the basin for four dates from June through
early September. No significant relationship was found. The data
were corrected using the empirical vegetation transformation developed
under the previous soil moisture studies to reduce the effect of the
crop canopies when estimating surface temperatures. Each date was
analyzed separately. The correlations improved from 0.59 to 0.8 as
the season progressed from June 5 through September 4. The September 4
date is plotted in Figure 12 which relates corrected HCMM data to water
table depth.

This parallels model predictions. The maximum anomaly should occur
in the season of greatest downward temperature gradient. Since both
011 moisture and water table depth can affect surface soil temperature,
a multiple regression analysis was conducted to determine the proportion
of the HCMM radiometric temperature which could be accounted for with

2

these two variables. The resulting R® = 0.87 was for the September 4
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Figure10.

Photographic enlargement of an August 29, 1978 night HCMM
thermal infrared image (scene ID A-A-125-08340) showing
the Big Sioux Basin. Note that the Basin appears cooler
than the surrounding areas, due primarily to the heat sink
produced by shallow groundwater within the Basin.
(Approximate scale 1:1,000,000; dark is cool)
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A September 4, 1978 photographic enlargement of a HCMM day
thermal infrared image (scene ID A-A0131-19420) of the same
area shown in Figure 10. Note that the Big Siou« River Basin
is not visible because of emittance variation associated with
land use (Approximate scale 1:1,000,000; dark is cool).
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date. This compared to rz

= 0.64 when relating only water table to HCMM
thermography. Please note that depth to the water often influences soil
moisture.

Data such as HCMM can be beneficial in guiding well drilling pro-
grams for monitoring and mapping water table depths where the water
tables range from 0 to 3 m. Land cover masks the thermal anomaly
associated with water tables but the effect can be reduced by using pre-
dawn data or by accounting for land cover in the prediction equation.
Since the thermography signal is a function of many variables including
the heat sink (or source), land cover, and soil moisture, results of
the invescigation revealed that if the latter two are introduced into

equations to assess depth to water table, improved correlations can be

der?ved.

Section 3.9 - Soil Geography

Soil moisture, vegetation cover, elevation, slope aspect, soil
texture, and many additional variables affect land surface temperatures.
Many of these variables are useful to the soil surveyor who is classi-
fying soils and estimating land capabilities. Image interpretation of
HCMM thermal data of South Dakcta was conducted to determine its use
for the soil surveyor. Results were that elevated areas, soil textural
differences, and slope aspect were apparent in the imagery. Warmer
radiometric predawn temperatures of north-facing slopes were evident.
The data provide a pictoral illustration of how scil moisture and vege-
tation variations are associated with aspect of slope. North-facing

slope aspect reduces solar insolation to the surface resulting in less
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svapotranspiration and higher soil moisture. HCMM or similar data can
provide this information by estimating the net effect of slope aspect

as it relates to vegetation growth and production (Chapter IV). Simi-
lar observations were made for elevation differences between areas where
parent materials and soils appear similar but noted differences in soil

productivity are present. Figures 13, 14 and 15 11lustrate the principles.

Section 3.10 - Model Development

Since the surface temperatures as measured radiometrically by remote
sensors can vary with many factors, a finite-difference simulation model
was developed to isolate variables and estimate their magnitude of effect.
The concept wae to measure profile temperatures, insolation, etc. at one
site and correlate the differences in variables which are present at a
second site and are causing the differences in radiometric temperature.
Using this spatial differencing approach also reduces the effects of
atmospheric disturbances. The model (Chapter V) showed that the 50-cm
soi1 temperature difference associated with water table depth differences
between two sites was apparent zs temperature differences at the surface.
These surface differences were nearly constant in magnitude throughout
the diurnal cycle. However, the difference was destroyed during pre-
dawn in areas having dense canopy covers. Therefore, remote measurements
can be day or night, whenever the actual soil surface temperature related
best to the radiometric temperature as measured with remote sensors if
dense crop cover is not present. Soils with different moisture profiles
differed in surface temperature variations during the diurnal cycle.

This functional form of differences was changed less by variations in
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canopy cover than was the functional form of the individual sites.
Mu'tiple pass satellite data should be acyuired during daylight hours
according to the model predictions for assessing temperature differences
related to sofl moisture. Model calculations using day minus night
temperatures were not useful for assessing water table depths since the
thermal inertial change was not within the diurnal damping depth.

Either day or night data could be used for this relationship. If dense
canopy cover was present, the timing of data collection was limited to
day periods. '
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BACKGROUND

Thermal infrared detaction and quantirfication of near-surface soil
water content are based on relationships between surface soil tempera-
ture and sofl mofsture. Diurnal variations of surface soil temperature
are related to soil thermal properties and meteorological factors such
as solar radiation, air temperature, relative humidity, wind, etc. The
meteorological factors represent the driving force for diurnat soil
temperature variations. Thermal inertia (m~2 sec™® k1), defined as
(AC)’i where x(wm" K") is thermal conductivity and C(Jm'3 K") is
volumetric heat capacity, represents a soil's resistance to the driving
force. Since ) and C increase with an increase of soil moisture, the
resulting range of surface soil temperature will decrease.

When the soil surface is wet, evaporation is a major factor
controlling surface heat loss. As the surface layer dries and the soil
water supoly cannot meet the evaporative demand, soil temperature is
largely influenced by therwal inertia. Thus, the diurnal -ange of
surface soil temperature can be an indication of soil water content.
Idso et al. (1975) found a significant relationship between the diurnal
range of s rface soil temperature (bare soil) and surface soi! water
content, and reported that the relationship was a function of soil
type. Pratt and Ellyett (1979) presented a method for estimating soil
thermal properties for changes in composition, porosity, and moisture
content. Although temperature versus water content relationships are

complicated by vegetation, Heilman et al. (1978) demonstrated the
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potential for estimating near-surface soil moisture from remote
temperature measurements of crop canopies at incomplete cover.

One objective of NASA's Heat Capacity Mapping Mission (HCMM)
i~ to evaluate the feasibility of using HCMM data to assess soil mois-
ture effects by observing temperatures near the maximum and minimum of
the diurnal temperature cycle. The satellite, which carries a two-
channel radiometer (0.5 to 1.1 and 10.5 to 12.5 um), collects data at
1:30 p.m. and 2:30 a.m. local time a*t mid latitudes with a repeat cycle
of 5 or 16 days depending on latitude. Spatial resolutions are 0.5 x
0.5 km at nauir for the visible channel and 0.6 x 0.6 km at nadir for
the thermal infrared channel. An example of HCMM detection of a

region of high soil moisture is presented in the following discussion.

DISCUSSION

In early April 1978 heavy runoff from snowmelt and ice blockage
caused significant flooding of alluvial areas in a portion of the Big
Sioux River Basin in southeastern South Dakota (Figure 1). By mid-May,
flood waters had receded, but an area of high soil moisture (at or near
field capacity) remained. Soil moisture in the surrounding terrace
soils was generally less than in the flood plain.

The high moisture area appeared warmer than surrounding areas on
May 14 HCMM night thermesl imagery (Figure 2) and cooler than surrounding
areas on May 15 HCMM day thermal imagery (Figure 3). The temperature
differences between alluvial and surrounding areas were probably the
result of thermal inertia and evaporaticn differences associated with
sotl moisture differences. The high meisture area was not visible on

Landsat imagery (Figure 4).
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Fig. 1. Landform map of Brookings County, South Dakota,
showing location of alluvial soils (bottomland) of
the Big Sioux River Basin which were flooded in
early April 1978.
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Fig. 2.
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Photographic enlargement of a May 14, 1978, night .hermal
infrared image (scene ID A-A0018-08420) showing a high
soil moisture area (arvows) in southeastern South Dakota.
Dark is cool.
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Photoyrapnic enlargement of a May 15, 1978, day thermal
infrared image (scene ID A-A0029-19575) showing a high
soil moisture area (arrows) in southeastern South Dakota.
Dark is cool.
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Fig. 4. Photographic enlargement of a May 13, 1978, Landsat MSS 7
image (scene ID E-21207-16083) of the same area shown in
Fig. 2 and 3.
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Although digital data were not available at the time of the
writing of this article to quantify radiometric temperature differences
associated with the soil moisture differences, results presented here
demonstrated the superiority of HCMM thermal data acquired at the appro-
priate periods of the diurnal temperature cycle over Landsat data for
assessing soil moisture differences. Final results from HCMM sotil
moisture investigations currently in progress will fully evaluate the

utility of using HCMM and similar data for evaluating soil moisture from

space.
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ABSTRACT

A field study was conducted in a barley (Hordewm vulgare L.) canopy
to assess the potential for extracting canopy temperature information from
nadir radiometric measurements at incomplete cover. Composite tempera-
tures consisting of emitted and reflected longwave radiation from the
barley and the soil background were measured by a nadir-viewing infrared
radiometer. Canopy temperatures were measured by an infrared radiometer
at a 30° angle from the horizontal. Soil temperatures were measured
with thermocouples.

Composite temperatures were 0.5 to 11.5 C higher than canopy tempera-
tures with the largest difference occurring at low canopy cover. The
cocrrelation between composite and canopy temperature for data acquired
throughout the growing season was not significani. A model which con-
sidered emitted radiation from both the canopy and the soil background,
and which included reflected longwave sky irradiance was used to predict
crop temperatures from nadir measurements. Predicted temperatures agreed
with observed values (r2 = (0.88), and the prediction accuracy was inde-
pendent of canopy cover. When emissivity corrections were not applied,
prediction accuracy varied with perceni cover with largest errors occur-
ring at low cover. Prediction accuracy also varied with canopy cover
when appropriate emissivities were used but sky irradiance was ignored.
Results indicate that canopy temperatures can be estimated from nadir
measurements at incomplete cover if percent nover, soil temperature,

soil and canopy emissivities, and sky irradiance are known.
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INTROPUCTION

Remotely-sensed surface temperatures can be useful for many agricul-
tural applications including evapotranspiration modeling, soil moisture
detection, plant stress detection, yield prediction, and irrigation
scheduling. Most studies which have used remote measurements have been
restricted to bare soils or fully deaveloped crop canopies because of the
complexities involved in interpreting thermal data at less than fuil
cover.

Much of the complexity results because the remote sansing instrument
measures emitted and reflected radiation from vegetation and soil which
generally have different temperatures and emissivities. hatfield (1979)
reported that differences between angular and vertical infrared ther-
mometer neasurements of canopy temperatures were greatest at 20 to 50%
cover and decreased as canopy density increased. He speculated that
differences were enhanced by emissivity variations. Millard et al.
(1980) found that for canopies covering at least 85% of the soil surface,
airborne measurements of plant temperatures differed from ground measure-
ments by less than 2 C. At 50% cover, differences were as large as 9 C.
Investigators have shown that even at full cover thermal radiance from
the soil surface can affect remote temperature measurements of crop
canopies (Blad and Rosenberg, 1976).

Incomplete plant canopies are important remote sensing targets be-
cause of the potential benefits arising from early assessment of crop
condition. Jackson et al. (1979) presented a model for extracting

canopy temperature information from a composite of soil and nlant
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temperatures measured by a sensor scanning perpendicular to canopv rows.
They found that 1f a critical scan angle (determined from reflectance
measyrements) was exceeded, the temperature obtained from the scanner
was that of sunlit vegetation. They also found that the extraction
process was difficult for canopies having low percent cover.

We evaluated relationships among percent cover, soil temperature,
and radiometric measurements of canopy temperature, and used a model of
emitted canopy and soil background radiance and reflected sky irradiance
to assess the potential for extracting canopy temperatures from nadir
radiometric measurements. Effects of neglecting emissivity variations

and sky irradfance in the model calculations were evaluated.

MATERIALS AND METHODS

Experiments were conducted on a8 25 m x 300 m field of Volga loam
(fine-1oamy over sandy or sandy-skeletal, mixed (calcareous), frigid,
Cumulic Haplaquoll) at the South Dakota State University Agricultural
Engineering Research Farm located 8 km south of Brookings, South Dakota.

Larker barley (Hordewn vulgare L.) was planted in the field at 15-cm

row spacing (north-south rows) at a population of 2.5 million plants ha".

The barley was not irrigated. Surface roughness of the soil was minimal.
Surface soil temperatures (approximately 1 mm below the soil surface)
were measured with copper-constantan thermocouples at two locations (A
and B) within the field. For each location, three thermocouples were
wired in parallel to obtain an average measur~ment of shaded and sunlit
soil which approximated surface temperature. For bare soil, thermocouple

measurements were within 1.0 C of radiometric surface temperatures
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(corrected for emissivity and sky irradiance) measured with a precision
radiation thermometer (Model PRT-5, Barnes Engineering Company).g/ Com-
posite temperatures consisting of radiance contributions from the soil
surface and the barley were measured at both locations at 1330 Local
Standard Time (LST) on clear days at a vertical position (zerc degree
look angle measured from nadir) 2 m above the canopy. The temperature
resolution of the 20° field of view PRT was 20.5 C in the 8-14 um wave-
length interval. Canopy temperatures were measured with the PR™ at a
height of 1 m above the canopy and a look angle of 30° from the horizon-
tal (Millard et al., 1980) pointing to the east and the west (perpendicu-
lar to row direction). At that angle and direction, radiance contribu-
tions from the sofl were minimized (Hatfield, 1979). Canopy temperatures
were corrected for emissivity and sky irradiance using a canopy emissivity
of 0.98.

Emissivities of the canopy at full cover were measured using a pro-
cedure similar to that described by Fuchs and Tanner (1966). We used a
painted aluminum plate with an emissivity of 0.52 rather than an anodized
plate to determine sky irradiance (Blad and Rosenberg, 1975). Soil
emissivities were measured on a bare sofl plot adjacent to the barley
field.

Soil water contents (0 to 4-cm layer) for each location were deter-
mined gravimetrically on soil samples collected at the time of the temp-
erature measurements. Percent cover was determined using 35 mm color
infrared slides of thz canopy (photographed from a vertical position

approximately 1 m above the canopy) projected on a random dot grid.

3/ Mention of trade name does not imply endorsement of a particular
product or company.
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Figure 1 shows seasonal trends in percent cover of the barley canopy.

RESULTS AND DISCUSSION

In the discussion that follows, composite temperature refers to
apparent temperatures measured by the nadir-viewing PRT-5. Canopy
temperature refers to temperature measured by the PRT-5 at a 30° angle
from the horizontal.

During the investigation, composite temperatures were 0.5 to 11.5 C
higher and surface soil temperatures 1.5 to 20 C higher than cancpy
temperatures (Figure 2). As expected, differences between composite and
canopy temperature decreased as canopy cover increased and less emitted
radiation from the warm soil background was detected by the radiometer.
The correlation between composite and canopy temperature was nonsignifi-
cant (r = 0.41).

Millard et al. (1980) found that errors from assuming nadir-viewing
thermal scanner measurements represented actual canopy temperature were
a linear function of canopy cover. We found a highly significant linear
relationship (r2 = 0.52) between the composite-canopy temperature dif-
ference and percent cover (Figure 3). However, the considerable scatter
in our data suggests that it may not be possible to assess errors in
determining canopy temperature using only canopy cover information as
Millard et al. (1980) suggested.

We assumed the longwave radiation flux from a canopy and the soil
background could be approximated by the relationship

R foecoTh+ (1-F) e oT 4 £ (1-c )B% + (1-F)(1-¢)B* [1]

cc'c s
where R(W m'z) is longwave flux, fc is percent cover of the canopy
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expressed as a fraction, € is canopy emissivity, €g is soil emissivity,
Tc (K} 1s canopy temperature, Ts (K) is surface soil temperature, o

(5.67 x 1078 W m'ZK'Q) is the Stefan-Boltzmann constant, and B* (W m™2)

is longwave sky irradiance. The first two terms on the right-hand side

of equation [1] represent longwave radiation emitted from the canopy and
exposed soil background, respectively. The last two terms represent long-
wave sky irradiance between the canopy and the soil is ignored in equation
[1]. Equation [1] also does not partition fractions of shaded and suniit
leaves, or fractions of exposed soil background which are shaded and sun-
1it. Canopy temperature can be expressed by rearranging equation [1] to

give

e Re(1=f e 0T SF (1-c JB*=(1-F ) (1-c, )B*
c [2]
fceco

We compared observed values of Tc with values predicted using equa-

tion [2] and measured values of for T, and B* (Fig. 4). R was calculated

4

from measurements of composite temperature using the relationship R = oTcomp

where Tcomp is composite temperature. A measured value of 0.98 was used

for €er Soil emissivity varied with water conitent as shown in Figure §.

Linear regression aralysis of predicted versus observed canopy temperature
yielded a slope of 1.04, an intercept of -0.53, and a r2 of 0.88. Differ-
ences of observed from predicted values ranged from -1184 to +2.50 C.

The prediction accuracy of equation [2] was independent of canopy cover.
The correlation between the predicted minus observed canopy temperature

difference and percent cover was 0.26 (non-significant).
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Figure 5. Relationship between measured soil emissivity and volumetric
water content in the 0-4 cm layer.
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Many investigators have discussed the importance of correcting
radiometric data for emissivity variations. PRartholic et al. (1972) re-
ported temperature errors ranging from 1.9 C for bare, dry soi! to 0.8
for cotton which arose from assuming an emissivity of 1. Jackson ot 4l.
(1977) reported a nearly constant error of 1.7 C for wheat temperatu:a
by not correcting for emissivity. Similarly, Sutherland and Bartholic
(1977) found that assuming an emissivity of 1 produced errors on the
order of 1.0 C for complete canopies.

When emissivities of 1 were used for the soil and canopy in equation
[2], predicted canopy temperatures ranges from 6.43 C lower to 1.70 C
higher than observed values. Linear regression analysis of predicted ver-
sus observed canopy temperatures yielded a clope of 1.14, an intercept
of -5.08, and a rz of 0.76. Prediction accuracy varied with canopy cover
as shown in Figure 6 with largest errors occurring at low percent cover
when radiance contributions from the soil were at a maximum. The magni-
tude of the error from assuming emissivities of 1 depends not only on
canopy cover, but also on soil type and water content. Soil emissivities
ranging from 0.90 for dry sand to 0.99 for loamy soils have been reported
(Sellers, 1972; Sutherland and Bartholic, 1977; Taylor, 1979).

Prediction accuracy when measured emissivities were used in equation
[2] but the B* terms were neglected also changed .ith canopy cover (Fig. 6).

2

The sum of the reflected B* compunents ranged from 13.2 W.m © at 23% cover

to 5.6 W m"2 at 90% cover. Differences of observed from predicted canopy

temperatures ranged from 0.8 to 10.7 C. Regression analysis of predicted

versus observed canopy temperatures gave a slope of 0.66, an intercept of

2

7.74 and a r- of 0.66.
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This study has shown that canopy temperatures at incomplete cover
can be estimated using nadir-viewing radiometers if appropriate con-
siderations are given to soil background radiance, emissivity and
sky irradiance. Techniques are available for estimating snme of the in-
puts to the canopy temperature model. Canopy cover can potentially be
estimated from remote sensing data (Heilman et al., 1977; Tucker et al.,
1978; Jackson et al., 1979). Emissivity data can be obtained from the
1iterature for a wide range of soil types. Sky irradiance can usually
be estimated from prevailing sky conditions (Soer, 1930). However, under
certain conditions, sky irradiance can be high'v variable and may require
direct measurement (Conaway and van Bavel, 1967). Estimating the radiance
contribution from the soil background remains a difficult problem. Models
have been developed for estimating surface and near surface soil tempera-
ture (Behroozi-Lar et al., 1975; Pratt and Elyett, 1979; Meyer et al.,
1975; van Bave! and Hillel, 1976) and they can potentially be extended to

crop canopies.

s J;‘
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ABSTRACT

Previous investigations of thermal infrared techniques using
remote sensors (thermography) for estimating soil water content have
been 1imited primarily to bare soil. Ground-based and aircraft
investigations ware conducted to evaluate the potential for extending
the thermography to approach to developing crop canopies. A signifi-
cant exponential relationship was found between the volumetric soil
water content in the 0-4 cm soil layer and the diurnal difference
between surface soil temperature measured at 0230 and 1330 LST
(satellite overpass times of NASA's Heat Capacity Mapping Mission -
HCMM). Surface soil temperatures were estimated using minimum air
temperature, percent cover of the canopy and remote measurcments of
canopy temperature. Results of the investigation demonstrated that
thermography can potentially be used to estimate soil temperature
and soil moisture throughout a complete growing season for a number

of different crops and soils.

INTRODUCTION

Remotely sensed surface temperatures have been investigated for

6

estimating soil water content (Idso et al., 1975; Idso and Ehler, 1976;

Schmugge et al., 1978). Soil water contents have been related to
differences between the daily maximum and minimum soil or crop
temperatures. The investigations generally have been limited to bare

soils or fully developed crop canopies because of difficulties in
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interpreting thermal data at less than full cover when significant
emittance contributions from both soil and vegetation occur. The
ability to derive useful information from remote temperature measure-
ments for conditions other than bare soil or fully developed canopies
would greatly expand the usefulness of the remote sensing techniques.

Investigators have shown that even at full cover, thermal
emittance from the soil surface can affect remnte temperature
measurements of crop canopies (Blad and Rosenberg, 1976). Thus,
surface soil temperatures can potentially be estimated from remote
measurements of land surface emittance where a crop canopy is the
primary source of radiation.

We conducted a ground based and aircraft investigation to evaluate
the potential for estimating soil surface temperature and soil
moisture from measurements of total area emittance at various stages
of crop canopy development. The investigation was conducted to
examine data collected duriig times of the diurnal temperature cycle
corresponding to data collection by NASA's Heat Capacity Mapping
Mission (HCMM), launched in April 1978. The satellite, which carries
a two-channel radiometer (0.5-1.1 and 10.5-12.5 um) in a sun-synchronous
orbit, collects data at midlatitudes at approximately 0230 and 1330
LST during the diurnal cycle with repeat coverage of 5 or 16 days
dependings on latitude.

MATERIALS AND METHODS
Plot Study
Experiments were conducted on a 25 m x 300 m field of Volga loam

(fine, loamy over sandy, mixed (calcarious), frigid, Cumulic Haplaquoll)
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at the South Dakota State University Agricultural Engineering
Rescarch Farm located 8 km south of Brookings, South Dakota. Larker
barley (Hordeum vulgare L.) was planted in the field at 15 cm row
spacings (north-south rows) and a population of 2.5 million plants
ha". Rainfall in the Brookings area averages 558 mm year". No
supplemental water was applied to the barley. Surface roughness of the
sofl was minimal.

Surface soil temperatures (1 mm below the soil surface) were
measured with copper-constantan thermocouples at two locations
(A and B) within the field. For each location, three thermocouples

were wired in paraliel to obtain an average measurement which

approximated surface temperature. Apparent canopy temperatures consisting

of emittance contributions from the soil surface and the barley (shaded
and sunlit leaves) were measured with a portable i- " ared radiometer
(Model PRT-5, Barnes Engineering Co.) at a vertical position (zero
degree look angle measured from nadir) at a height of 2 m above the
canopy. The temperature resolution of the 20° field of view PRT-5

was t0.5° C in the 8-14 um wavelength interval. Apparent crop
temperatures were measured with the PRT-5 at a height of 1 m atove the
canopy and a look angle of -60° to minimize emittance contributions
from the sofl. Temperatures were measured at 0230 and 1330 LST.

The temperatures measured with the PRT-5 were not corrected for
emissivity. Emissivities, determined using a procedure similar to that
described by Fuchs and Tanner (1966), ranged from 0.96 for bare, dry
soil to 0.98 for the fully developed barley caropy. For the range of
temperatures and percent cover encountered, the maximum error from not

correcting for emissivity was 1.5% ¢.
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Soil water contents (0-4 cm layer) for each location were determined
gravimetrically on soil samples collected at the time of the temperature
measurenents. The average of soil water contents measured at 0230 and
1330 LST was used to represent the 24 h averaje. Jackson et al.

(1976) reported that the average of the daily maximum and =inimum
water content closely approximated the 24 h average.

Temperature and soil water content measurements were initiated
when the canopy cover reached 30%. Data were collected for 22 dates
during the 45-day investigation.

Plant samples for determining leaf area index (leaf area/soil
area) were taken every 5-7 days. Leaf areas (green leaves only)
were measured wiih an optical planimeter (Lambda Instrument Corp.).
Percent cover was determined using 35 mm color infrared slides of the
canopy (photographed from a vertical position ~1 m above the canopy)
projected on a random dot grid. Daily values of lead area index (LAI)
and percent cover were estimated from graphs of observed LAI and
percent cover versus date (Fig. 1). We did not estimete percentages
of shaded and sunlit leaves, or percentages of shaded and sunlit soil.
Maximum and minimum ait temperatures were obtained from the Brookings
National Weather Service Station (-1s km from the research site).

A1l data were subjected to regression analyses.

Aircraft Study
Apparent canopy temperatures of corn, soybean, millet and pasture
were collected along a 24 km flight line northwest of Brookings by a

quantitative thermal scanner (Daedalus Enterprises, Inc., Ann Arbor,
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Michigan) flown in the Remote Sensing Institute's twin-engine Beech-
craft at an altitude of 3650 m above ground level. The 1.6 mrad
scanner detector has a neat of 0.5° C. Data wer . “lected at 1330
and 0230 LST on 5 and 6 September 1978. Scanner data were no* corrected
for atmospheric attenuation of emissivity variations. Sky conditions
were clea~ for ali flights. Errors from neglecting emissivity
variations and atmospheric effects were 1% ¢,

Soil water contents (0-4 cm iayer) were gravimetrically sampied
in each of the fields at the time of the aircraft overflights. Percent
cover was estimated using the same procedure used in the plot study.
Data from the aircraft study were used to test the predictive equations

developed from the plot study on barley.

RESULTS AND DISCUSSION

Soil Water Content Versus Temperature Relationships

The amplitude of the diurnal soil surface temperature wave is a
function of thermal inertia and meteorological factors (solar
radiation, air temperature, humidity, etc.) Thermal inertia - an
indication of a soil's resistance to temperature change - is defined

1/2. where p is density, ¢ specific heat and A thermal

as pci
conductivity. Since p, ¢ and X of a soil increase as soil water
content increases, the resulting amplitude of the diurnal temperature

wave decreases.
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When the soil surface is wet, evaporation is a major factor con-
trolling surface heat loss. After the surface layer dries and the
soil water supply cannot meet the evaporative demand, surface heat
loss 1s by conductive transfer (soil heat flux) and is largely
influenced by thermal inertia. Nocturnal cooling is highly related
to thermal inertia. Thus, the diurnal surface temperature range car
be an indication of soil water content. Idso et al. (1975) found a
linear relationship between the diurnal range of surface soil
temperatures and soil water content in the 0-4 cm layer of soil, and
reported that the temperature versus water content relationship was a
function of soil type. However, they also found that 1f soil water
content was expressed in units of pressure potential, this
dependence was minimal.

Vegetation cover alters the solar radiation at the soil surface
ard thue afiects soil evaporation and soil temperatures. Therefore,
dynamic growth and development of vegetation would be expected to
complicate the temperature versus water content relationship.

Initially, we evaluated the relationship of day minus night surface
soil temperatures (ATS) versus soil water content at various stages of
canopy development. Leaf area index and percent cover of the barley
canopy ranged from 0.3 to 3.2 and 30-90%, respectively. The exponential
equation
= e(-0.065NC+3.59) (1)

AT s

with an rz of 0.81 and a standard deviation from regression of 2.54° C,

was found to best represent the relationship between ATS and the
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average 24 h volumetric soil water content (SWC) in the 0-4 cm layer

of the sotl profile (Fig. 2). The exponential form fit the data better
than 1inear (r2 = 0.71), power (42 = 0.76) or quadratic (r2 = 0.77)
curves,

Idso et al. (1976) proposed a procedure for compensating for
environmental variability in the thermal inertia appruach by normalizing
ATS measurements with respect to an arbitrary standard diurnal air
temperature variation. We found no significant improvement in the
ATs versus SWC relationship using the same normalization procedure.

The temperature versus water content relationship [Eq. (1)]
applies only to Volga loam. However, Idso et al. (1975) converted
soil water content to 2 pressure potential and found a mcre universal
relationship that appeared to be independent of soil type. Schmugge
et al. (1978) reported that in the absence of pressure potential data,
textural differences in temperature versus water content relationships
could be reduced by expressing soil water content as a percent of
field capacity. The temperature versus soil water content relationships
have limited usefulness unless soil temperatures can be estimated from

remote measurements under all crop-cover conditions.

Estimating Soil temperature from measurements of canopy temperature
During the investigation, surface-soil temperatures at 0230 LST
were 1.1-2.2° ¢ higher than apparent crop temperatures (Fig. 3a).
Differences oetween canopy and crop temperatures, even at full cover,
probably were the result of significant amounts of thermal radiation
from the soil suiface being detected by the infrared radiometer at

0230 LST (Blad and Rasenberg, 1976).
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At 1330 LST, radiometric measurements of apparent canopy
temperature were 0.5-17° ¢ higher, and surface-soil temperatures
1.5-20° ¢ higher, than apparent crop temperatures (Fib. 3b). Greatest
differences between canopy and crop temperatures at full cover
occurred on days with high temperatures and high evaporative demand.
On those days, some silting of leaves occurred. which exposed more of
the soil background to incoming solar radiation.

Because emittance contributions from the soil surface apparently
were detected by the infrared radiometer, equations were developed
from regression analyses to estimate soil temperatures from remote
measurements of canopy temperature. For the 0230 LST measurements,

the resulting equation was

with an R2 of 0.78 and a standard deviation from regression of 1.31% ¢
0 .
Here Ts(0230) (7C) s surface soil temperature, PRT(023O) measurement

of canopy temperature, and T is the minimum NWS air temperature

a min
For the 1330 LST measurenent, the surface soil temperatures were related
to the PRT measurements of canopy temperature and an exponential

function of percent cover (PT). The resulting equation was

i (-0.80PC)

2 of 0.86 and a standard deviation from regression of 2.63° ¢

with an r
where PC is expressed as a fraction. We found no improvement in
estimating soil temperature by including leaf area index, soiar
radiation or maximum air temperature in the analyses. Fig. 4 compares

predicted soil temperature with observed values.
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Measurements of canopy temperature used to derive (2) and (3)
ranged from 13 to 22° C for (2), and from 24 to 52° C for (3).

Percent cover ranged from 0.3 to 0.9.

Evaluation of results

Fig. 5 compires observed soil water contents with values predicted
using Eqs. (1)-(3), and the aircraft thermal scanner measurements of
apparent corn, soybean, millet and pasture canopy temperatures. Eq.
(1) was converted to express soil water content as a percent of field
capacity to minimize differences associated with soi) texture (Schmugge
et al., 1978). Percent canopy cover ranged from 50 to 80% for pasture
and from 90 %o 95% for corn, soybean and millet. Soil textures ranged
from sandy loam to silty clay loam. Differences of observed from
predicted values ranged from -24.5 to +15.3% of field capacity.
The average differences was 1.6% of field capacity. The less accurate

estimates of soil moisture for corn, soybean and millet were

probably due to thefr high percent cover.

CONCLUDING REMARKS

The results of this investigation indicate that thermography for
extimating soil water content can potentially be extended to
developing crop canopies. The diurnal differeace between surface
soil temperatures measured at HCMM overpass times is correlated with

surface soil water content. Surface soil temperatures can be
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estimated from remote measurements of canopy temperature {f minimum

air temperature and percent cover of the canopy are known. Remote
sensing evaluation of crop cover has been demonstrated (Heilman et

al., 1977, Kanemasu et al., 1977; Tucker, 1979) for certain species.
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ABSTRACT

Results of ground, aircraft, and satellite investigations are
presented that demonstrate the potential for using data from NASA's
Heat Capacity Mapnring Mission (HCMM) satellite to provide information
on near-surface soil moisture, The satellite,
which carries a two-channel radiometer (0.5 to 1.1 and 10.5 to 12.5 um)
in a sun-synchronous orbit, collects data at approximately 0230 and
1330 local standard time with repeat coverage of five or 16 days
depending on latitude. Near-surface soil moisture influences surface
temperature through conductive heat transfer (affected by thermal
inertia) and evaporation. Thus, HCMM data acquired near maximum and
minimum periods of the diurnal temperature cycle can provide useful
soil moisture information. Hydrologic interpretations of HCMM data
are complicated by vegetation, evapotranspiration, topography, atmo-
spheric absorption and other environmental variables such as solar

radiation, temperature, wind, etc.

KEY TERMS: HCMM, Thermal Inertia, Energy Balance, Soil Moisture
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INTRODUCTION

Virtually all physical processes occurring at the earth's surface
or in the atmosphere involve transformations or transfers of energy.
Energy balance interactions have important hydrologic implications since
water and energy balances are intimately related (evapotranspiration
requires a source of energy). Distribution of precipitation affects
the thermal regime of the surface through changes in evapotranspiration
and thermal properties oF soil and vegetation. Surface temperatures
are also influenced by distribution and flow of shallow aquifers.

Surface temperatures can provide information on the nature of surface
and subsurface hydroloqy. However, spatial and temporal variations in
surface temperature are difficult to evaluate on the ground. The
spatial criterion can be fulfilled by remote sensing from aircraft and
satellite. Monitoring of dynamic hydrologic features, such as soil
moisture, which requires repetitive coverage is feasible only with
satellites.

NASA's Heat Capacity Mapping Mission (HCMM) launched on April 25,
1978, is the first satellite designed to evaluate remote sensor-derived
temperature measurements of the earth's surface at times whea the
temperature variation is at a maximum. Thus, the HCM, r.uresents a
potentially useful tool for hydrologic studies.

Ground, aircraft, and sateliite investigations were conducted in
castern South Dakota to evailuate the potential for using HCMM data to
monitor soil moisture and depth to shallow groundwater. Many of the

results are preliminary since investigations are still in progress.
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Eastern South Dakota is characterized by shallow perched water tables
and significant spatial and temporal variations in soil moisture and
agricultural land use. Most topographic features in the area are re-
lated to glaciation or stream erosion. The complexities of the ground-
water regime and land use patterns in eastern Scuth Dakota provide a

wide range of conditions in which HCMM4 data can be evaluated.
HEAT CAPACITY MAPPING MISSION

The HCMM carries a tw~-channel radiometer (0.55 to 1.1 and 10.5
to 12.5 um) in a sun-synchronous orbit (orbital altitude is 620 km).
Spatial resolutions are 0.5 x 0.5 km at nadir for the visible channel
and 0.6 x 0.6 km at nadir for the .hermal infrared channel. The neat
of the thermal channel is 0.4°K at 280°K. Swath width is 716 km. HCMM
collects data at 2:3C a.m. and 1:30 p.m. local standard time at mid-
latitudes with a repeat cycle of five of 16 days depending on
latitude.

Standard data products include visible, day IR, and night IR
imagery (1:4,000,000 scale), and associated computer compatible tapes.
An example of a night thermal IR image is shown in Fig. 1. Special
data products include day-night temperature difference and apparent
thermal inertia (ATI). ATI, which has many attributes of true thermal
inertia, is defined at C(1-a)/AT where C is a constant related to
latitude and solar declination, a is apparent albedo obtained from
daytime HCMM reflectivity measurements, and AT is the day-night

radiometric temperature difference - bserved by HCMM.
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An August 29, 1978, night HCMM thermal infrared image (scene
ID A-A0125-08340) of portions of the upper Midwest6 (Approxi-
mate scale 1:4,000,000, dark is cool). neaT = 0.4°C; IFOV =
0.6 x 0.5 km; overpass time = 0234 local standard time.



83

INTERPRETATION EXAMPLES

Diurnal variations of surface soil temperatures are principally
related to thermal inertia, evaporation, land use, and meteorological
factors (solar insolation, 1iir iemperature. humidity, etc.). Thermal
inertia, an indication ¢ a soil's resistance to temperature change, is
Jefined as (CA)B where O is volumetric heat capacity and » is thermal
conductivity. Since C and A increase as soil water content increases,
the resulting amplitude of the diurnal soil temperature wave decreases.

When the soil surface is wet, evaporation is a major factor
controlling surface heat 10ss since more energy is partitioned into
latent heat of vaporization and is not available for heating the soil.
After the surface layer dries and the soil water supply cannot weet the
evaporative demand, surface temperature of a bare soil is largely
related to thermal inertia. Nocturnal cooling is highly dependent
on thermal inertia. Thus, the amplitude of diurnal soil temperature
variations can be an indication of near-surface soil water content.

Idso et al. (1975) found a linear relationship between the
diurnal range of surface soil temperatures (bare soil) and near-surface
soil water content, and reported that the temperature versus water
content relationship was a function of soil type. The textural
dependence can be minimized by expressing soil water content in units
of pressure potential or as a percent of field capacity (Idso et al.,

1975; Schmugge et al., 1978). Meteorological variability can be reduced
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by normalizing the amplitude of the diurnal surface soil .emperature
wave with respect to 2 standard diurnal air temperature variation
(1dso et al., 1976).

Vegetation alters solar insolation at the sojl surface and thus
affects soil temperature. Therefore, growth and development of
vegetation would be expected to cumplicate temperature versus soil
water content relationships. Since crop canopies are the primary source
of land surface emittance during most of the growing season in South
Dakota, the use of HCMM data for hydrologic investigations requires that
vegetation be considered‘in the analysis.

A ground study was conducted in a barley canopy planted in a 25 x
300 m field of Volga loam to evaluate soil temperature (measured at
HCMM overpass times by thermocouples 1-mm below the soil surface)
versus water conteﬁt relationships at various stages of canopy develop-
ment (Heilman and Moore, 1980). Percent cover of the developing barley
canopy ranged from 30 to 90 percent over the 45-day study. The
exponential equation

AT, = o(-0.06 SWL + 3.59) ()
with an r2 of 0.81 was found to best represent the relationship
between day minus night surface soil temperatures (ATS) and the
average 24-hr volumetric soil water content (SWC) in the 0 to 4-cm
layer of the soil profile (Fig. 2).
The relationship in (1) has limited usefulness unless ATs can be

estimated from remote measurements under a wide range of crop-cover
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tv 4-cm layer of the profile. Temperatures were measured
by thermccouple 1 mm below the surface in a field of Volga
loam (Heilman and Moore, 1980).
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conditions. The ground study found that apparent canopy temperatures
measured 2 m above the canopy by a 20° FOV infrared radiometer (Model
PRT-5, Barnes Engineering Co.) at a vertical position (zero degree look
angle measured from nadir) at HCMM overpass times contained signiricant
emittance contributions from both the soil and the crop canopy through-
out the growing season. Therefore, equations were developed from
regression analyses of surface-sofl and apparent-canopy temperatures
to estimate surface-soil tenperature from remote measurements. For
0230 LST measurements, the equation

Ts(0230) = 0.40 Tc(0230) +0.60 T, 150 *5.70 (2)
with an R of 0.78 was obtained where Ts(0230) (°C) is surface soil

temperature, and T (°C) 1s the minimum air temperature obtained

a min
from the nearest National Weather Service station. For the 1330 LST
measurement, surface soil temperature was reiated to apparent canopy
temperature and an exponential function of percent cover (PC). The
equation

=0.79 T (-0.80 PC) , 59 35 (3)

Ts(1330) c(1330) * ©
with an r2 of 0.86 was obtained where PC is expressed as a fraction.
Equations (1), (2), and (3) were tested using simulated HCMM
data (aircraft thermal scanner data collected at an altitude of 3650 m
AGL) collected over corn, soybean, millet, and pasture (Heilman and
Moore, 1980). Percent canopy cover ranged from 50 to 80 percent for
pasture and from 90 to 95 percent for corn, soybean, and millet. Soil

textures ranged from sandy lcam to silty clay loam.
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Figure 3 compares observed soil water content with values predicted
using equations (1) through (3) and simulated HCMM measurements of
apparent canopy temperature. Equation (1) was converted to express
sofl water content as a percent field capacity to minimize textural
differences (Schmugge et al., 1978). The average difference of observed
from predicted values was 1.6 percent of field capacity.

Preliminary analyses of actual HCMM data of eastern South Dakota
indicates that high soil moisture areas can be detected using HCMM
thermal imagery. In early April 1978 hezavy spring runoff and ice
blockage caused significant flooding of alluvial areas in a portion of
the Big Sfoux River Basin in southeastern South Dakota (Fig. 4). Flood
waters had receded by mid-May, but an area of high soil moisture (at
or near field capacity) remained. Soil moisture in the surrounding
upland soils was generally less,

The high moisture area appeared cooler than surrounding areas
on May 15 day thermal imagery (Fig. 5). Temperature differences
between the flood plain and surrounding areas were probably the result
of thermal inertia and evaporation differences associated with s0il
moisture differences. Landsat imagery (Fig. 6) confirmed that no standing
water was present in the fields. Adjacent alluvial areas did not appear
different from uplands, indicating that the anomaly was not associated

with inherent thermal inertia of the soil but with a moisture difference.
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soil profile. Predictions were made using equations (1),
(2), and (3) and simulated HCMM measurement of canopy
temperature (Heilman and Moore, 1980).
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Figure 4. Landform map of Brookings County, South Dakota, showing
location of alluvial scils (bottomland) in the Big Sioux
River Basin which were flooded in early April 1978 (Heilman

and Moore, 1981).
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Enlargemert of May !5, 1978, day HCMM thermal infrared data
(scene ID A-A0029-19575) showing a high soil moisture area

(arrows) in eastern South Dakota (Heilman and Moore, 1981).
Dark is cool.
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Figure 6.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Photographic enlargement of a May 13, 1978, Landsat color
composiie (scene ID E-21207-16083) of the same area shown
in Figure 5. Note that no standing water is visible in
the flood plain of the Sioux River Basin.
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These results indicate a potential for evaluating soil moisture
using HCMM data. Final results from HCMM soil moisture investigations
currently in progress will continue to evaluate the utility of using

HCMM and similar data for quantifying soil moisture differences from space.

DISCUSSION

Although the potential for using HCMM and similar data in soil
moisture investigations has been demonstrated, there are limitations
in the use of such data which must be considered. Environmental factors
which influence energy balance interactions must be cunsidered when
using thermal data. Due to its large heats of fusion and vaporization,
water undergoing phase transformations acts as a heat source or sink.
Changes in heat content will not be represented by a corresponding
temperature change if a phase transformation occurs. Thus, conditions
favoring high evapotranspiration rates or dew or frost formation are
not favorable for remote sensing of near-surface so1l moisture.

Wind patterns may obscure thermal anomalies created by soil
moisture (Fig. 7). Topographic variations and vertical extrusions
affect the boundary layer and thus affect sens’ble and latent heat
transport.

Atmospheric constituents (clouds, aerosols, water vapor, etc.)
influence surface temperature by attenuating incoming solar radiation
and affecting radiative cooling of the surface. Since atmospheric

counter-radiation is emitted by atmospheric constituents, radiative

C-2
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Figure 7. Wind pat.erns on night thermal imagery of an area south of
and including Sioux Falls. Wind wes from the northeast at

a speed of 10 knots. Approximate scale 1:55,0C0; dark is
cool.
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Figure 7. Wind pat.erns on night thermal imagery of an area south of
and including Sioux Falls. Wind was from the northeast at

a s?eed of 10 knots. Approximate scale 1:55,000; dark is
cool.
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cooling will be greater under a clear sky. Atmospheric components
also affect the amount of longwave radiaticn emitted by the surface
that {s detected by HCMM or other thermal sensors.

Thermal remote sensing has an advantage of relating to subsurface
properties since surface temperatures and emittances are a function of
both surface and subsurface properties. These preliminary results
indicate that observetions at appropriate periods within the diurnal
cycle can provide information on soil moisture. These and otner
preliminary results appear promising for development of interpretation

models to advance the use of thermogra,hy.
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ABSTRACT

Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed
to eviluate the utility of HCMM tharmal data for estimating near.-surface
soil moisture in a complex agricultural landscape. Because of large
spatial and temporal ground cover variations, HCMM radiometric tempera-
tures consisted of radiance contributions from different canopies and
their respective soil backgrounds. However, when surface sofl tempera-
tures were empirically estimated from HCMM temperatures and percent cover
of each pixel, a highly significant correlation (r = 0.74**) was obtained
between the estimated soil temperatures and near-surface soil water

content.



98

INTRODUCTION

Remotely sensed surface temperatures have been investigated for
estimating soil water content in the surface layer of soil (Idso et al.,
1975; Reginato et al., 1976; Heilman and Moore, 1980). Generally the
fnvestigations have been limited to bare soil or fully developed crop
canopies because of difficulties in interpreting data at less than full
cover when significant radiance contributions occur from both vegetation
and soil. Heilman and Moore (1980) found that therma! techniques could
potentially be extenc:d to conditions of partial canopy cover.

Investigations have also been limited to ground or aircraft studies
since high resolution thermal data from satellites were unavailable for
the appropriate periods of the diurnal temperature cycle. The Heat
Capacity Mapping Mission (HCMM) satellite, launched in April 1978,
was the first satellite devoted to acquiring high resolution thermal
data at oplimum periods of the diurnal cycle. The HCMM carried a two-
channel radiometer (0.55 to 1.1 and 10.5 to 12.5 um) in a sun-synchronous
orbit at an altitude of 620 km. Spatial resolutions were 0.5 x 0.5 km
at nadir for the visible channel and 0.6 x 0.6 km at nadir for the
thermal channel. The NEat of the thermal channel was 0.4 K at 280K.

The HCMM collected data at approximately 0230 and 1330 local standard
time (LST) with a repeat cycle of 5 or 16 days depending on latitude.

An investigation wa: conducted to evaluate the utility of using
HCMM dat: wvaluate near-surface soil moisture for a complex agricul-

tural landscape.
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MATERIALS AND METHODS

The study was conducted in an 8 x 24 km area within the Big Sioux
River Basin in Brookings County in sautheastern South Dakota. Surficial
deposits in the drainage basin are predominantly of glacial origin, and
consist of end moraine, ground moraine, and outwash deposits (Ell{s et
al., 1969).

The large study area was required to obtain a wide variation of sofl
textures and agricultural land use. Soils in the basin range from poorly
drained silty clay loams in the flood plain to well drained sardy loams
in the slightly elevated terraces. Major agricultura® land use cate-
gories are small grains, row crops, nayland, and pasture with field sizes
generally less than 16 ha.

Soil water contents (0 to 4 cm layer were determined gravimetrically
on samples collected on HCMM overpass days in ficlds representative of
soil and land use variations in the basin. Three samples were collected
per field and averaged. Sampling occurred between 1000 and 1400 LST.

The soil water content for each field was used to represent an entire
HCMM pixel, although each pixel ultimately contained more than one land
use.

The number of sampling locations varied because of logistical prob-
lems associated with collecting samples over a large area in a short
period of time. Table 1 summarizes the soil moisture data collections.

Percent cover at each location was determined using 35 mm slides of
the canopies (photographed from a vertical position approximately 1 m

above the canopies) projected on a random dot grid. When the canopies
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Table 1. Number of fields sampled for soil moisture on cloud-free days of HCMM
overpass selected for analysis. Three samples were collected in each
field.

Date No. of Fields Land Cover
June 5, 1978 4 corn, pasture
July 13, 1978 2 corn
August 8, 1978 4 corn, pasture
September 4, 1978 13 corn, pasture, stubble

Table 2. HCMM scenes analyzed in scfl moisture study

Date Time Scene I.D.
June 5, 1978 1330 LST AA0040-19500
July 13, 1978 1330 LST AA0Q070-19570
August 8, 1978 1330 LST AAQ104-19400

September 4, 1978 1330 LST AAO131-19420
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were too tall for the photographic procedu e, percerc cover was estimated
from visual inspection. These data were used to p-epare average percent
cover curves for the growing season for each land use categcry. Dafly
maximum air temperatures were obtained from the Brooking: National
Weather Service Station.

Four dates of daytime HCMM data representative of the growing season
were selected for analyses (Table 2). Cloud-free day/night data were
available only for July 13, but insufficient soil moisture data were
collected on that date to relate diurnal temperatur:. variations to sofl
water content.

Radiometric tempcratures were extracted for each pixel containing
a field where 3011 samples were collected by overlaying computer gray
maps of HCMM d  .a with a Brookings County map containing the sampling
sites. Radiometric temr ~ratures were corrected for atmospheric e fects
by comparing HCMM and ground measurements of Misccuri River reservoir
temperatures in central and southeastern South Dakota. Radiometric
temperatures were not corrected for emissivity variations.

Percentage of each land use category for each pixel was determined
using photointerpretation of a May 13, 1978, Landsat color composite
(scene I.D. E-21207-16803) superimposed on HCMM gray maps via a Bausch &
Lomb Zoom Transferscope. Percentage of each land use within each pixel,
and the average percent cover curves for each land use category were

used to calculate a pixel percent cover for each date of HCMM data.
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RESULTS AND DISCUSSION

Surface soil temperature varia*inns are a function of sofl thermal
properties, land cover, evaporation, aibedo, meteorological and other
factors (a{r temperature, solar radiatfon, wind, etc.). When the soil
surface 1s wet, evaporation is a major fuctor controlling heat loss.
After the surface layer dries and the soil water -~upply cannot meet the
evaporative demand, surface heat loss is largely influenzed by thermal

1/2 where o {s density, ¢

fnertia. Thermal inertia, defined as (sci)
specific heat, and A thermal conductivity, is an indication of a soil’'s
resistance to temperature change. Since p, c, and X of a scil increase
as soil water content increases, the resulting amplitude of the diurnal
surface ‘amperature wave decreases. Thus, soil surface temperatures at
maximum and minimum periods of the diurnal temperature cycle can be an
indication of soil water content.

Idso et al. (1975) found lineer relationships between the diurnal
range of surface soil temperatures (bare soil) and soil water content
in the 0 to 4-cm layer of soil, and between the surface soil - air
temperature difference and so!l water content for the same depth inter-
val. The temperature versus water content relationships were a function
of soil type. However, Idso et al. also found that if soil water con-
tent was expressed in pressure potential units, this dependence was
minimal.

Unfortunately, bare soil conditions seldom exist for any length of

time in agricultural areas. Thus, remote sensing techniques must be

developed for a wide range of ground cover conditions. HCMM radiometric
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temperatures (corrected for atmospheric effects but without consideration
given to ground cover variations) did not correlate (r = 0.16) with sof)
water con-ant for the four dates analyzed. Generally, each pixel con-
tained more than a single land use. Thus, the radiometric temperatures
consisted of a cumbination of radiance contributions from different cano-
pies and their respective soil backgrounds. Estimated percen* cover for
the pixels ranged from 10 to 95 percent during the study.

Heiiman and Moore (1980) found tnat soil surface temperatures
beneath crop canopies were correlated with near-surface water content,
and developed a procedure for estimating soil surface temperatures under
crop canopies frcm remote measurements of a composite temperature. They

used the euation

T, = 0.79 Tce('°'8° PC) 4 20.35 (1)

where T, (°C) is predicted cofl surface temperature, T. (°C) is a compo-

c
site temperature consisting of radiance contributions from the crop and
soil background, and PC is percent cover expressed as a fraction.

Equation (1) was used to estimate surface soil temperatures from
HCMM temperatures and pixel percent cover. Regression analyses were
used to correlate Ts with soil water content (SWC). The following

equation was
T, = 58.35 swc™0-18 (2)

with a r of 0.74 (significant at the 0.01 level) and a S, .y Of 2.1 Oc
(Figure 1).
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Figure 1. Relationship between predicted soil surface temperatures (Ts)
and sofl water content in the 0 to 4-cm layers of the soil
profile. Predictions were made using equation (1) and HCMM
radiometric temperatures. 501l water contents are an average
of three measurements.
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Soil water content was expressed as a percent of field capacity to mini-
mize differences associated with soil texture (Schmugge et al., 1978).

Soifl surface temperatures are affected by day-to-day environmental
variations (wind, humidity, air temperature, etc.). We attempted to
compensate for some of that variability by relating differences between
TS and maximum air temperature to soil water content (Idso et al., 1975).
Table 3 1ists maximum air temperatures for the four analysis dates. How-
ever, we found no significant improvement using that procedure.

Results of this study indicate that thermal data acquired from
spacecraft can be correlated with near-surface soil moisture if consid-
erations are given to spatial and temporal groundcover variations. Remote
sensing of crop cover using multispectral reflecta ice data has been
successfully demonstrated (Heilman et al., 1977; Kanemasu et al., 1977;
Jackson et al., 1979; Tucker et al., 1979; Hclhan et al., 1980).

Reflective and thermal data have the advancage of high spatial
resolution, but their usefulness is lost in the presence of clouds.
Microwave sensors have the ability to penetratenon<aining clouds. How-
ever, the spatial resnlution of passive sensors is limited by antenna
size, while active microwave sensing is strongly influenced by look
angle and ;urface roughness (Schmugge, 1978). Thus, the combined use of
reflective, thermal, and microwave sensors may be the logical approach
for assessing soil moisture from satellites. Investigations of simul-
taneous observations in the various spectral regions should be pursued
to de.ermine where each data set is unique and/or where the multiple

estimates can be used to improve accurac .-s.
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Table 3, Maximum air temperature for the four dates of anaiysis.

Date Tmax (C)
June 5 25.0
July 13 26.1
August 8 31.7

September 4 31.1
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ABSTRACT

Results of grnund, aircraft, and satellite investigations are
presented that demonstrate the potential for using data from HASA':
Heat Capacity Mapping Mission (HCMM) satellite to provide in‘ormation
on perched water tables. The satellite, which carries a two-channel
radiometer ((.5 to 1.1 and 10.5 to 12.5 um) in a sun-synchronous
orbit, collects data at approximately 0230 ana 1330 local standard
time with repeat coverage of five or 16 days depending on latitude.
Perched water tables influence surface and subsurface soil temperatures
because of a heat sink effect created by the high heat capacity of
water. HCMM data acquired at appropriate periods of the diurnal ana
nnnual temperature cycle can provide useful information on shallow
groundwater. Hydrologic interpretations of HCMM data are complicated
by thermal inertia-heat sink interactions, vegetation, evapotranspiration,
topography, atmospheric absorption and other environmental variablas

such as solar radiation, temperature, wind, etc.

KEY TERMS: HCMM, Thermal Inertia, Energy Balance, Soil Moisture,

Groundwater, Perched Water Tables
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[HTRODUCTION

This paper discusses the groundwater portion of a hydrologic
investigation of eastern South Dakota using data from the Heat Capacity
Mapping Mission (HCMM) satellite. Background material and information
about the HCMM are presented in the paper "Soil Moisture Applications
of the Heat Capacity Mapping Mission" in the preceding soil moisture

section,

INTERPRETATION EXAMPLES

Surface soil temrperatures are controlled by meteorological factors
and soil/water/vegetation properties at depths within the diurnai
damping depth, and also by the ability of underlying soil matcerial to
store and transfer heat. For example, the high heat capacity of ground-
water within the depth of annual soil temperature variation produces
a heat sink in summer and a heat source in winter which reduces annual
temperature variations (Cartwright, 1968). Temperatures are infiuenced
by aquifer thickness, rate of horizontal and vertical water movement,
and depth to the water table.

Variations in grouniwater depth do not significantly affect the
amplitude of the diur=al temperature curve, but do shift the curve
up or down in absolute magnitude (Huntley, 1978). Fiqure 1 illustrates
the effect of depth to groundwater on subsurface s0il temperatures

measured in the Big Sioux River Basin in southeastern South dakotd.
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A highly significant positive correlation (r = 0.68**) was found
between 50-cm soil temperature and depths to groundwater of three
meters or less.

Myers and Moore (1972) and Moore and Myers (1972) evaluated
aerial thermography of the Sioux Basin and found that apparent thermal
anomalies relacad to shaliow groundwater could be detected during
predawn hours in August and early September, the period of the
maximum downward temperature gradient in South Dakota (Fig. 2). In
addition, they found that the thickness of saturated sands and gravels
corresponded closely to an apparent cool anomaly. ODuring the daytime,
they found that thermal patterns produced by differential ET rates,
ground shadings, reflectances, and other factors masked thermal patterns
produced by subsurface conditions (Fig. 2).

Similar results are visible on HCMM imagery. The Big Sioux Basin
appears cooler than surrounding areas on August night thermal imagery,
primarily because of the heat sink created by shallow aquifers within
the Basin (Fig. 3). The Big Sioux Basin is not visible on day thermal
or visible imagery because of the masking effect associated with land
use (Figs. 4 and 5). Investigations are in progress to evaluate HCM
and similar data for evaluating depth to groundwater for the shaliow

water tables.

DISCUSSION

An important consideration in the use of HCMM and similar data

in groundwater studies is the interaction of soil mcisture and
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groundwater. An increase in near-surface soil moisture produces lower
soil temperatures during the day and higher temperatures at night,
whereas, shallow groundwater produces lower soil temperatures throughout
the diurnal cycle. Thus, soil moisture and groundwater affect surface
temperature in the same direction during the day and in opposite
directions at night during the late-summer period of maximum downward
temperature gradients. Other limitations in the use of HCMM data are
discussed in the previous soil moisture paper.

Observations at appropriate periods of the diurnal and annual
temperature cycle may reveal information on shallow water tables
within the range of the annual damping depth (10 to 15 m in northern
latitudes of South Dakota). These results appear promising for
<Jzvelopment of interpretation models to advance the use of HCMM and

similar data.
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Figure 2.
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Day and night thermal imagery of the Sioux Basin north of
Sioux Falls. The night image (b) shows a broad cocl pattern
within the tlood plain associated with subsurface conditions.
Daytime (a) thermal patterns mask anomalies associated with
subsurface conditions. The flood plain is delineated by the
dotted line; numbers are thickness (m) of saturated sands and
gravels. Approximate scale 1:60,000, dark is cool. (After
Moore and Myers, 1972; Myers and Moore, 1972).



Figqure 3.

Photographic enlargement o7 an Auaust 29, 1978, night HCMM
thermal infrared image (scene ID A-AN125-08340) showing the
Big Sioux Basin. Note that the Basin appears cooler than
surrounding areas, due primarily to the heat sink produced
by snhallow groundwater within ‘he Basin. (Approximate scale
1:1,000,000; dark is cool).
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A September 4, 1978, phctographic enlargement of a HCMM

day thermal infrared image (scene 1D A-A0131-19420) of the
same area shown in Figqure 3. Note that the Biqg Sioux River
Basin is not visible because of emittance variation associated
with land use. (Approximate scale 1:1,000,000; dark is cool).
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Figure 5. A September 4, 1978, positive photographic eniargement of
a HCMM day visible image of the same area shcwn in Figures 3
and 4. Note that the Big Sioux River Basin is not visible.
(Approximate scale 1:1,000,000).
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INTRODUCTION

Soil temperatures are controlled not only by meteorological factors and
thermal properties within the depth of diurnal temperature varfation, but
also by thermal properties of the underlying material. For example, Cart-
wright (1968a,b, 1970, 1974) found that water tables within the depth of
annual soil temperature variation create a heat sink during the summer which
produces cooler soil temperatures throughout the diurnal temperature cycle.
This heat sink does not affect the amplitude of the diurnal temperature
variation (Huntley, 1978). The magnitude of the temperature anomaly associa-
ted with shallow water tables is dependent upon aquifer thickness, rate of
horizontal and vertical water movement, and water table depth.

Existence of temperature anomalies produced by shallow water tables has
led investigators to evaluate the potential of thermal remote sensing for
locating shallow aquifers. Chase (1969) found that apparent cool anomalies
on thermal infrared imagery corresponded with shallow groundwater. Myers
and Moore (1972) found a correlation between predawn radiometric temperatures
and aquifer thickness. Huntley (1978) reported that surface temperature
anomalies related to water table depth variations could be separated from
reflectance and thermal inertial variations, but not from variations in
evaporation rntes.

We evaluated the utility of using Heat Capacity Mapping Mission (HCMM)
radiometric temperatures to estimate water table depth. The HCMM, launched

in April 1978, carries a two-channel radiometer (0.55 - 1.1 and 10.5 - 12.5 yin)
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in a sun-synchronous orbit (orbital altitude is 620 km). Spatial resolu-
tions are 0.5 x 0.5 km for the visible channel and 0.6 x 0.6 km at nadir
for the thermal channel. The NEAT for the thermal channel is 0.4 K at
280 K. Swath width is 716 km. The HCMM collects data at approximately
0230 and 1330 local standard time (LST) with a repeat cycle of 5 or 16
days depending on latitude.

MATERIALS AND METHODS

The study was conducted in the Big Sioux River Basin in Brookings
County in southeastern South Dakota (Figure 1). Surficial deposits in
the drainage basin are predominantly of glacial origin, and consist of
end moraine, ground moraine, and outwash deposits (E11is et al., 1969).
Most groundwater in the basin is obtained from shallow outwash deposits
(within 10 m of the surface) and from sand and gravel lenses in morainal
deposits.

The Big Sioux River is in contact with the outwash depo:its, and
groundwater discharge forms the base flow of the river. Most of the
aquifer recharge occurs from runoff from snowmelt and early spring rains.
Groundwater levels in the basin usually rise from late March through May,
and decrease from June through September.

Soils in the tasin are generally poorly drained in the flood piain
and well drained in the slightly elevated terraces. Major agricultural
land use categories in the basin are small grains (oats, spring wheat,
barley), row crops (corn, soybeans), hayland and pasture.

Water table elevations in the basin were mezasured in U.S. Geological

Survey observation wells (Figure 1). Sojl water contents (0 to 4-cn
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Figure 1. Landform map of Brookings County, South Dakota showing the flood
plain (bottomland) and terraces of the Big Sioux River Basin. The
stars indicate locations of U.S. Geological Survey groundwater
observation wells.
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layer) at selected locations were determined gravimetrically on soil
samples collected on days of HCMM overpass.

Percent cover at several locations representative of the major land
use categories were determined using 35 mm slides of the canopies (photo-
graphed from a vertical position approximately 1 m above the canopies)
projected on a random dot grid. When canopies were too tall for the
photographic procedure, percent cover was estimated from visual inspec-
tion. These data were used to prepare average percent cover curves fov
each category.

Radiometric temperatures from five HCMM scenes (Table 1) were ex-
tracted for each pixel encompassing an observation well by overlaying
computer gray maps of HCMM data with a Brookings County map :ontaining
the well locations. Radiometric temperatures were corrected for atmos-
pheric effects by comparing HCMM and ground measurements of Missouri
River reservoir temperatures in central and southeastern South Dakota.

Radiometric temperatures were not corrected for emissivity variations.

Table 1. HCMM scenes analyzecd in water table study.

Date Time Scene I.D.
June 5, 1978 1330 LST AA0040-19500
July 13, 1978 1330 LST AA0070-19570
July 13, 1978 0220 LST AA0078-09020
August 8, 1978 1330 LST AA0104-19400

September 4, 1978 1330 LST AA0131-19420
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Percentage of each land use category for each pixel containing an
observation well was determined using photointerpretation of a May 13,
1978, Landsat color composite (scene I1.D. E-21207-16803) superimposed on
HCMM computer gray maps via a Bausch & Lomb Zoom Transfer Scope. Percen-
tage of each land use within a pixel, and the average percent cover curves
for each land use category were used to c2lculate a percent cover for each

pixel for every date of HCMM data analyzed.

RESULTS AND DISCUSSION

In an earlier paper we reported a highly significant relationship
(r = 0.68**) between 50-cm soil temperatures and water table depths of
3 mor less in the flood plain of the Big Sioux River Basin (Heilman and
Moore, 1980). Subsequent analysis of additional temperature data indi-
cated that the relationshi} could be extended to water tables as deep as
5 m. Water table depths in terraces and uplands were greater than 9 m
and did not correlate with 50-cm soil temperatures. Thus depths
greater than 5 m were excluded in the analyses of HCMM data.

Myers and Moore (1972) found that on daytime thermal imagery, thermal
anomalies related to shallow water tables were overshadowed by vegetation
differences (primarily differential evapotranspiration rates and shading).
Similar results were found with the HCMM data (Table 2). HCMM tempera-
tures at 1330 LST did not correlate with water table depth, primarily
because the temperatures measured were mainly those onf vegetation, or a

composite of vegetation and soil.
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Table 2. Coefficients of determination (rz) between HCMM radiometric
temperatures and vater table depth.

Date Time rl
June 5 1330 LST 0.02
July 13 1330 LST 0.02
July 13 0230 LST 0.03
August 8 1330 LST 0.06
Sepcember 4 1330 LST 0.02

Myers and Moore (1972) aiso reported that effects of vegetation
were minimized at night and thus were able to obtain significant rela-
tionships between radiometric temperature and aquifer thickness using
predawn thermography. We did not find any significant correlation be-
tween HCMM temperatures and water table depth for the July 13 0230 LST
data (Table 2), possibly because of the smali variation in radiometric
temperature (less than 2 C) within the Sioux River Basin.

Heilman and Moore (1980) found that surface soil temperatures be-
neath a crop canopy could be estimated from remote measurements of com-
posite temperature using the equation

T, = 0.79 e (-0-80°PC) 4 50 35 (1)
where TS(C) is surface soil temperature, TC(C) is a composite radiometric
temperature consisting of radiance contributions from the soil and the
crop, and PC is present cover expressed as a fraction. Equation (1) was
deve oped for measurements at 1330 LST.

We used equation (1) to estimate snil surface temperatures from HCMM

temperatures (corrected for atmospheric effects) and pixel percent cover,
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and found linear relationships between the predicted soil temperatures
and water table depth (Figs. 2-5). Highest correlations occurred for the
August 8 and September 4 data. Summertime soil temperature gradients in
South Dakota are at a maximum in August and early September.

Although the correlations improved in August and September, the
slopes and intercepts of the four relationships in Figs. 2-5 were not
significantly different at the 0.01 level., Thus, data for the four dates
were pooled, and the equation

T = 26.90 + 1.30 D (2)

2 9% 0.45 was obtained where D(m) is water table depth (Fig. 6).

with a r
Predicted soil temperatures were correlated not only with water
table depth, but also with soil moisture (Fig, 7). Multiple regression
analysis of the September 4 data yielded the equation
Tg = 26.60 - 0.05 SWC + 7.50 D (3)

2 of 0.87 where SWC(%) is the voiumetric soil water content in

with a r
the 0 to 4-cm layer. Increasing soil water content reduces the ampli-
tude of the diurnal surface temperature variation through thermal inertia
and evaporation effects which cannot be separated from heat sink effects
using a single daytime measurement (Huntley, 1978).

Results of this investigation demonstrate a potential for using
satellite thermography to detect regions of shallow water tatles and
estimate water table depth if appropriate considerations are given to
the effect of vegetation on the surface thermal regime. However, tech-
niques for separating water table influences from those of soil moisture

must be developed before satellite thermography can be a useful tool

for groundwater studies.
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USE OF HEAT CAPACITY MAPPING MISSION (HCMM)
DATA IN SOIL GEOGRAPHY STUDIES

INTRODUCTION

Producing enough food is an increasingly serious problem in the
world. Production of food, directly or indirectly depends partly on
soil. Although inventory of soil resources is well along in some coun-
tries it lags in others.

The Heat Capacity Mapping Mission (HCMM) satellite is a new tool
that may be used in reconnaissance soil inventories. HCMM was launched
in April 1978, and collects data in the visible and near infrared
(.5-1.1 um) and thermal infrared (10.5-12.5 um) regions on the spectrum
at a spatial resolution of 0.5 x 0.5 km. At middatitudes the satellite
collects data at approximately 0230 and 1330 local standard time with a
repeat coverage of five days. The two channels on the HCMM allow both
reflectance and thermal properties to be used in soil studies. The ob-
jective of this study was to compare land characteristics such as eleva-

tion, soil texture, and slope aspect of known areas on HCMM imagery.

BRIEF LITERATURE REVIEW

Lattman (1963) found valley side springs showed up more clearly on
night time aeria® TIR images than on conventional aerial photographv.
This was thought to be due to differences in the night time temperatures
of the ground and the warmer ground water coming from the springs.

Cantrell (1964) working with surface water found that as stream

water begins cooling the thermal energy given off seems to warm the
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vegetation and air thus forming a heat sink. The heat sink superimposes
the drainage net on the imagery.

Sabins (1969) used IR imagery for structural mapping in Southern
California. He found that flooded fields in the Imperial Valley appeared
warm on the imagery. Damp ground gave a cold signature,

Cannon (1973) found that predawn IR Imagery provided a detailed
drainage map and was a good way to inventory surface water distribution.

Offield (1975) mapped structure of the front range and adjacent
plains of Colorado on IR images derived from a scanner on a RB 57 air-
craft.

Schnieder et al (1979) used enhanced night time thermal imagery and
digital data from a NQAA polar orbiting satellite to map drainage patterns
and landforms in North and South Dakota. The Missouri and Prairie Coteaus,
glacial moraines and partial drainage boundaries of major rivers were
discerned. Analysis of satellite digital thermal data for western tribu-
taries of the Missouri River showed north-facing slopes to be warmer than

south-facing slopes by an average of 1.5%.

THE STUDY AREA

HCMM imagery of South Dakota was examined for a number of dates.
Visible and thermal IR images (day and night) were used. Figure 1
shows a night IR mosaic from August for an area in east-central South
Dakota. The same scene appears in both panels. The annotation in the
lower parel indicates elevation, soil texture and slope aspect differ-
ences. The mper right area labeled "warm-lower elev." is the east facing

slope oF the Prairie Coteau and the lower lying Minnesota-Red River Valley.
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Figure 1. Predavwn thermal infrared HCMM image (dark is cool) for an area in
east-central South Dakota.
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The Prairie Coteau lying west of this separates into two areas - the
eastern cooler area of finer textured silty clay loam soils (Kranzburg
series) and the warmer silt loam soils (Poinsett series). These two
areas have about the same elevation (1700 ft.) but the temperature at the
time the image was recorded was 49°F for the cooler Kranzburg series and
52°F for the warmer Poinsett series. West of the Prairie Coteau the
elevation is about 1280 ft. and the temperature is 49%F. This cool

area has more dense clay loam soil having a high component of shale and
has shale bedrock nearer the surface than the rest of the James Valley
to the west. Temperature in the warmer part of the James Valley Juwland
(elevation about 1290') was about 56°F. Ia the lower left of the scene
the warmer northeast and east facing coteau escarpment is seen. West

of the escarpment is the higher lying and cooler Missouri coteau.

Figure 2 shows the portion of the mosaic west of Figure 1. The
warmer Missouri escarpment is clearly delineated as are the cooler
Missouri coteau and the somewhat warmer James River Lowland.

Figure 3 coverage lies west of the area shown on Figure 2 and en-
compasses the Black Hills on the extreme west and the plains east of the
Black Hil11s. The Black Hills appear cooler on the image while the north-
facing slopes of the east-flowing streams and rivers are warmer. This
verifies the results found by Schneider et al that the north-facing

slopes are warmer than crest positions or south facing slopes.

DISCUSSION

The 3 figures show landscapes from night IR taken in August. The

results show that elevated areas, finer textured soils, and crest or
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south-facing slopes are cooler than lower lying areas, coarser textured
soils, and north-facing slopes. Scenes examined for June 21, 1978, and May 14,
1978, show the same relationships.

Perhaps the most significant relationship for soil geography is the
warmer temperatures that exist on north-facing slopes. Logically the
opposite situation would be expected since these slopes escape the direct
rays of the sun. It appears that the lack of direct sunlight results in
cooler temperatures during the day which in turn means less evapotrans-
poration. Thus, more moisture is available which holds heat better
than the drier crest and scuth-facing slopes.

No difference in soil mapping units in soil survey operations is
recognized on north-facing slopes from other aspect sites. One reason
is that prior to HCMM there was no means to measure this heat difference.
Yet the heat difference must be a significant factor in. vegetative growth.
Since most of western South Dakota is rangeland the difference in grass
production and stocking rate probably is the principal kind of land use
affected.

Elevation differences of as much as 1000 feet occur between the
northern part of the Prairie Coteau and the Red River-Minnesota River
Lowland. Elevation differences are somewhat lower than this (about
600-700 feet) between the northern part of the Prairie Coteau and the
James River Lowland. Separate soil series have been mapped on the
northern Prairie Coteau and the lowlands on either side due to soil
parent material differences (texture and mineralogy differences).

Although it was realized that temperature differences alsc occur
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among these areas there has been no method for showing this spatially
until the introduction of thermal imagery.

Soil texture differences exist between the cooler eastern side
nf the Prairie Coteau and the warmer western side. The eastern area {s
covered by older glacial materials ard has a mature landscape where
streams drain off excess water. These are the Kranzburg soils. The
western area is characterized by younger glacial deposits in an irregu-
lar immature landscape. Here precipitation tends to remain {n the
area since few streams exist and water drains to a nearby marsh or lake.
This is the Poinsett soil area. The HCMM image clearly shows the high
concentration of surface water present in the western /rairie Coteau
area. In fact the warmer temperatures of this area of coarser textured
soils may be due in part to the significant percentage of surface water

holding heat through the night over the entire area.
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ABSTRACT

Experimental and theoretical investigations were carried out relating to the
detection and mapping of near-surface groundwater by the use of remote-sensed
thermal emittance data (thermography). Soil temperature profiles, therma)l
emittance, sofl moisture, depth to groundwater table, and other pertinent data
were collected for test plots under fellow and crop cover conditions.

Data were collected simultaneously for two plots having similar surface
conditions except that one of the plots was irrigated to create a difference in
soi] moisture profile. Calculations of surface temperature differences as a
function of time for these soil moisture conditions were made utilizing a finite-
difference model. The functional form of the theoretical temperature
difference with time was shown to be very close to the experimental apparent
temperature difference for both crop cover and bare soil conditions. This
result strongly suggests that a technique can be developed by which the effects
of near-surface soil moisture can be separated from the *otal thermal emittance
data by subtracting the data component having this fun. onal form from total
thermal emittance. This component could then be used to calculate soil moisture
differences for a group of chosen si:es. If a soil moisture profile is measured
at one site, the soil moisture profile could be calculated for other sites.

A series of model calculations were carried out to simulate the effect of a
near-surface water table at one site and a similar site without such a water
table. These calculations show the effect of a water table is to give rise to
a temperature difference at the surface which is nearly constant through time over
a current cycle. The presence of a water table thus may be detected from a
component of thermal emittance difference which remains constant during the
diurnal cycle when compared to a reference site.

The model was tested utilizing widely spaced sites resolved by HCMM,
Theoretical surface temperature differences calculated using the model agreed
well with apparent temperature differences measured by HCMM,
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INTRODUCTION

Recent launchings of satellites with thermal infrared imaging sensors
together with those planned in the near future hold great promise for appli-
cation of thermal emittance data as a tool for resource management and development.
These earth resources satellites allow time-sequential monitoring of land surface
emittance over large areas of the earth at relatively low cost. They allow data
to be readily available on a routine basis for use by the resource specialist
in making management decisions.

The potential use of thermography for monitoring groundwater uses remote
sensing measurements of thermal emittance to estimate surface temperature. Any
factor which causes a variation in surface temperature may thus be measured by
thermography. Near-surface groundwater is such a factor. Its presence causes
large changes in the specific heat and thermal conductivity of the soil. Phase
transformations of water during evaporation or freezing also have large thermal
effects on the energy budget of land surface and thus affects the land surface
temperature.

Complications with this method arise because soil temperature and surface
emittance depend on a multitude of physical factors. Plant growth, aspect of
slope, water table, wind velocity and other variables alter soil temperatures
and thermal emittance in addition to variations associated with differing
water table depths. Thus isolation of emittance variations caused by the
presence of soil moisture alone is very difficult. Therefore, models
describing emittance variations associated with various physical features must
be developed to isolate their effects and to understand their interdependence.
This may allow one to compensate for their effect during data analysis or to
schedule the collection of data when their effect is small.

Another complication arises when the thermal infrared (TIR) image is obtained

from satellite-borne sensors. The image includes components of radiation
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emitted and reflected by the surface modified by absorption and emission from
the intervening atmosphere. To determine exact values of surface temperature,
corrections in the measured signal must be made which depend very heavily on
atmospheric conditions and thus change with time. Corrections must also be made
for surface emissivity and reflection which also change with surface conditions.
Thus considerable difficulty is {nvolved in converting a satellite image into

a surface temperature map. Temperature differences between two points on the
earth may be much easier to obtain with reasonable accuracy from TIR satellite
data than to obtain exact temperatures. For example, absorption by the
atmosphere will decrease the apparent temperature of two points but the

apparent temperature difference betwasen the two points will remain nearly
constant if the absorption is similar over both points. Also emissivity and
reflectivity differences can alsc be minimized by making the comparisons between
points which have the same plant cover such as two wheat fields.

The emphasis of the effort was on relating these surface temperature
differences to the variation in groundwater presence. Particular attention was
placed on the use of the variations in temperature differences during the
diurnal cycle to separate effects of groundwater tables in the top 50 cm of
soil from that at larger depths. A technique of this type would be particularly
applicable to satellites such as HCMM which allow more than one apparent
temperature measurement during a single diurnal cycle.

The technique envisioned for mapping groun..ater over large areas using data
collected by a sacellite such as HCMM would be as follows:

1. A reference site would be selected where groundwater would be inonitored

(water table and near-surface soil moisture) on a continuing basis.

2. The proposed model would be used to calculate the difference in near-

surface soil moisture and water table depths between this site and a
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second from the difference in apparent temperatures acquired by remote
sensors during a diumal cycle.
3. This procedure can then be repeated using any group of sites and thus
near-surface sotl moisture and water table maps may be constructed.
The general objective of this phase of the pruject was to deveiop and test

a mode! which could ce used as described in step 2 of the above procedure.
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BACKGROUND LITERATURE

The study was to develop a model useful for interpreting remote sensing data
for mapping of near-surface soil moisture and measurement of water table depth.
TIR images have been used to locate springs and wells (Myers and Moore, 1972)
by the use of precawn images. This together with a former study by Myers ‘and
Heilman (1969) showed that predawn images exhibited a higher surface temperature
for bare soil with higher moisture content in the top 50 cm. Myers and Moore
(1972) evaluated the use of airborne thermography for mapping shallow aquifers
using emittance patterns of predawn thermography. They obtained statistically
significant results for predicting the thickness of the saturated sands and
gravels for an August (maximum annual downward temperature gradient) predawn
flight over shallow aquifers in eastern South Dakota. In a further study,
Moore and Myers (1972) illustrated the thermal response to climatic variables
for diurnal and seasonal thermograp'.y. Land use, soil moisture, and other sources
of thermal differences were easily observed for daytime thermography with their
effects diminishing for predawn thermography. They concluded predawn August
data were the most useful for identifying shallow aguifers in South Dakota.

Several investigators ~.ve studied the relationship between thermal emittance
measured from aircraft altitudes and soil temperatures. Schmugge (1978) and
Reginato (1976) have shown agreement between such TIR temperatures and those
measured by thermocouples in contact with the soils. A study by Tunheim (1977)
found a positive correlation between aircraft TIR imagery and soil temperature
fields caused by near-surface water tables associated with saline seeps. Results
of this project showed the need for modifying the existing model to include
the effects of near-surface soil moisture.

The first evaluation of satellite thermography as an indicator of soil

moisture was performed by Moore, et al (1975). Analysis of SKYLAB data showed
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a positive correlation between soil moisture and thermal emittance. It was
concluded that thermal data from satellite altitudes had good potential for use
in monitoring soil moisture and for irrigation scheduling.

Quantitative estimates of soil moisture using thermal emittance data,
however, require a model relating the effects of subsurface soil moisture on
the surface temperature. Nu such model has yet been developed, although
several similar types of models exist. A model proposed by Kahle, et al (1975)
relates the change in land surface temperature during the diurnal cycle to the
thermal inertia of subsurface geological materials. This model, however, does
not allow for effects of groundwater, soil moisture , evapoiranspiration, or crop
cover.

Two other models have been developed by Meyer (1972) for relating surface
thermal emittance to the presence of shallow aquifers. These models use the
assumption that a shallow aquifer would cause the soil temperature at a 50-cm depth
to vary 1°C to 3°C from that of a non-aquifer region. The ability of this
subsurface thermal anomaly to produce a corresponding surface thermal anomaly was
investigated by use of these models. The first medel simulated the development
of a surface thermal anomaly during a single night and the second simulated the
behavior of the thermal anomaly during several successive days.

Each model considered heat transfer in two identical soil Tayers of 50-cm
thickness. Since daily variations in the temperature are smell at 50 cm
(Cartwright, 1968; Carson, 1961) the lower boundary temperature of each soil
layer was held constant. The subsurface thermal anomaly was presented by
letting these fixed temperatures differ by an amount AT.

The first model assumed a constant heat flux due to radiation. Using a
finite integral transform, the heat transfer problem was analytically solved.
Results predicted that a surface temperature difference ranging from 20% to 40%

of that assumed at a 50-cm depth would develop in 9 hours. The rate of development
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depended only on the thermal diffusivity of the 50-cm soil profile. Values
of diffusivity for the calculations were chosen according to Sutton (1953).
A result of this calculation was the prediction that the development of a
surface thermal anomaly does not depend on tne magnitude of the.heat flux
radiated from the surface.

The second model assumed a surface heat flux approximated by a rectified
sine wave and a terrestrial radiation term as suggested by Smith (1966). No
analytic solution was possible in this case and thus a finite-difference
technique was used in a numerical solution by computer. Calculated temperature
profiles showed good qualitative agreement with data taken by Carson (1961).

One significant result was that a maximum value for the thermal anomaly
would occur at 0700 hours. This result has recently received support
experimentally for the case of ground water associated with saline seeps
Aaron, et al (1976).

The finite-differerice model by Meyer is the one which was modified and
applied to this project.
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THEORETICAL MODCL
The finite difference heat flow model devzioped by Meyer (1972) uses

homogeneous soil profiles, each 50 cm in thickness. The 50-cm depth was chosen
since daily variations in soil temneratuie are small at this depth (Cartwright,
1968; Carson, 1961). The 50-cm soil profile is divided into 50 one-cm layers with
50 equally spaced reference nodes as shown in Figure 1. The m reference points are
usually referred to a. nodal points. Notice that nodal point 1 coincides with the
upper surface of the slab at x = 0. The point m coincides with the other boundary
at x = 50 cm. The heat flux into the surface x = 0 has been denoted qg while the

heat flux out of the lower surface at x = L is denoted as q -

r.———-— — e twms e e

<.
<«
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Bt Tt
T T T T en+l ff

Figure 1. Assignment of Nodal Points and Heat Flux Terms for the Finite Difference
Model.
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A rectified sine wave 1s used to approximate heat flux q (Smith, 1969).
Since it is difficult to measure, it was treated as a parameter composed of a
sinusoidal solar term and a blackbody radiation term. Its functional form was
taken as:

g = Msin [* - R (1)
where M, the amplitude of the solar term, is the maximum solar radiation during
the daylight hours. The variable t is the time of day measured from sunrise and
L is the number of hours of daylight. The second term R is the terrestrial
radiation term as suggested by Smith (1969). The radiation term results in a
negative surface heat flux during the night as has been observed experimentally
(Lettau and Davidson, 1357). The terrestrial radiation equation used was,

R =ofTh - (T4, (2)
where R is the net outgoing radiation, o is the Stefan-Boltzmann constant, T
is the surface temperature in degrees Kelvin, and T' is the effective atmospheric
temperature in degrees Kelvin (Fleagle, 1950).

Consider a volume of material surrounding node n (n = 2, 3,°'°, m-1) as
shown in Figure 2. The volume of the material rurrounding node n is Aax where A
is a unit surface area and Ax is the distance between nodal points. The amount
of heat transferred from node n-1 to node n is denoted by 9.1 n and the amount
of heat transferred from node n to node n+l is denoted by qn,n + 1. The heat

stored within the vclume is given by éfn'

fe A -

| l

LN\t 1

. ] $
n AX

i“_.._é_..__ ¥y
9n,ntl

Figure 2. Energy Balance for Node n.



ror one dimensional heat transfer, the law of conservation of energy
applied to node n results in the equation
I-1,n = In,ne1 * Eosn (3)
The rate at which heat is transferred between nodal points is written in finite

difference form as

n n-1
q _ - - kA —/\__
n-1,n Ax (4)
T - T
- - n+l n
U a+l kA I (5)

where T __, is the temperature of node n-1, T 1is the temperature of node n,
Tn+1' is the temperature of node n+l, and k is the thermal conductivity of the
material between the nodal points. If the condu£t1v1ty of the volume element
surrounding each nodal point is different, the conductivity between nodal points

may be written as the average of the volume elements. Thus for equation (5)

k = kﬂ'l+kn

(6)
2
Equation (4) may then be written as
k + k T, - T
n=1 n n n-1
Geln T O ) A T (7)
Similarly, equation (5) becomes
k_ + k T - T
- - n n+l n+l n
90, n+1 ( > ) A A . (8)

The energy storage term expresses the rate at which the temperature of the

volume changes. This term may be written in finite difference form as

T'-T

: n
Esn = (oc)nAAx T—E (9)

where At is the time increment, Tn is the temperature of node n at time t and
Tn' is the temperature of node n at time t+at.
Substituting equations (7), (8), and (9) into equation (3) and rearranging

terms yields
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T Ty e L [ (k. +k
T - ‘
Ac 2(pc)n(Ax)2 n-1 n) n-1 (kn-l t2 kn + kn+1) Tn
(10)
+ (k +
( n kn+1) Tn+1 I
Solving for the temperature at time t+at results in the equation
(k. .+ k )At (k + 2k + k
' n-i n LN 2 YAt
T " Too @2 Tap Plle N B g
2(Oc)n(£x)' n
. (ke + k. )At . (1)
2(p)_(8x)* n+1
Now consider the transfer of heat at the surface x = 0. Figure 3 shows the
volume element for node 1.
|< A N
L
l \qS '
el | Y _
e A
L5
) T
¢/ql,2
Figure 3. Energy Balance for Node 1.
The energy balance can be written as
9 = 9y,0 * By - (12)

The rate of heat transfer from node 1 to node 2 is

kl + k: 12
ql'\‘-(— > ) A .

y e A%

- Tl
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Since node 1 is at the surface, the volume of material surrounding node 1 is
AX  p

#

The energy storage term is then

T, - T (14)
At '

: AX
Egp = (PehyjA 5

Substituting equations (12) and (13) into equation (14) and rearranging vields
T,' =T k, + k

1
-t L2 o (15)
At A(se) Ox (pc), (ax)©
Solving for the new temperatuve T1' gives
ZqSAt (k1+k2)Ac (k1+k,,)«.’»t
oo Al Ax T (1 - 00y, (Bx7) JT o+ (he); (4)2 Ty (16)

Finally, consider ti.> node at the lower boundary x = L. Figure 4 shows the volume

element for node m.

1< A N

| |

‘ gqm-l,n ‘ \L

o= = = N~ - - L - -
Lx

(ésm ~onm I_ 2

Figure 4. Energy Balance for Node m.

The energy balance equation for node m is

qm—l,m T at Esm' (17)

The rate of heat transfer from node m-1 to node m is

0= (18)
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Again since the volume element surrounding node m is only %5 A, the energy

storage term can be written as

Tm ‘- Tm

] A Y
Eop = 0O AT —— - (19)

Substituting equations (17) and (18) into equation (19) and rearranging results

in the equation

T - T _ ooy + Ky ; e 2 L___
At (pc)m(Ax)l m=-1 m A(oc)mﬁx ’ (20)
Solving for the new temperature Tm' gives
T . (km-l + km)At Tm-l X (km-l + km)At
m ~ pc)_(8x)2 - Go o 1T,
21
ZqLAt (21)

- A
(pc)mAun

The finite difference equations have now been derived. These are equations
(11), (16), and (21). To solve a heat transfer problem, the initial temperature
of each of the m nodal points must be specified. This is identical to the
specification of an initial condition for an analytically solved problem, To
calculate the new temperature at time At, the heat flux terms qg and q must be
specified. Equations (16) and (21) can be used to determirc the naw houndary
temperatures. The new temperature of each of the interior nodal points can be
determined by solving equations (11) for each node. The resultant temperatures
obtained for the m nodal points can be used to cilculate the temperature at time
2at. The interaticn process is continuad to obtain the temperature at any desired
future time.

Choice of values for Ax and At depends on the thermal properties of the
soil considered and the thickness of the s.il layer. For the 50-cm layer
considered and the thermal properties of soil used, the values At = 60 seconds

and ax = 1 cm were found to be sufficient.
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The model was modified during this study by considering two soil profiles
having different soil moistures but which were identical in other respects. When
the percent soil moisture (evw) and percent soil solids (evx) are known, the
percent air (aeration porosity Ea) can be found. With these values. the heat

capacity and conductivity can be calculated in the following manner.

C = ov,C, *+ 8vCo + EC,, (22)
where Cw. CS and Ca are the heat capacities of water, soil and air,
respectively.
The values used for heat capacities are:
c, = 1.00 cal/em’/°C
C, = 0.48 cal/cm’/°C
C, = 0.00030 cal/cm’/°C
Since Ca is a small fart of the heat capacity, it is neglected in model
calculations. The original model was only applicable to a homogeneous soil layer
of 50-cm, thus it was modified so each 1-cm soil layer could have a different
moisture value. I[f the moisture of the soil profile varies with depth, variations
“n heat capacities and thermal conductivities occur. To adapt to these non-
homogeneous conditions the model was modified to accept experimental soil moisture
values at depths of 1, 8, 25, and 42 cm. Yalues are then calculated by the model
by interpolation and extrapolation over the rest of the 50-cm profile. Thermal
conductivity for each soil volume is ca’culated by the method developed by
DeVries (1963). This method generates an apparent thermal conductivity which
approximates heat transfer due to mass movement of water, phase changes of water,
convection, and conduction.

This equation is given by:

\ e XXM, (23)

Tk .
X,'
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where ) {s the apparent. thermal conductivity of a granular material; iy is the
thermal conductivity of the soil's individual components; X4 is the volume
fraction occupied by each soil fraction; and Ky is the ratio of the average
temperature gradient in the granules across the medium. The value of xcan be
calculated from the following question:

M -1
<y = /32y (1 + (X;‘ 1)g,). (24)

The 9, value is found using an unsaturated soil using water as a continuous medium:

E
g, * 0.333 - 31 (0.333-0.035) (25)

wherc I s the soil porosity.
The conductivities of the various soil constituents, ), are given these
values:
Ag = conductivity of soil = 0.00525 cal/cm sec °C
A, ®* conductivity of water = 0.00142 cal/cm sec °C

W
A T conductivity of air = 0,0000615 + 0.00196 X, cal/cm sec °C

The finite-difference model (Figure 5) has the following inputs: (1) soil
heat flux, (2) soil moisture profile, (3) dry soil conductivity, (4) physical
properties of the soil which include (a) bulk density, o, (b) amount of soil by
volume, (5) initial temperature profile and (6) effective air temperature.

The effect of water table is entered into the model as a difference in soil
temperature at the 50-cm depth. For example, a water table present at one site
causes its soil temperature at a 50-cm depth to be cooler by a constant amount
in summer than an identical site with no near-surface water.

Outputs from the model calculations are soil temperature profiles for the two

sites and a surface temperature difference as a function of timz.
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Figure 5. Schematic representation of the finite-difference model in its
present format.
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DATA COLLECTION

Data used in this phase of the project were of two types. The first type
consisted of intensive data collected on small soil plots over several diurnal
cycles. The second was a series of data collections on a group of sites which
were separated so as to allow resolution by HCMM sensors. Only the first type

of data collection is described here.

Sites chosen for this study were located at the South Dakota State University
Agricultural Engineering Farm, which is near Brookings, South Dakota. Since soils
vary considerably in this area, soil texture by hydrometer method, bulk density
and porosity were analyzed throughout the profile depth of 50 c¢cm. Results are
shown in Table 1 and in Figures 6, 7, and 8. The percent of volume occupied by
soil particles for a dry soil condition is shown in Figure 6. Since the percent
sojl particles increases with depth, the porosity decreases with depth. Figure 7
shows the variation in soil components with depth. The bulk density increases with

depth as shown in Figure 8.

Table 1. Physical Properties of Soil Used.

Particle Size Bulk
Sample Depth Sand Silt Clay Porosity (Ee) .oty
(cm) (%) (%) (%) (g/cm3)
0.0 - 7.6 27.7 61.5 10.9 .49 1.36
15.2 - 22.9 25.0 65.5 9.5 .47 1.40
30.5 - 38.1 18.6 74.3 7.1 .41 1.47
45.7 - 53.3 15.6 78.4 6.0 .39 1.61
2

Each data collection site was divided into two plots, each approximately 10m®,
To prevent water movement from one plot to the other a trench was excavated to a
depth of 100 cm and a plastic barrier buried. This barrier allowed one plot to

remain dry while the other was irrigated to whatever soil moisture desired.



oy vorus

ST,

Prvei N

ORIGifsAL PASE 19 161

OF POOR QUALITY

Figure 6.

4 P + + 4 — - pom e b e
4 — + + -t t

1o S o H N
PEPTH (O

Percent soil solid by volume of soil profile as a function of depth.
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To measure soil temperatures, thermocouples were implanted in each plot at
depths of 1, 5, 10, 25, 50, and 100 cm. Thermal emittance (apparent surface
temperature) was measurad utilizing a Barnes PRT-5 mounted on an appartus as shown
in Figure 9 which scanned each plot every 1¢ minutes during data collection. Soil
and air temperatures together with relative n.. dity were collected every hour
while solar radiation and net radiation data were collected every fifteen minutes.

Soil moisture data were acquired by the gravimetric method with collection of
soi. samples an hour before solar noon (Jackson et al., 1976) to best represent the
average moisture content. The gravimetric method of soil mdisture gives a value of
soil moisture by weight, O

. mass water
m mass dry soil (26)

In the mndel soil moisture by volume is required. Thus em is multiplied by bulk

9

density to give the model input or,

8 = pb (27)

\Y) m
where 8, is volumetric soil moisture.
Data were collected for several diurnal cycles for both barley and rye crop
covers together with bare soil conditions after these canopies were removed.
Figure 10 shows the barley crop canopy for which detailed data are used in this

report. Data for the rye crop were qualitatively similar and will not be shown

in detail.
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Figure 9. Photograph showing the scanning apparatus used to move the
Barnes PRT-5 across the experimertal plots.

Figure 10. Barley crop canopy present during the data collection
on August 5 and 6, 1978.
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RESULTS

Data were collected for bare surface conditions for a 52-hour period starting
at 1000 hours, August 7, 1978. Two adjacent plots were prepared as previously
described so that one plot would have a higher soil moisture profile than the other.
Gravimetric sofl moisture measurements for these plots were made as a function of
depth. A smoothing of the curve of field measurements was conducted using a cubic
spline as described by Kimball (1976).

Apparent surface temperatures of these plots are shown in Figures 11 and 12
for the 52-hour period. The measurements were made utilizing the Barnes-PRT 5
mounted on the scanning apparatus shown in Figure 9. The points shown are the field
values while the continuous curve resulted from smoothing data by use of a cubic
spline. Note the amplitude of the temperature variation during the diurnal cycle is
less for the higher moisture plot. This is consistent with the results reported
previously by Idso et al (1975).

The apparent surface temperature difference between the two plots is shown as
a function of time in Figure 13. Values for this plot are temperature differences
calculated from the values of the cubic spline curves of Figures 11 and 12. A
surprising feature is its close similarity in functional form to the individual
apparent temperature curves from which it was derived. This similarity is
particularly significant since the diurnal amplitude of the surface temperature
has previously been related to near-surface soil moisture (Idso et. al. 1975;

Idso and Ehler, 1976; Schmugge et. al., 1978). Since the temperature difference
curve shows the same functional form as curves of surface temperatures, the
amplitude of the temperature difference should also be related to soil moisture
differences. This type of technique for remotely measuring soil moistures would
have the advantage of bypassing the calibration problems inherent in thermal

emittance measurements.
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Apparent temperature for bare soil surface of the dryland plot soil
profile beginning 1000 hours, August 7, 1978 and continuing for 52
hours thereafter.

+ + + R e b s B el i Jhe e B s S e
S 12 1o 26 24 2 30 36 4t ol S 2
[

L rHoeTT )

Apparent temperature for bare soil surface of the irrigated soil profile

beginning 1000 hours, August 7, 1978 and continuing for 52 hours
thereafter.
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Figure 13. Apparent temperature difference between the dry and irrigated plots
for bare s2i1. Data is shown for a 52-hour period starting at
1000 hours, August 7, 1978.
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Results of theoretical model calculations for August 8, 1978, are shown in

Figure 14. Inputs to the calculation are the bulk densities of the soil, the
measured net radiation, and percent soil moisture by volume (See Appendix A).
Comparing Figure 14 with the experimental plot of Figure 13 shows the functional
dependence of the theoretica’ curve to agree very well with the experimental
curve, particularly during the daylight hours. The magnitude of the calculated
daylight temperature difference is smaller with a maximum calculated temperature
difference of about 7° C compared tn a measured difference of about 10° C. A
possible explanation of this difference is the additional cooling of the
irrigated plot due to water evaporation from the surface. Increasing the ampiitude
for net radiation allows the model to simulate the daytime surface temperature
differences very accurately. However, the calculated soil temperature profiles
become much warmer than those measured.

Experimental soil temperatures are compared in Figures 15-18 with theoretical
temperature profiles calculated by the model using measured inputs. The functional
form of the calculated temperature profiles are very similar to the measured
profiles. The theoretical values, however, tend to be warmer during the day and
cooler during the night. This result also implies that evaporation from the surface
cannot be ignored in model calcul:tions and must be accounted for with a parameter
which effectively reduces the net radiation term to obtain the soil heat flux.

Data were collected for the barley canopy shown in Figure 10 feor these same
two plots prior to the bare soil data previously discussed. These plots were
prepared in the same general manner as the bare plots and the same types of data
were collected. Figures 19 and 20 show the apparent surface temperatures of the
two plots for a 32-hour period beginning at 1100 hours, August 5, 1978. Figure 21
shows the apparent surface temperature difference obtained by subcontracting cor-

responding apparent temperatures from the cubic spline graphs of Figures 19 and 20.
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Figure 15. Soil tenperature profiles calculated by the theoretical model for
the dry plot (A) and the irrigated plot (8) for August 7, 1973 at
0400 hours. Experimental temperatures are represented by (++).
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Figure 16. Soil temperature profiles calculated by the theoretical model for
the dry plot (A) and the irrigated plot (B) for August 7, 1978 at
0800 hours. Experimental temperatures are represented by (++).
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Figure 18.

Soil temperature profiles calculated by the theoretical model for
the dry plot (A) and the irrigated plot (B) for August 7, 1978 at
1600 hours. Experimental temperatures are represented by (++).
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Figure 19. Apparent temperature measured over the barley canopy of the dryland
plot. Data collection begins at 1100 hours, August 5, 1978 and
continues for 32 hours thereafter.
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Figure 20. Apparent temperature measured over the barley canopy of the
irrigated plot. Data ccllection begins at 1100 hours, August 5,
1978, and continues for 32 hours thereafter.
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starting at 1100 hours August 5, 1978.
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Comparison of Figures 19 and 20 with Figures 11 and 12 shows a drastic effect
of the plant canopy on apparent surface temperatures. Both the functional
dependence and the actual apparent temperature values are quite different for the
barley canopy. However, the functional dependence for the apparent temperature
differences as shown in Figures 13 and 21 are considerably more alike in functional
form than the apparent surface temperatures. During the daylight hours the barley
plots exhibit approximately one half the temperature difference of the bare plots
but the only difference in functicnal form is a slightly slower rate of decrease
in temperature difference late in the afternoon. The crop canopy, however,
essentially eliminates the observed temperature difference for the nighttime hours.
These results suggest that apparent temperature differences during the middle of
the day may be the most likely indicator of soil moisture differences in the case
of a thick plant canopy.

A theoretical calculation of the surface temperature difference for the barley
plots is shown in Figure 22 tor August 5, 1978. Again the calculated temperature
difference is smaller than the measured apparent temperature difference; but the
ratio of the two is approximately the same as for the wet/dry bare soil discus>2d
previously. Since no apparent temperature difference is observed for the barley
canopy during the night, the model obviously is not valid in its present form for
that time period.

Several calculations were carried out to determine the dependence of the
surface temperature difference on su~face soil heat flux. In these calculations
two plots were considered with soil properties identical to the experimental plots
used for this study. Soil moisture by volume was assumed to be 10% in one plct and
20% in the second. Soil heat flux values were chosen to span a range which would
include most experimental situations for a clear day. The maximum temperature
difference predicted during the day was plotted as a function of the marimum soil

heat flux. Results shown in Figure 23 display the resulting relationship. If
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Calculated surface temperature difference between two plots as a
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other has a constant profile of 20%.
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further theoretical and experimental results show this relationship to be valid,
di€7erences in daily solar radiation which exist during the satellite overpass
could be easily accounted for during analysis of data.

Calculations were also carried out to determine the relationship which would
be expected to exist between moisture difference and maximum temperature difference
observed during the day. Values for soil heat flux and physical properties of the
soil were again chosen to correspond to the experimental plots of this study. The
reference plot was chosen to have a s2i1 moisture of 10% by volume and the soil
moisture of the other was varied to a maximum of 21%. Results shown in Figure 24
display an approximately parabolic relationship. If this proves true in further
theoretical and experimental investigations, the development of a paractical
technique for utilizing apparent surface temperature differences to measure soil
moisture will be greatly simpli fied.

A series of calculations were carried out to determine the feasibility of
using dirunal surface temperature fluctuations (thermal inertia) as a measure of
presence of water tables below the 50-cm profile. Two identical soil profiles were
considered with the temperature at a 50-cm depth for one of these profiles cooler
by an amount AT due to the presence of groundwater. Both profiles in these
calculations were assumed to have the same soil heat flux at the st-face.

The amplitudes of the surface temperature variations for a diurnal cycle were
the same for both profiles. The surface _emperat - the profile with the cooler
50-cm temperature, however. remained cooler throughout the diurnal cy~le by a
constant amount. This constant surface temperature difference varied between 20%
and 50% of the 590-cm difference of AT depending on soil parameters.

These calculations suggest the variation in surface temperature differences
during a diurnal cycle does not depend on the temperature at a 50-cm depth, but
rather on soil parameters within the 50-cm profile and the soil heat flux. Thus

thermal inertia would seem an unlikely candidate for determining presence of
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subsurface water tables unless the presence of these water tables afiect the soil
moisture in the 50-cm profile. However, the presence of such a subsurrace water
table will give rise to a constant temperature difference at the surface. In order
to separate this factor from other factors which would give rise to time dependent
temperature differences one will need a minimum of two observations of apparent
surface temperature differences during a diurnal cycle which a satellite such as
HCMM makes available. Also data from several successive days would be helpful in
removing other factors from the data.

Calculations were made for the series of sites where ground truth was
collected at the time of HCMM overpass. For these calculations average soil
parameters for the area were used as medel inputs together with experimentally
measured soil moistures and 50-cm soil temperatures. Soil heat flux was adjusted
in the model so that soil temperatures calculated agreed approximately with
experimental values. This value was then used for all calculations for the
respective site. To account for differences in crop cover, the value of soil heat
flux was adjusted for one of the two sites.

Results of the calculations are shown in Table II. Calculated surface
temperature differences agree well with the apparent surface temperature differences
from HCMM. To use the model as a method ¢f estimating near-surface soil moisture
and depth to water tables, the differences in surface soil heat flux was used as
a parameter in these calculations.

Therefore, differences in soil heat flux must be measured, predicted by a model,
or empirically estimated using readily available data. Since percent cover,
differences, temperature difference at 50-cm, and apparent surface temperature
difference data were available for this investigation, & step-wise multiple
regression (28) was conducted to determine their use in predicting surface heat flux

differ=nces using data presented in Table II.
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y = (7.64 x; +1.56 x, - 1.0 x, - 5.2) (10°) (28)
where y is soil heat flux difference, x is percent difference of canopy cover,
Xo is percent soil moisture di fference, and X3 is 50-ci. soil temperature
difference. The resulting equation when entering variables significant at the
0.05 level follows with a multiple step-wise correlation coefficient as 0.835 = R.
Therefore, up to 70% of the variation could be accounted for using measure-
ments or model predication which could be available during model implementation.
Percent cover could be estimated with Landsat, apparent surface temperature
difference between two sites estimated with HCMM or other satellites, and the 50-cm
temperature difference estimated with a model prediction. Soil moisture and heat
flux differences may possibly be separated by use cf multiple data collections of
surface apparent temperature differences during the diurnal cycle. The technique

shows promise and should be explored further.
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PROJECT CONCLUSIONS

Conclusions of this study are:

Soils with different soil moisture profiles differ in surface temperature in
a well-defined functional manner during the diurnal cycle. This functional
dependence is similar to the diurnal surface temperature variations for each
plot.

A thick crop canopy destroys the water-related apparent surface temperature
di fference during the nighttime hours.

The functional form of the apparent surface temperature difference measured in
the field diurnally which was associated with a soil moisture difference is
changed less by the presence of a crop canopy than the functional form of the
individual surface temperatures.

The theoretical model used in this study predicts a functional form for the
apparent surface temperature difference very similar to that observed for the
daylight hours. However, the magnitudes of the theoretical temperature
differences are smaller than the experimental values for both a bare soil and
a crop canopy. The ratio of calculated temperature difference to that
measured is approximately the same in both cases. Multiple pass satellite
date would serve a better purpose if acquired solely during daylight hours
rather than in an orbit similar to HCMM where a night pass is included.

Since the observed nighttime surface temperature differences vary considerably
in functional form for the bare soil situation and are zero for dense crop
canopies during the night, nighttime emittance data do not seem promising for
use in measuring soil moisture.

Model calculations predict a linear relationship between soil heat flux

and the surface temperature difference arising from soil moisture variations.
Model calculations precict a relationship between surface temperature

difference and soil moisture difference. Only limited field studies were
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conducted during this effort and further field verification should be
pursued.

Model calculations indicate that day-minus night apparent cemperatures are
not useful in predicting depth to the water table. However, either day or
night temperature differences between two sites are related to differences
in water table depths. Field data showed that where dense crop canopies
were present, the night data differences are not observed.

Model calculations of surface temperature differences agree well with
observed apparent temperature differences from HCMM when soil heat flux is
used as a parameter.

Initial observations are that a significant portion of the variance of soil
heat flux can be accounted for with remote sensing observations and model
estimates. Further investigation into the approach is warranted.

The overall results of this study reveal promise for the development of a
method to monitor soil moisture by satellite. Using noints on the curve
comparing apparent surface temperature differences, one could calculate
soil moisture differences for a group of chosen sites. If soil moisture
is then measured at one site, soil moisture may be calculated for the

other site.
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SINITE-DIVFERENCE HEAT FLOW SIMULATION MODLI,

The following program listing is written in o language uscd by

Hewlett-Packard in the 9835A mini-computer furniched by the Water

Resources Institute at South Cakota State University

cl*)
D(*)
E(*]
F(*)
H*]
Al*)
B(*)
o]

G[1]

H{1]
H{2]
1{0:50)
J[0:50]
k(0]
K(1]
k(2]
M(1)
M2]

0(*]

Conductivity Fro“ile A
Conductivity Profile B

Heat Cu, city Profile A

Heat Capacity Profile B

Time of Day (Hour)

Temperature of Profile A
Temperature of Profile B

Term usad by DeVries in c2lculation of corductivity
Heat capacity of water

Heat capacity of soil

Initial starting hour

Ending hour

Thermal inertia for site A
Thermal inertia for site B
Conductivity of air

Conductivity of watcr
Conductivity of soil

Initial starting minute

Minute when calculation is to end

So1l moisture for site A

186
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P(*]) Soil moisture for site B

Ql*) Thermal diffusivity for site A

R(*) Allocation to store old temperature for site A
S(*] Allocagion to store old temperature for site B
T(*) Thermal diffusivity for site B

u{o-sn] Aeration porosity for site A

V[{C:50] Aeration porosity for site B

wi1] Effective air temperrture

wi2] Amount of soil by volume at 1 cm depth

wi3) Amount of soil by volume at 8 cm depth

wid4] Amount of soil by volume at 24 cm depth

wis) Amount of soil by volume at 42 cm depth

X[1] Distance between nodal points

Yit] Ending day

2{1,3,K] Real data

A Soil heat flux for site A

B Soil heat flux for site B

C Time from sunrise to solar noon

D,E,F,G Soil btulk density at 1, 8, 24 and 42 centimeters
1 Countor

J Counter

K Ccunter

L Day Length

Mo Amplitude of soil heat flux for site A

N Number of equally snaced nodal points

P Time Letween printouts

Q Amplitude of soil heat flux for sice O
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R Dureny vacriable
T Tire jaterval between calculition in feconds
X Durnty variable
yA Real data file
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PROGRAM LISTING (liPL)

Operational Procedure

0: 705+r0;39¢t0 119
*10302

“

Subroutine for Sojl He~t Flux

1t "QHEAT"::4{1)/60+r21

2t L(1)4r21ler22

3s r22-C~r3 y
4 (W[1)+4273.1.5)1/100+c24

S: (AN[0])+4273.13)/100+125

6: (D(0)+273.15)/100+r26

7: .000136%c24% 4227

8: =(.000133%r25%4-r27)erll
91 =(.000136%c26"4-c27)~r12
10: {f r23<¢=J;gto 15

1l: {f r23>sL;gto 15

12: rad

13: Y*sin(r23%u/L) ¢cllerll
1é: Otnin(c234n/L)+rl2erl2
15t rllei;rlldeBiret

"17415

“m

Subroutine for Construction of Profile Plot

16: "Plots®:

17: deg;0en

13: s5el 0,10,0,7

19: f«xd 0

20: ¢312z 1.25,1,1,0

2l: plt .5,6.5,1:1bl "SOIL TEMP FOR SITE A"
223 plt 2.7,6.0,1;31b) "UOQUR "

23: olt 4.7,6.3,1

243 L1f H{L)IK10sstr(it{1]))*ES;1h] "0"3colt -1,0;1bl ES§,"00"; jmo 2
25: cnlt -1,0;5tc(H{1))+R3;1h1 RS, 00"

26: plt 5.5,6.5,1;1b1 "SO°L TRIP FOR SITE B"
27: plt 1,1,1 :

28: plt 4,1,2

29: plt 4,6,2

30: plt 1,6,2

31: plt l,1,2

32: pen

33: ¢siz 1,,}1,0 ¢
34: for 1<% to -50 by =5

3, 1€ I<-95plt .4,6+1*.1,1:1b) I;3mp 2

36: nlt .55,6+1*,1,1;1bl I

37: plt .95,5+1%,1,1;:1bl "=-";next I

38: esiz 1.25,1,1,%)

J9: olt .2,2.6,1;1hl "DEPTH (CH)"

49: ¢gciz 1,1,1,9

41: for I=]10 Lo 50 by 5

43: plt ,25+41%.075,1,1;1b1 "|"snuxt

44: csiz 1.25,1,1,0

45: plt 2,.5,1;1L1 "Trar (C)* 3
46: if O=R;ofs 5,0;10«R:gqto 27 ) ) ‘3;
47: ofs ~-5,0;rat

®31294
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Subroutine for Plot of Theoreticanl Profile A

481 "plot\":

49: plt . 25+A[1)*.075,5¢L[1])*.)
50. if I1=50;v0en

5l: ret

213

Subroutine for Plot of Experimental Profile A

%23 "realA":

%3: colt ~-.33,-.25

S4: rlt ,25+2(J,:0[21/2,1)1%*.075,6=-1{J)*.1,1;1lb]l ®e¢"
55: ret

€007V

Subroutine for Plot of Theoretical Profile B

%6: "nlotn":

§7: pilt S5.25+BII}*,375,06¢L[1])*.)
58: {f I=S0jven

5%: ret

¥16074

Subroutine for Plot of Experimental Profile B

60: "i1eals":

61: colt .33,-.25 C
62: plt 5. 253¢2(J,1[1)1/2,2}*.075,6-1(J)1*.1,1;1bl "*°"
63: et .
*10725
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Subroutine for Construction of Temserature Differcnce Plots

64a: "Piff nlot“:

65: dew; 0N

66: secl 0,10,0,°

67: ecsiz 1.25,1,1,270

68: plt 4.5,6.2.1:1!)1 "SURFACE TCHPERATURE DIFFERRICE" *
69%: olt 9.5,6,131b1l "5 C TSHUPERNTURE OIFPERONCEY

70: fxd 0
71: plt 1,1,
123 Dlt ‘pll
73: plt 4,6,
?4: volt 1,0,
75: plt 1,1,
73: pen

77: ¢siz 1,1,1, 270

78t tor I-O to 24 by ¢4

79’ it I<10’,°1t 07(502'!'021.1’1b1 !’1“\0 2

?,0! nlt 07'6025"!.-21'1’1b1 i

8l: plt .9,6-1*.21,1;1bl "|";next 1

82: ¢8iz 1.25,1,1,270

83: plt .5,3.75,111b1 “HOUR"

84: e¢siz 1,1,1,270

35: for Is-5 to 10 by 2

86. i{f 1<9;0pit 2,125+1+,1875,6.5,131bl I,” «";9mp 2
87: plt 2. 12501'.1875 6.6, l:lbl l,“ -

88: next I

89: c¢siz 1.2%, “,1 0

90: plt 2.2,6.75, 31bl "TEMP (C)"

91: line 1,2

9e: for I‘O to 24301t 2,125,6~1*.21;next I:ven
93: fxd 2

94: line

95: if Rsl;0fs 5,031 ‘Rjgto 70

961 ofs ~5,0;ret

$2645¢

[ SRS NS RN o

Subroutine for Plot of Surface Temperature Difference

97: "nlot ":

98: line

99: plt 2.125+4U[(1]1*,1875,6=-0(1]*.21
100: {f I=72;men

101: rot

*17396)

Subroutine for Plot uf 5 cm Temperature Differecnce

102: "plotl":

103: line

104: nlt 7.125¢V(1]1*.1375,6-011)*.21
105: if 1=7Z;nen

106: tr:

*t580;
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103:
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Subroutine for Conductivities in Profile A
“CO'IDU. A"

-313’U(11/(1-N[X1)‘(.333-.035)*0[0)
«0090615+.02135*0(1)+K[0)

110 (2724 (4 (2)/%00)-1)*3(0]) 3/ (14 (R [2) /K11 -1)8(2=245(0)))) /e
1Ivs (2/(Le(iR{U)/R{L)=0)2C{O)) V/(Le(R[u)/R{2}=1)*(1=2°G(0])))/3+s2
112 ret
*31043

Subroutine for Conductivities in Profile B
113: "COMNDUC n*:
1143 .333=-V(1)/(1=37(X})*(,333-,035)+G(0]
115: .0000515+,001935*P(I])«K (0]
116: (2/(2+(K(3)/K(Ll}=-1)*3 {0}V 21 /(14 (K[ /%{L1)~- (1-2*°5101))) /3«2
117 (P/(1+(K{0) /K[1)=2)*G 1G] )41/ (L+(K([O)}/K[L1])~ (1-2*G{0})))/3~r2
110;: ret
*13617

119: dim A{0:50),7(0:501,C(0:50),

126: dim X(1}, J[D 10;\,d151,35(4]

121: dim *1{0:4),1(0:21,K([0:2},G(0:2),L(0:50),Y([7:1),R(0:50),S{0:53},1][w
122: aim 205,12,2),%0°0),1(0:53),J{0:50),91(0: :Ol,‘IO:SOD

Dimension Statements

*)0727

Entering of Calculation Parameters

124: en t ‘r al 8aLa file".u.ldf Z,Z('l
*32553 .

125:
125
127:
129
129:
130:

Temperature Data Jtorage
1ao1(1)35«0(2);10«003)525«4(4):50-(5)
~1+L[1)

for 132 to S);L[I-1l]=leL{I};next I
DeJeli{d]eMld])er10

B{L1*6a+151)«:1{3)

lerll

*27980

1

Entering of So0il Temperature Prefiles
ent AfI),ALLT ALS),ALL0),AL25),A(50),010),0()),B(5),B(10],3(2

*5324

D{0:50],E([0:50], F(O:SO] 0l0:105}),p(n:50)
:100])

51.01(50]
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Interpolation of Soil Temperatures

132: for I=2 to 43 (A[(S)=A[1]1)/74*(I=1)+Al1])-A(1]

133: (B(S)=2{1])/4¢(1=1)+0(L)<D{Ll])snext I

134: for I=5 to 3 (N[LO)~-AI53))/5* (1-5)+A[S)eA(T)

135: (D{1O}-B{5))/5%(1=1)+3(5])«3(1);next I

136: for I=1l) to 245 (A[251=A(10]) /L5 (1=0)¢A(10)A[I]
1)7: (B(25)1-08(10)3 /15 (1-10)+3(10}~n(I);:next I

138: for 1=26 to 49;(’.(50)=A[25])/25* (1=-29}+A(25])A(1)
139: (3(S3)-8(251)/25" (1-25)43(25)«3(!]);snoxt I

*4089

Surface Tocmperature Difference

140: A[0])~B(01+5(51)
*5957

Determination of Mode for Entering Heat Capacity and Thermal Conductivity

141: J+leJ;4f I>1;gto 250
225973 .

. Entering of Soil Physical Properties
142: ent O[1},2(8),0(25),0(42),P(1),Pt4),P(25),P(42),0(2),Wwid3),w(4),01(5])

143: ent K{1},K(2),K131,G6(1},6(21,P,8,F,C,4,2,C,0
*29554

Calculation of Percent Moisture by Volume
144: O[1)1%DeO[11;0(31*E«0{B8):0(25)*F+D[25130{42)1%5+J142)

14S: P{1)}*D+P(L1;:P(3]*C+P(8];P[25) 1P [25);P(A2]1%3+0(42)
*23434

Calculation of Percrnt Air

146: 1-0(1)=-u{21+0 (1}

147: 1-P[l)=-u{2]1+v(1)}

148: 1-0{3)1-w({3}-u (3} .
149: l-p{8)-u{3]+v (3]

1L): 1-0(251-i{A4) (23]

1513 1=-P(25]=i{4) Vv [25]

152: 1-2{32]-u(5)0[42)

153: 1-P[42)-w[5)Vv[42)

217723
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194

1541 leI;2eX;ell “CCHUUC AT (UIIL,O(1),9I%))
155: (Olll*hll)‘zl'liZl'Y(Zl+t.‘ [L}*R{01)Y/7(O[L)+rleti{2)+r2*U(1]))-C{1}
156 lelj2eX:icll “COUDUS B (V(I),PIE] (%))
1573 (Plll'K(ll*r)'&(ZI'K(JIO:Z' (L1*R[0V)/Z(PfL)+rd2 i {2)+c22V[L])en ()]
153: BeI;leX:=l) “TONDUT A' (U(I),011),00X))
159 (0(3)‘<ll)0r1'J!Jl*V[’l#r2' {JJ*RED})/Z(O8)+rltw3]+r2*U(2)}C(3]
160: 8ef;3eX;cll “CONDBUC B (VII],PII),d{X})
161: (P{3]‘K(X]+r3*3(3!'h(3)+r2*v(81'k(0l)/(P[Bl+r3'w(31+r1'V[8])00[01
162 2501:40V'c11 “CONDUS AT (ULT),o(1),%(X)) .
163: (d2(25)*& (l]*rl‘ﬂld|*h[’14(2‘U125]‘d10|)/(0[25)4:1'u(4)+12‘0l251)-C(NS,
1643 25+I:d4+xX3cl) “COUDUC B (V(L1],P(1),:0(%)) )
165: (P(?Sl'slll+r3'l(4l‘K[3)+t2'Vl25l'K(0))/(P 25)+r3* 014 402V I26))eD(2%)
1663 42+1;5¢X3cl)l “COMDUC A’ (UII),0(1)U(%1)
157 (0[42)‘K[l]+r1*ﬁ!5]‘x(2|#r2"(42]‘K{0])/(0(4224t1' {S5)+r240($2))2CH42)
168t 42+1:5+%3¢l1 ‘COuOUC B (V([1),P(1),.0(4])
169: (P(f7)'Klll+t3'JlSI'K(3)+t2'V(42] K{O))/Z(PEA2) +r3Wi5)+22*v([adt)eD [42)
*79)8 ,

Specification of Heat Capacity
170, M((21+3721+0(1)1 7 11Y-E()])
l?lzhl)'&[’“?(lﬂ (L1=F{1]
172: HlJ}”G[Zl*O[dI'?[ 1+£18)
173 W{312S(21+P[3V*S ()L |+F (]
174 {41 -3(21#D12315{11+15425])
175¢ w{4]s2t2)ep[25143(1)+R125)
1762 W{31*GI214D(42,*5(1) {2}
177 W(51+C{2}1+P[42)85(1)sF(42)
*167i3

Interpoiation of Thermal Conductivities and Heat Capacity
1783 [or I=2 to 243C(3]1={C[25)=C{3]))/17*(8-1)+C{1]
179: O[3)~(D[25)~D{3))/L7#% (S=1)e2{1])
180: Ei21-(2{23]1=2(0))/17%(3~1)«u(1)
181: FlS]-('!’:]-P(Sl)/l?'(ﬁ =I)edlI)snaxt 1
182: fcr 1=26 to %) Cl2514(C[42)=C[25])/174(1-25)+C (1)
183: D(25)+(D(42]-D(2 51} /174 (1-25)en (1)
184: Cl25)+(E(42 l-”(ZS])/l"(I 7a)~E(I)
185: F(25)+(F[42]=-F[25))/17% (I=-25)«F[I)snext I
186: C{1}~CI0);D[Ll+D{O); F[l)--lOI,P(ll -t {0)

*4021

) (“Rr" ;"!;\li r:\ 3 i
OF PO L

Specification of Thermal Conductivitics
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108:
109
190+
101;
192:
192
194
195:
196
197
193:
199
200!

ORIGINAL PAGE I8

-

Printout of Thermal Conductivity (cal/oc em)

Imt 1,7/,°COUCTIVIVY Y rwet 706,11

fmt 4,3/,4x,3"00PTH SITE A SITE B “swet 706.1)
int(:1/3)+lery .
g2t )]

=t )+lerd

for Is) 2o r2-13ler85+c6

i€ td>s)l;rG¢lcld

E6+c 21718

1€ £4>222;:c3+41+13

t8ér2ec

fmt 1,5X,f3.3,ll.f705p2K,f7.5.4l,f3.0,3!ff7.5,2*.£7.5.2
wrt 708,1,r5,010:51,0025),27,C(27),D{r7)

fnt 2,4x,£3.0,3x,£7.5,2%x,£7.5%

wet 7006.2,19,C(e3),D(r9);next I

*31908 ’

201:
202
203
204:
205
206
207t
208
209:
210,
211
212:
213
214

" Printout of Volumetric Heat Capacity (cal/cm3 sec °C)

£t 1,9/,"HCAT CAPACITY" ;v et 706.1
£mt 1,3/,4%,3"DEPTH SITE A SITE B “swrt 706.1
fnt(N/3)¢ler2
£2% 3]
Ner3+lerd
for 1=) to r2-1;ler5+r6
if r4>uirielech
£G+r2ecler8
£ rd>el;ro+4ler6
£84r2+19
fmt 1,5x,£€3.0,4x,£¢.3,3%x,£6.3,4x ,£3,0,4x,£6.3,3x,f6.3,2
wrt 706.1,c5,E(r5),e{eS5)1,c7,B1(c?7},Flc7)
fmt 2,4x,£3.0,4%x,£6.3,3x,£6.3
wet 706.2,29,E10r9),F1r9)1next 3

*16222

Calculation of Thermal Inertia

215: for X=0 to S0

216
217

(CIRI*CIRI)".5<I[R)
(DIRI*F{R1)".5+3{K)

$24481

218:
219:
220:

Calculation of Thermal Diffusivity

CIRI/EIR)«2(R]
DIRI/T(K]*T([K)
next

*29332
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Prlntoqt of Thermal Iner%:a

221: fmt 1,9/, 0USIA\L INSRTIA";wet 706.1

222: fat 1,3/,4%2,3"0EPTY SITE A SITE B "swtt 706.1
223 int(li/3)+)ec2

224t £l*3erl

225: Neglelerd

2261 for 120 to r2-);iler5ech

227: $€ t4>w)l;rlG+ler6

228: voer2erler8

229: {f rad>=w2;g34lerd

230: ¢34rler9

23 fmt ),5%x,£3.0,32,£7.5,27,£7.5,4x% ,£3.0,3%x,£7,5,2%x,£7.5,2
2321 wet 766,1,2e5,31{r3),3(c5),07,13(7},3(c7}

233: fnt 2,4%,£3.0,3x,f7.5,2x,£7.5

234 wrt 706.2,9,11c3),3(c9);next I

13468 .

Printout of Thermal Diffusivity

235: fme 1,8/,"THCRAL DIFPUSSIVITY";wrt 706.1

236: frmt 1 ,3/,4%,3"DUPTN SITE A SITE D "iwzt 706,1
2373 int(1/3)+ler2

223: r2*3+r3

239: Ne-g3tlerd

2403 for Iu0 Lo £2=-1l;lerS+cb

241: §0 ra>=l;cGelert

242: rG+r2er7+:3

243: if rd>s=l;13+ler8

244: tl4r2+29

245: (ot 1,5%,€3.0,3%x.£7.5,2%,07.5,4x ,£3.0,3x,£7.5,2%x,£{7.5,2
246: wrt 706.1,r5,M¢c5),T{r5),c72,Q(t7),Tlc?)

267y fmt 2,4x,£3.0,¥3x,£7.5,2%,£87.5

«43: wrt 706.2,:9,21291),7(r3}snext I

*258225

Time Interval Between Calculations

249: T/(2*X[1)*X[1))+rl;gtlo 2G4
+3516

Call for Soil Heat Flux Subroutine

250: cll "QHEAT’
*11251

\]

S
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Calculation of Nodal Temperatures and Lower Boundary

2511 tor Isl to H-l;(N{1)/r1-C(1-1)=2¢C{1)=C{I+])]))*A(I])er0

2521 ((N{I-1)+C{I))*A(1=1)¢(C(11+ClI4L)) AT+ )¢ci)*c)l/E(TI]eR([])

2931 (F{1)/¢1=D{1-11-2°D(1]-D(1+1}))*B(1])ec?

2543 (/O(I-1}¢0(1})*B(1=1)+(D(E)¢0{T+41))*D[T4L)ecT)*rl/P(I])+C{1]);next 1
255: 4/X%{110cL1e(EL)/c1=22C(2)=24C(2])*A(0)+4(22C(2])+2*C(2))*A{3]-R10)
2561 rl/C{11*R(0)+R{0]

257 ASX (1) ¢l2+(F())/r1=-2*D(1}-2+0(2))*n(0)+(2*D[1)+2*0(2))*N(1)~5(0]
258 r1/F(1)*S(0]151(0] .

259: Afi)er(.1)

260: B(N]}eS(i]

*32346

Reassignment of Nodal Temperatures for Succeeding Interation

2%Y: for 120 to WIR{IV*A(I):53(2])0[I)snext 1
262: A[O)1-0{0)+1([51]
*29299 .

Test for Prirtout Time

26): i€ "{4)<P3gto 3006
256

Printout of Pertinent Data

2641 rl0¢ler10

265: int(rld/2)eril;ril*2.rl?2

266‘ fl'.lt l.‘/,"T“’”?CR‘\PURP: MIOFILE AT " 'tzZoo'c?Az.o'“ HOURS"
267: wret 706,1,:d(2),:001)

268¢: fmt 2,/,/,"SIRTAZE TEMPERATURSE NIFFERFISE =" ,£6,2

269: wrt 706.2,3(51}) .

2703 £t 4,/,°591L HEAD FLUX SIT., A =» * ,£f12.9,° SITE 0 = " ,f12.9
271l: wet 706,4,A,8

272 fmt 1,2/,4%,3"DEPTH TEMP A TEMP 8 "

273: wet 706.1

274: int(1/3)+ler2

2753 r2*3ep)d

27613 l=r3+)lerd ' .
277: for 10 to £2-1jler5-th

ci8: £ rid>el; rfelerd

279: rS4t2+rTech

230: 1€ rd>=d5ri+lerh

281: t8¢rler)

282: fmt 1,5%x,03.9,4x,€66.3,3%x,£6.3,4x,£3.0,4%x,£6.3,3x%x,(6.3,2
233 wet 795.1,858,A(en),30e5Y,e7,0(c7),31¢c?)

284: fmt 2,4x,f3,0,48%,06,3,3%,f0.3

285: wet 706.2,c9,A(9),3{c%)snext 1

3549

Procedural Step (Reset)

236: 0+4{4)
*38%4

e

-
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Call for Vlot Routine

if ri2helniqgto )06
cll ‘Ploes’

*1945%

289:
27014
2911
272
293
294
295
296
297
293

289
2%0:
294
2%2:
293

Plot of Theoretical and Experimental Soii Temperatures

for I1»0 to 50:1cl) “olotA’ (AI1),L{1))snext I

£ (L eds24e00(1)

for J=1 to 5:cl} 'real&'(Z!J,nlil/z,ll,N(Jl):ncxt J

fou 1s0 to 30;:2)1 “»lotd (D{Ii,L[l)snext |

{rr J=)1 to .3cl) ‘rendn(2(J, H(l]/* 2,000 Y inext

fmt 1, /,ox.S"USPTH Tenp .. “sugt 706.1

ot 4, 3178 AN ,z;wet 706G.4

:mt 2, 4; 3. O,Js:!a 2,4x,€3.0, 3(,!5...4x,[3 0,3x,£5.2,2
fmt I, 44,(3 0,3%,£5.2,4%x,€3.0,3%,£5.2

wet 705

Plot of Theoretical and Experimental Soil Temperatuves

for In0 to S50:cll ‘olotA (AlI),L{TI]))inext I

£f N{L}»0; adeitfl)

foo Js)l to Spel) ‘realN (21,0011 /72,1),00T) ) inext O
for I=d Lo 50;3cll ‘vlotd’ (B,I),LII))inext I

for J=)l to 5;cll ‘realB (Z(0,HIL)/2,2),05{0))inoext J

$6936

237
29%:
796
297
AR
2573

Frintout cf Experimental Soil ™emperatures for Piofile A

{lnt 1,/'9\'.'5“2)5:??“ Tc”p u;“ﬁ':t 706.1

frne &,/,"310E A", z;wrt 70004 ) .

ot 2, 0%,03.0,08,£€5.2,4%,63,0,3¢,€£5,2,4%,,3.0,2%,55.2,7
[:-IL 3,42\',{13«\",3¥'55-3,4X,f~.0,a?€,(.)...

vet 705.2,. 000,210, 0001 /2,00 ,0002),202,08013/2,0),8(2), %01
wet 706.3,.:0{4), 304, 08(0)/72,1) ,0(5),2105,1(1)/2,).])

2683

300:
05
a0l
3013
N4

Printovt of Cxperimental Soil Temperatures for Profile b

fmt 5,/,"SI78 " ,z3wrh 706.5
AN 2;3;,f3 0,3%,£5.2,4%,£3.0,3x,£5.7 ,4x,£3.0,3x,£5.2,2
£ 3.4x,f3.0,lx.CJ 2,472,£3.0,3%x,£5.2

wrt 706.2,3(1],2(1,3!1]/2,2),H[ZI‘ZIZ,H[11/2,2],H(3],.[3 "

wet 7063, 000,204,803 /2,2) 1[5}, 2(5,1(1}/2,2])

$2442)

308,
h 11
307:
309;
30
“711

3
)
(1]
(a4

if Calculation Has Run Desirced Time
Hi1l)}=24;0«0)])

(L)< {2)3ntn I13

l}\!"l.:to 310

Yi0}<Y{ll:ato 313

24

Al Yo Y e

!i
o3

O e e P poe

Ay /e, 8

Y1/2,2)
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Test {f Tomporature Diffcronce is to be Calculated

3103 111 ¢det(I)

J11s € 2(3)/(cl3°20)2m)l9t0 1)
J12: qto 217

313 tllelerl)d

*3J0522

Calculation of Surface and 5 cm Temperature Diffcrence

314: A{0)}=-3([0)<.{1(31/20])
315: A(S1-B(5)eVv(i1{3}/20])
*30792

Calculation of New Time

3163 M{3)/60+0(*1{3)/20) .
317 t(d)erenid)

*18: M{1)+T/60e1{1])

319: if *1(1]<603g¢t0 123

320: M{1]=60+'t(1]

© 320 H(1)4desi(L) 4L H(L]I<24 a0t0 32)

322: H()]=24et{ ) s¥[0141eX (O]
3233 gto 141 :

324: 3to

»28526

Plotting of Surface and S cm Temperacure Differences
328: cll ‘Dift olot’

326s for 1=l to 72;:cll ‘olot3°(O(1),U{I)):next I
3273 for Is1 to 72;¢ll ‘plot2’(O(2),VII))snext 1
3206: end

€29769
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