11 research outputs found

    Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization

    Get PDF
    AbstractA family of anion exchangers (AEs) including AE1, AE2 and AE3 has been described. AE3 gene has been shown to encode two alternatively spliced isoforms termed as bAE3 (brain subtype) and cAE3 (cardiac subtype). The identity of the AE(s) involved in the human intestinal NaCl absorption is not fully understood. Current studies were undertaken to identify the AE isoforms expressed in the human intestine, to define their regional and vertical axis (crypt vs. surface cells) distribution, and to elucidate their membrane localization in the epithelial cells along the entire length of the human intestine. Our studies utilizing reverse transcription (RT)-PCR with total RNA extracted from pinch biopsies from various regions of the human intestine demonstrate that AE2 and bAE3 but not AE1 or cAE3 were expressed in all the regions of the human intestine. Utilizing in situ RT-PCR, we demonstrated that the message of AE2 was expressed throughout the vertical surface–crypt axis of the colon. Our Western blotting studies demonstrated that AE2 and bAE3 are localized to the basolateral but not the apical membranes of the intestinal epithelial cells from the human ileum and colon. In conclusion, our results demonstrated that in the human intestine, AE2 and bAE3, but not AE1 or cAE3, are expressed throughout the tract with the highest expression in the colon compared to the ileum and jejunum. Both the isoforms were found to be localized to the basolateral but not the apical membranes of the epithelial cells. We speculate that, in the human intestine, AE2 and bAE3 may be the ‘housekeeping’ isoforms, and the apical AE, the potential candidate for chloride absorption, remains to be identified

    Towards coherent optical control of a single hole spin: rabi rotation of a trion conditional on the spin state of the hole

    Get PDF
    A hole spin is a potential solid-state q-bit, that may be more robust against nuclear spin induced dephasing than an electron spin. Here we propose and demonstrate the sequential preparation, control and detection of a single hole spin trapped on a self-assembled InGaAs/GaAs quantum dot. The dot is embedded in a photodiode structure under an applied electric field. Fast, triggered, initialization of a hole spin is achieved by creating a spin-polarized electron-hole pair with a picosecond laser pulse, and in an applied electric field, waiting for the electron to tunnel leaving a spin-polarized hole. Detection of the hole spin with picoseconds time resolution is achieved using a second picosecond laser pulse to probe the positive trion transition, where a trion is created conditional on the hole spin being detected as a change in photocurrent. Finally, using this setup we observe a Rabi rotation of the hole-trion transition that is conditional on the hole spin, which for a pulse area of 2 pi can be used to impart a phase shift of pi between the hole spin states, a non-general manipulation of the hole spin. (C) 2009 Elsevier Ltd. All rights reserved

    Hospital and community isolates of uropathogens at a tertiary hospital in South Africa

    No full text
    AIM: To investigate the profile of common uropathogens isolated from urine specimens submitted to the diagnostic microbiology laboratory at a tertiary teaching hospital and assess their antimicrobial susceptibility patterns to commonly used antimicrobial agents. METHODS: We conducted a retrospective analysis of laboratory reports for all urine specimens submitted for investigations over a 1-year period. Isolates were tested by means of the Kirby-Bauer disc diffusion method for susceptibility to amoxicillin, ciprofloxacin, gentamicin, co-trimoxazole and nitrofurantoin, and for extended-spectrum beta-lactamase (ESBL) production. RESULTS: Out of the total specimens (N =2 203) received over the 1-year study period, 51.1% (1 126) of the urine samples were culture-positive, the majority (65.4%) having come from females. The most common isolate was Escherichia coli (39.0%) followed by Klebsiella species (20.8%) and Enterococcus faecalis (8.2%). The Gram-negative isolates displayed a very high level of resistance to amoxicillin (range 43 - 100%) and co-trimoxazole (range 29 - 90%), whereas resistance to gentamicin (range 0 - 50%) and ciprofloxacin (range 0 - 33%) was lower. E. coli isolates were susceptible to nitrofurantoin (94%), and ESBL production was significantly higher (p=0.01) in the hospital isolates, compared with those from the community referral sites. CONCLUSIONS: The culture-positive rate for uropathogens was high, with a greater incidence among females. E. coli was the most common aetiological agent identified, and remained susceptible to nitrofurantoin. Resistance levels to amoxicillin and co-trimoxazole were very high for all Gram-negative isolates, and it is recommended that these antibiotics should not be used for the empiric treatment of urinary tract infections

    The 2021 WHO catalogue of complex mutations associated with drug resistance: A genotypic analysis.

    No full text
    Background: Molecular diagnostics are considered the most promising route to achieving rapid, universal drug susceptibility testing for complex (MTBC). We aimed to generate a WHO endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance&nbsp;prediction. Methods: A candidate gene approach was used to identify mutations as associated with resistance, or consistent with susceptibility, for 13 WHO endorsed anti-tuberculosis drugs. 38,215 MTBC isolates with paired whole-genome sequencing and phenotypic drug susceptibility testing data were amassed from 45 countries. For each mutation, a contingency table of binary phenotypes and presence or absence of the mutation computed positive predictive value, and Fisher&#8217;s exact tests generated odds ratios and Benjamini-Hochberg corrected p-values. Mutations were graded as Associated with Resistance if present in at least 5 isolates, if the odds ratio was &gt;1 with a statistically significant corrected p-value, and if the lower bound of the 95% confidence interval on the positive predictive value for phenotypic resistance was &gt;25%. A series of expert rules were applied for final confidence grading of each&nbsp;mutation. Findings: 15,667 associations were computed for 13,211 unique mutations linked to one or more drugs. 1,149/15,667 (7·3%) mutations were classified as associated with phenotypic resistance and 107/15,667 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations’ pooled sensitivity was &gt;80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were classified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these&nbsp;drugs. Interpretation: This first WHO endorsed catalogue of molecular targets for MTBC drug susceptibility testing provides a global standard for resistance interpretation. Its existence should encourage the implementation of molecular diagnostics by National Tuberculosis&nbsp;Programmes. Funding: UNITAID, Wellcome, MRC, BMGF.</p

    Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

    No full text
    &lt;p&gt;BACKGROUND: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear.METHODS: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present. To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance.RESULTS: A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted.CONCLUSIONS: Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.).&lt;/p&gt;</p

    Connecting the study of wild influenza with the potential for pandemic disease

    No full text
    Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV) variants that pose a threat to human health. In the last 4–5 years, focus has been placed on the organization of large-scale surveillance programs to examine the phylogenetics of avian influenza virus (AIV) and host–virus relationships in domestic and wild animals. Here we review the current gaps in wild animal and environmental surveillance and the current understanding of genetic signatures in potentially pandemic strains.National Institute of Allergy and Infectious Diseases (U.S.) (Contract HHSN266200700010C)Massachusetts Institute of Technolog
    corecore