424 research outputs found

    Bit-Level Systolic Architecture for a Matrix-Matrix Multiplier

    Get PDF
    Highly efficient arithmetic operations are necessary to achieve the desired performance in many real-time systems and digital image processing applications. In all these applications, one of the important arithmetic operations frequently performed is to multiply and accumulate with small computational time. In this paper, a 4-bit serial - parallel multiplier, which can perform both positive and negative multiplications, is presented. Baugh-Wooley algorithm necessitates complementation of last bit of each partial product except the last partial product in which all but the last bit are complemented. In the proposed algorithm all bits of the last partial product are complemented. This modification results in considerable reduction in hardware compared to Baugh-Wooley multiplier. This multiplier can be used for implementation of discrete orthogonal transforms, which are used in many applications, including image and signal processing. This paper presents a 2D bit-level systolic architecture for a matrixmatrix multiplier. A comparison with similar structures has shown that the proposed structure performs better

    Evaluation of Tensile Properties and their Correlation with Microstructural Characteristics of a Closed Die Forging of Iso-symmetrical Aerospace Grade Ti-6Al-4V Alloy

    Get PDF
    In the present technical paper an iso-symmetrical forging in titanium alloy, i.e., Ti-6Al-4V is chosen for cut-up evaluation and study of mechanical properties and their correlation with microstructural characteristics. Tensile test specimens were extracted from rim, web and bore regions of the forgings aligned in radial and tangential directions. Test specimens varying from various locations were extracted to conduct the tests (ASTM E8) at various temperatures from room temperature to 300 °C. Statistical analyses of the tested data were carried out to quantify the variation in tensile properties along rim, web, and bore regions at room temperature. Effects of radial and tangential alignments of specimens at room temperature was also studied. Among the different test specimens, the specimen that exhibited mechanical properties close to average values were further subjected to microstructural and fractographic investigations using optical and scanning electron microscopes. These studies revealed that there is a marginal inhomogenity in the microstructure of the forgings and this variation controls the mechanical properties and fracture characteristics of the material. Microstructure marginally varies from rim to bore region. Similarly, along the thickness of the forging, there is a small variation in the microstructure. The aforementioned correlations have established the fact that the microstructure variations from different locations and among different specimen orientations have resulted in mild variation in the tensile properties.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.171-178, DOI:http://dx.doi.org/10.14429/dsj.65.723

    Extending the repertoire of microsatellite markers for genetic linkage mapping and germplasm

    Get PDF
    To increase the number of polymorphic simple sequence repeat markers (SSRs) in chickpea, a genomic library was constructed, and the SSRs derived from this approach are characterized. A genomic DNA library from the chickpea genotype ICC 4958 was constructed after digesting total DNA of ICC 4958 with MBO/Sau and TaqI at University of Frankfurt, Germany. The study increases the existing SSR repertoire in chickpea, which will help to enhance the coverage of linkage maps especially in intraspecific crosses where marker polymorphism is found to be very less

    Comparative transcriptome analysis identified candidate genes for late leaf spot resistance and cause of defoliation in groundnut

    Get PDF
    Late leaf spot (LLS) caused by fungus Nothopassalora personata in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon N. personata infection. Highly upregulated putative disease resistance genes, an RPP-13 like (Aradu.P20JR) and a NBS-LRR (Aradu.Z87JB) were identified on chromosome A02 and A03, respectively, for LLS resistance. Mildew resistance Locus (MLOs)-like proteins, heavy metal transport proteins, and ubiquitin protein ligase showed trend of upregulation in susceptible genotypes, while tetratricopeptide repeats (TPR), pentatricopeptide repeat (PPR), chitinases, glutathione S-transferases, purple acid phosphatases showed upregulation in resistant genotypes. However, the highly expressed ethylene responsive factor (ERF) and ethylene responsive nuclear protein (ERF2), and early responsive dehydration gene (ERD) might be related to the possible causes of defoliation in susceptible genotypes. The identified disease resistance genes can be deployed in genomics-assisted breeding for development of LLS resistant cultivars to reduce the yield loss in groundnut

    Quantum-fluctuation-induced repelling interaction of quantum string between walls

    Full text link
    Quantum string, which was brought into discussion recently as a model for the stripe phase in doped cuprates, is simulated by means of the density-matrix-renormalization-group method. String collides with adjacent neighbors, as it wonders, owing to quantum zero-point fluctuations. The energy cost due to the collisions is our main concern. Embedding a quantum string between rigid walls with separation d, we found that for sufficiently large d, collision-induced energy cost obeys the formula \sim exp (- A d^alpha) with alpha=0.808(1), and string's mean fluctuation width grows logarithmically \sim log d. Those results are not understood in terms of conventional picture that the string is `disordered,' and only the short-wave-length fluctuations contribute to collisions. Rather, our results support a recent proposal that owing to collisions, short-wave-length fluctuations are suppressed, but instead, long-wave-length fluctuations become significant. This mechanism would be responsible for stabilizing the stripe phase

    Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome

    Get PDF
    This study presents the development and mapping of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in chickpea. The mapping population is based on an inter-specific cross between domesticated and non-domesticated genotypes of chickpea (Cicer arietinum ICC 4958 × C. reticulatum PI 489777). This same population has been the focus of previous studies, permitting integration of new and legacy genetic markers into a single genetic map. We report a set of 311 novel SSR markers (designated ICCM—ICRISAT chickpea microsatellite), obtained from an SSR-enriched genomic library of ICC 4958. Screening of these SSR markers on a diverse panel of 48 chickpea accessions provided 147 polymorphic markers with 2–21 alleles and polymorphic information content value 0.04–0.92. Fifty-two of these markers were polymorphic between parental genotypes of the inter-specific population. We also analyzed 233 previously published (H-series) SSR markers that provided another set of 52 polymorphic markers. An additional 71 gene-based SNP markers were developed from transcript sequences that are highly conserved between chickpea and its near relative Medicago truncatula. By using these three approaches, 175 new marker loci along with 407 previously reported marker loci were integrated to yield an improved genetic map of chickpea. The integrated map contains 521 loci organized into eight linkage groups that span 2,602 cM, with an average inter-marker distance of 4.99 cM. Gene-based markers provide anchor points for comparing the genomes of Medicago and chickpea, and reveal extended synteny between these two species. The combined set of genetic markers and their integration into an improved genetic map should facilitate chickpea genetics and breeding, as well as translational studies between chickpea and Medicago

    Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches

    Get PDF
    To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions) for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1–7 seasons and 1–3 locations in India (Patancheru, Kanpur, Bangalore) and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia). Diversity Array Technology (DArT) markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations (r2; when r2<0.20) was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs), both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs]) and phenotyping data mentioned above employing mixed linear model (MLM) analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70) was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP) were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance

    Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model

    Get PDF
    We revisit the ground-state phase diagram of the one-dimensional half-filled extended Hubbard model with on-site (U) and nearest-neighbor (V) repulsive interactions. In the first half of the paper, using the weak-coupling renormalization-group approach (g-ology) including second-order corrections to the coupling constants, we show that bond-charge-density-wave (BCDW) phase exists for U \approx 2V in between charge-density-wave (CDW) and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons disfavors the BCDW state and leads to a bicritical point where the CDW-BCDW and SDW-BCDW continuous-transition lines merge into the CDW-SDW first-order transition line. In the second half of the paper, we investigate the phase diagram of the extended Hubbard model with either additional staggered site potential \Delta or bond alternation \delta. Although the alternating site potential \Delta strongly favors the CDW state (that is, a band insulator), the BCDW state is not destroyed completely and occupies a finite region in the phase diagram. Our result is a natural generalization of the work by Fabrizio, Gogolin, and Nersesyan [Phys. Rev. Lett. 83, 2014 (1999)], who predicted the existence of a spontaneously dimerized insulating state between a band insulator and a Mott insulator in the phase diagram of the ionic Hubbard model. The bond alternation \delta destroys the SDW state and changes it into the BCDW state (or Peierls insulating state). As a result the phase diagram of the model with \delta contains only a single critical line separating the Peierls insulator phase and the CDW phase. The addition of \Delta or \delta changes the universality class of the CDW-BCDW transition from the Gaussian transition into the Ising transition.Comment: 24 pages, 20 figures, published versio

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe
    corecore