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Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model

M. Tsuchiizu1,2 and A. Furusaki1,3

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
2Department of Physics, Nagoya University, Nagoya 464-8602, Japan

3Condensed-Matter Theory Laboratory, The Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan
~Received 7 August 2003; published 15 January 2004!

We revisit the ground-state phase diagram of the one-dimensional half-filled extended Hubbard model with
on-site ~U! and nearest-neighbor~V! repulsive interactions. In the first half of the paper, using the weak-
coupling renormalization-group approach (g-ology! including second-order corrections to the coupling con-
stants, we show that bond-charge-density-wave~BCDW! phase exists forU'2V in between charge-density-
wave ~CDW! and spin-density-wave~SDW! phases. We find that the umklapp scattering of parallel-spin
electrons disfavors the BCDW state and leads to a bicritical point where the CDW-BCDW and SDW-BCDW
continuous-transition lines merge into the CDW-SDW first-order transition line. In the second half of the paper,
we investigate the phase diagram of the extended Hubbard model with either additional staggered site potential
D or bond alternationd. Although the alternating site potentialD strongly favors the CDW state~that is, a band
insulator!, the BCDW state is not destroyed completely and occupies a finite region in the phase diagram. Our
result is a natural generalization of the work by Fabrizio, Gogolin, and Nersesyan@Phys. Rev. Lett.83, 2014
~1999!#, who predicted the existence of a spontaneously dimerized insulating state between a band insulator
and a Mott insulator in the phase diagram of the ionic Hubbard model. The bond alternationd destroys the
SDW state and changes it into the BCDW state~or Peierls insulating state!. As a result the phase diagram of
the model withd contains only a single critical line separating the Peierls insulator phase and the CDW phase.
The addition ofD or d changes the universality class of the CDW-BCDW transition from the Gaussian
transition into the Ising transition.

DOI: 10.1103/PhysRevB.69.035103 PACS number~s!: 71.10.Fd, 71.10.Hf, 71.10.Pm, 71.30.1h

I. INTRODUCTION

It is well known that a one-dimensional~1D! spin system
has instability to dimerization that changes the system into a
nonmagnetic insulating state, the so-called spin-Peierls
state.1 Indeed the spin-Peierls state is realized in many sys-
tems including quasi-one-dimensional organic compounds2,3

and the inorganic material4 CuGeO3, and its properties have
been studied extensively both experimentally and theoreti-
cally. Of particular interest is a situation in which a dimer-
ized state appears spontaneously due to strong correlations
and frustration.5 A well-known example is the frustrated
spin-12 Heisenberg chain with nearest-neighbor,J1, and next-
nearest-neighbor,J2, antiferromagnetic exchange interac-
tions, where a spontaneously dimerized phase is realized for
J2>J2c.0.24J1.6 Other systems of current interest are
quasi-one-dimensional electron systems in organic materials,
where the spin-Peierls state appears due to strong electron
correlation at half filling7–14 and at quarter filling.15,16

Recently it was pointed out by Nakamura and
co-workers17 that a spontaneously dimerized state occupies a
finite parameter space in the ground-state phase diagram of
the 1D half-filled Hubbard model with the nearest-neighbor
repulsionV, i.e., the extended Hubbard model~EHM!. This
spin-Peierls state is often called bond-charge-density-wave
~BCDW! state or bond-ordered-wave state. The appearance
of the BCDW state in the purely electronic model is non-
trivial and has attracted much attention from theoretical point
of view. To appreciate this surprising result, let us consider
some limiting cases. In the limit of weak nearest-neighbor
repulsionV, or in the half-filled Hubbard model with only

the on-site Coulomb repulsionU, the ground state is in the
Mott insulating state where the spin sector exhibits quasi-
long-range order of spin-density wave~SDW!; we call it the
SDW state. In the opposite limit of strongV, the ground state
of the half-filled EHM has a long-range order of the charge-
density wave~CDW!; we call this state the CDW state. Fur-
thermore, in the atomic limit where the electron hoppingt is
ignored, the CDW state appears forU,2V whereas the uni-
form state corresponding to the SDW state is stable forU
.2V in one dimension. Strong-coupling perturbation theory
in t has established that a first-order phase transition between
the SDW state and the CDW state occurs atU.2V.18–21As
for the weak-coupling regime, perturbative renormalization-
group ~RG! approach org-ology led to a similar conclusion
that the ground state at half filling is either in the SDW state
or in the CDW state with a continuous phase-transition line
at U52V.18 Thus, it had been considered for a long time
that the ground-state phase diagram of the EHM at half fill-
ing has only two phases, the SDW and CDW states, and that
the order of the phase transition atU.2V changes from
continuous to first order at a tricritical point which was
speculated to exist in the intermediate coupling
regime.20,22–24This common view was revised by the Naka-
mura’s discovery that the BCDW state exists atU.2V in
between the SDW and CDW phases in the weak-coupling
region,17 which is supported by recent large-scale Monte
Carlo calculations.25,26Related studies of the dimerized state
in the EHM with additional correlation effects can be found
in Refs. 27–31.

A related and still controversial issue of current interest is
whether or not a spontaneously dimerized phase exists in the
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1D Hubbard model with alternating site potential, the so-
called ionic Hubbard model.32–45 This system was intro-
duced as a simple minimal model for the neutral-ionic tran-
sitions observed in quasi-one-dimensional organic
materials46–48 and for ferroelectric perovskites.49,50 Obvi-
ously the model has two insulating phases. The ground state
is ~i! a band insulator with the CDW order when the stag-
gered site potential is much larger than the on-site repulsion
or ~ii ! a Mott insulator with quasi-long-range SDW order
when the staggered site potential is negligible. Early exact
diagonalization studies49–51 of small systems have found a
transition between the two phases and also reported dramatic
enhancement of the electron-lattice interaction by strong
electron correlation near a boundary between the band insu-
lating phase~the BI state! and the Mott insulating phase~the
SDW state!. Mostly through bosonization analysis of the
ionic Hubbard model, Fabrizio, Gogolin, and Nersesyan re-
cently argued32 that a phase of a spontaneously dimerized
insulator~SDI! intervenes between the ionic insulating phase
~band insulator! and the Mott insulating phase. The SDI state
is closely related to the BCDW state mentioned above. Ear-
lier numerical studies34–36,38,39,51have drawn contradictory
conclusions as to whether the SDI phase exists or not, but
more recent numerical studies find two phase transitions and
the SDI phase in between.37,40,45Nevertheless there still re-
main unresolved issues on the critical properties near the
quantum phase transitions.

In this paper we give supporting theoretical arguments for
the existence of the spontaneously dimerized insulating
states in the 1D half-filled extended Hubbard model with and
without staggered potentials. We adopt the standard
bosonization approach and perform both perturbative RG
analysis valid in the weak-coupling regime and semiclassical
analysis which is expected to give a qualitatively correct pic-
ture even in the strong-coupling regime. This paper is orga-
nized as follows. Sections II and III are devoted to the analy-
sis of the standard EHM, i.e., the system without the
staggered potential. Some of the results of this part are al-
ready presented in Ref. 52. In Sec. II, we introduce the
model and reformulate the weak-coupling theory, the
g-ology, to include higher-order corrections to coupling con-
stants. We bosonize low-energy effective Hamiltonian and
derive the renormalization-group equations. In Sec. III, we
determine the ground-state phase diagram. First, from the
perturbative RG analysis we show that the BCDW phase
occupies a finite region near theU52V line in the weak-
coupling limit. Next, from the semiclassical analysis we ar-
gue that the umklapp scattering of parallel-spin electrons de-
stabilizes the BCDW phase and gives rise to a bicritical point
where the CDW-BCDW and SDW-BCDW continuous-
transition lines merge into the CDW-SDW first-order transi-
tion line. Finally, combining the perturbative RG equations
with the semiclassical analysis, we obtain the global phase
diagram of the 1D EHM. In Sec. IV we study the 1D EHM
with the staggered site potential. We take the same strategy
as in the previous sections and perform a semiclassical
analysis of the bosonized Hamiltonian. With the help of the
perturbative RG analysis we obtain the global phase diagram
that indeed has the SDI phase. We find that the BCDW phase

of the EHM is continuously deformed to the SDI phase upon
introducing the alternating site potential. In Sec. V, we study
the 1D EHM with additional bond dimerization, but without
the staggered potential. This model exhibits a quantum phase
transition between a dimerized Peierls insulator and a CDW
state. Section VI is devoted to conclusions, and details of the
technical calculations are given in Appendixes.

II. EXTENDED HUBBARD MODEL

In the first half of this paper~Secs. II and III!, we consider
the standard 1D EHM which has on-site,U, and nearest-
neighbor,V, interactions. The Hamiltonian is given by

H52t(
j ,s

~cj ,s
† cj 11,s1H.c.!1U(

j
nj ,↑ nj ,↓

1V(
j

nj nj 11 , ~2.1!

where nj ,s[cj ,s
† cj ,s2 1

2 , nj[nj ,↑1nj ,↓ , and cj ,s
† denotes

the creation operator of an electron with spins (5 ↑, ↓) on
the j th site. We assume repulsive interactions, i.e., the cou-
pling constantsU and V are positive. Note that the Hamil-
tonian has global SU~2! spin symmetry. Following the pre-
vious studies on models with correlated-hopping
interactions,28 we consider the CDW, SDW, BCDW, and
bond-spin-density-wave~BSDW! phases as potential ordered
ground states at half filling. They are characterized by the
order parameters

OCDW[~21! j~nj ,↑1nj ,↓!, ~2.2a!

OSDW[~21! j~nj ,↑2nj ,↓!, ~2.2b!

OBCDW[~21! j~cj ,↑
† cj 11,↑1cj ,↓

† cj 11,↓1H.c.!, ~2.2c!

OBSDW[~21! j~cj ,↑
† cj 11,↑2cj ,↓

† cj 11,↓1H.c.!. ~2.2d!

The order parameter of the BCDW state corresponds to the
Peierls dimerization operator. We note that the BCDW state
can be also regarded as thep-density-wave state,53 as
the order parameter of the BCDW state can be written
as ( jOBCDW}(k,ssin(ka) ck,s

† ck1(p/a),s , where ck,s

5N21/2( je
2 ikRjcj ,s with Rj5 ja (a: the lattice spacing,N:

the number of sites!. The BSDW state describes a site-off-
diagonal SDW state.28

A. g-ology approach

The hoppingt generates the energy band with dispersion
«k522tcoska, where the Fermi points are atk56kF
56p/2a at half filling. In order to analyze the low-energy
physics near the Fermi points, we introduce a momentum
cutoff L (0,L,kF) and divide the momentum space into
the three sectors~Fig. 1! ~i! kPR, ~ii ! kPL, and ~iii !
k¹(RøL), whereR5@kF2L,kF1L# and L5@2kF2L,
2kF1L#. We then introduce the following fermion opera-
tors:
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ck,s5H ak,1,s for kPR

ak,2,s for kPL

bk,s otherwise.

~2.3!

Electrons near the Fermi points are shuffled by the two-
particle scattering:H int5U( jnj ,↑nj ,↓1V( jnj nj 11. Follow-
ing the standardg-ology approach,18,54 we will focus on the
scattering processes between electrons near the Fermi points,
i.e., the scattering processes which involveak,6,s only. The
Hamiltonian for such interaction processes is

H int51
g1i

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,2p,sak3 ,2p,s

† ak4 ,p,s :

1
g1'

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,2p,sak3 ,2p,s̄

†
ak4 ,p,s̄ :

1
g2i

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,p,sak3 ,2p,s

† ak4 ,2p,s :

1
g2'

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,p,sak3 ,2p,s̄

†
ak4 ,2p,s̄ :

1
g3i

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,2p,sak3 ,p,s

† ak4 ,2p,s :

1
g3'

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,2p,sak3 ,p,s̄

†
ak4 ,2p,s̄ :

1
g4i

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,p,sak3 ,p,s

† ak4 ,p,s :

1
g4'

2L (
ki ,p,s

:ak1 ,p,s
† ak2 ,p,sak3 ,p,s̄

†
ak4 ,p,s̄ :, ~2.4!

wheres̄5 ↓(↑) for s5 ↑(↓), L is the length of the system,
and : : denotes normal ordering. The summation over the
momentumki is taken under the condition of the total mo-
mentum being conserved~equal to62p/a for the umklapp
scattering!. The index p51/2 denotes the right-/left-
moving electron. The coupling constantsg1i and g1' (g3i
and g3') denote the matrix elements of the backward~um-

klapp! scattering, whileg2i and g2' (g4i and g4') denote
the matrix element of the forward scattering with the differ-
ent ~same! branchp56. The indexi(') of the coupling
constants denotes the scattering of electrons with same~op-
posite! spins.

B. Vertex corrections

In the conventional weak-coupling approach to the 1D
EHM,17,18 one estimates the coupling constants in Eq.~2.4!
only up to the lowest order inU andV:

g1'5g3'5~U22V!a, ~2.5a!

g2'5g4'5~U12V!a, ~2.5b!

g1i5g3i522Va, ~2.5c!

g2i5g4i512Va. ~2.5d!

In analyzing the low-energy physics of Eq.~2.4!, one then
employs the standardg-ology approach,54 i.e., the perturba-
tive RG method, and obtains flow equations for the marginal
terms in Eq.~2.4!. From this RG analysis18,54 one finds that
the g3' term generates a gap in the charge excitation spec-
trum if ug3'u.2(g2i1g2'2g1i) andg3'Þ0, whereas the
g1' term yields a gap in the spin excitation spectrum if
ug1'u.2(g2i2g2'2g1i) and g1'Þ0. Hence, with the
lowest-order coupling constants Eq.~2.5!, one would con-
clude that the charge~spin! excitations become massless at
U22V50 (U22V>0). This would mean that, asU in-
creases, both the charge and spin sectors become critical si-
multaneously atU52V, where a direct and continuous
CDW-SDW transition takes place. This analysis is found to
be insufficient from the following argument. The~accidental!
simultaneous vanishing ofg3' and g1' results from the
lowest-order estimate inU andV and there is no symmetry
principle that enforcesg1' andg3' to vanish simultaneously.
It is possible that the higher-order corrections tog lift the
degeneracy of zeros and change the topology of the phase
diagram. Therefore, in order to analyze the phase diagram at
U'2V, we need to go beyond the lowest-order calculation
of the coupling constants in theg-ology. In this section, we
compute the vertex corrections due to virtual processes in-
volving high-energy states55 by integrating outbk,s . This
procedure allows us to obtain the effective coupling con-
stantsg’s that include higher-order corrections.

The second-order vertex diagrams for the coupling con-
stants are shown in Fig. 2. The solid lines denote the low-
energy statesak,6,s , while the dashed lines denote high-
energy statesbk,s . The nonzero contributions from the
second-order virtual processes~a!–~e! are

dg1'
(a)52dg3'

(b)52
U2

4pt
D1a1

V2

pt
D2a, ~2.6a!

dg1'
(c)51dg3'

(c)51
V~U22V!

pt
D1a, ~2.6b!

FIG. 1. Single-particle energy band. The annihilation operator of
an electron near the Fermi points with momentumkP@2kF2L,
2kF1L#(kP@kF2L,kF1L#) is denoted ak,2,s (ak,1,s), and
that of an electron far away from the Fermi points is denotedbk,s .
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dg2'
(a)52dg2'

(b)52
U2

4pt
D1a2

V2

pt
D2a, ~2.6c!

dg1i
(a)51

V2

pt
D2a, ~2.6d!

dg1i
(c)52

~U22V!214V2

4pt
D1a2

V2

pt
D2a, ~2.6e!

dg2i
(a)52

V2

pt
D2a, ~2.6f!

dg3i
(c)52

~U22V!214V2

4pt
D1a1

V2

pt
D2a, ~2.6g!

where

D1~L![E
2p/21aL

p/22aL dk

cosk
, ~2.7a!

D2~L![E
2p/21aL

p/22aL

dk
sin2k

cosk
. ~2.7b!

By introducing C1(L)[2 ln@cot(aL/2)# and C2(L)
[2 cosaL, D1(L) and D2(L) are rewritten asD1(L)
5C1(L) andD2(L)5C1(L)2C2(L). In terms ofC1 and
C2, the coupling constants with second-order corrections are
given by

g1'5~U22V!aF12
C1

4pt
~U22V!G2

C2

pt
V2a,

~2.8a!

g1i522Va2
C1

4pt
~U22V!2a2

C2

pt
V2a, ~2.8b!

g3'5~U22V!aF11
C1

4pt
~U16V!G1

C2

pt
V2a,

~2.8c!

g3i522Va2
C1

4pt
~U22V!2a1

C2

pt
V2a, ~2.8d!

and g2i512Va, g2'5(U12V)a, g4i512Va, and g4'

5(U12V)a. Except whenaL!1, the Ci ’s depend onL
only weakly, and we can setL5p/4 in the following analy-
sis as we are interested in the qualitative feature of the phase
diagram~different choices will only lead to small quantita-
tive changes in phase boundaries!. Incidentally, the logarith-
mic divergence ofC1(L) in the limit L→0 leads to the
familiar one-loop RG equations.

C. Bosonization

Having integrated out the high-energy virtual scattering
processes, we now focus on the low-energy states and linear-
ize the dispersion ofak,6,s around the Fermi points. The
kinetic-energy term with the linearized dispersion is given by

H05 (
kPR,s

vF~k2kF!ak,1,s
† ak,1,s

1 (
kPL,s

vF~2k2kF!ak,2,s
† ak,2,s , ~2.9!

wherevF52ta is the Fermi velocity. The field operators of
the right- and left-moving electrons are given by

c1,s~x![
1

AL
(
kPR

eikx ak,1,s , ~2.10a!

c2,s~x![
1

AL
(
kPL

eikx ak,2,s . ~2.10b!

We apply the Abelian bosonization method and rewrite the
kinetic-energy termH05*dxH0 in terms of bosonic phase
fields as~see Appendix A!

H05
vF

4p
@~2pPu!21~]xu!2#1

vF

4p
@~2pPf!21~]xf!2#,

~2.11!

whereu (f) is the bosonic field whose spatial derivative is
proportional to the charge~spin! density, @u(x),f(y)#50.
The operatorsPu and Pf are canonically conjugate vari-
ables tou andf, respectively, and satisfy the conventional
commutation relations, @u(x),Pu(x8)#5@f(x),Pf(x8)#
5 id(x2x8). We also introduce chiral bosonic fields

u6~x![
1

2 Fu~x!72pE
2`

x

dx8 Pu~x8!G , ~2.12!

f6~x![
1

2 Ff~x!72pE
2`

x

dx8 Pf~x8!G . ~2.13!

One can easily verify that these chiral fields satisfy the
commutation relations@u6(x),u6(x8)#5@f6(x),f6(x8)#
56 i (p/2) sgn(x2x8) and @u1(x),u2(x8)#
5@f1(x),f2(x8)#5 ip/2. In terms of these fields, the
kinetic-energy density reads

FIG. 2. Vertex diagrams with second-order corrections@~a!–~e!#.
Solid lines denote electron states in the momentum spacekPR or
kPL, while the dashed lines denote electron states in the other
momentum space.
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H05
vF

2p (
p51,2

@~]xup!21~]xfp!2#. ~2.14!

To express the electron field operatorscp,s with the
bosonic phase fields, we introduce a new set of chiral
bosonic fields

wp,↑5up1fp , wp,↓5up2fp , ~2.15!

which obey the commutation relations

@w6,s~x!,w6,s8~x8!#56 ip sgn~x2x8! ds,s8 ,
~2.16a!

@w1,s~x!,w2,s8~x8!#5 ip ds,s8 . ~2.16b!

In terms of the phase fieldswp,s , the electron field operators
can be written as

cp,s~x!5
hs

A2pa
exp@ ipkFx1 ip wp,s~x!#, ~2.17!

where the Klein factorhs satisfies the anticommutation re-
lation $hs ,hs8%52ds,s8 . One can verify that the operator
defined in Eq.~2.17! satisfies the same anticommutation re-
lation as the fermion field operator. It follows from Eq.
~2.17! that the order parameters in Eq.~2.2! are rewritten as

OSDW~x!}cosu~x!sinf~x!, ~2.18a!

OCDW~x!}sinu~x!cosf~x!, ~2.18b!

OBCDW~x!}cosu~x!cosf~x!, ~2.18c!

OBSDW~x!}sinu~x!sinf~x!. ~2.18d!

The interaction part of the HamiltonianH int , Eq. ~2.4!,
can be also expressed in terms of the boson fieldsu6 and
f6 . It has been suggested that, besides the marginal opera-
tors, operators with higher scaling dimensions can play an
important role in the first-order CDW-SDW transition22,24

which is known to occur in the strong-coupling region of the
1D EHM.18–21 We thus include all the terms of scaling di-
mension 4@52 (charge sector)12 (spin sector)#. We also
note that there are some complications and subtleties in
bosonizing the off-site interaction term, i.e., the nearest-
neighbor interaction termV ~see Appendix A for detail!. We
obtain the bosonized Hamiltonian density,

H5
1

2p (
p51,2

@vr~]xup!21vs~]xfp!2#

1
gr

2p2
~]xu1!~]xu2!2

gs

2p2
~]xf1!~]xf2!

2
gc

2p2a2
cos 2u1

gs

2p2a2
cos 2f

2
gcs

2p2a2
cos 2u cos 2f

2
grs

2p2
~]xu1!~]xu2!cos 2f

1
gcs

2p2
~]xf1!~]xf2!cos 2u

1
grs

2p2
a2~]xu1!~]xu2!~]xf1!~]xf2!. ~2.19!

The renormalized velocities arevr52ta1(g4i1g4'

2g1i)/2p and vs52ta1(g4i2g4'2g1i)/2p. The mar-
ginal terms with the couplingsgr andgc (gs andgs) deter-
mine low-energy properties of the charge~spin! modes,18,54

where gr5g2'1g2i2g1i , gc5g3' , gs5g2'2g2i1g1i ,
andgs5g1' . Thegcs , grs , gcs , andgrs terms with scaling
dimension 4 couple the spin and charge degrees of freedom.
The gcs coupling comes from the umklapp scatteringg3i .
Thegrs (grs) coupling is generated from the backward scat-
tering of antiparallel-~parallel-! spin electrons while thegcs

coupling is generated from the umklapp scattering of elec-
trons with antiparallel spins~see Appendix A!. These cou-
pling constants are given bygcs5grs5gcs5grs522Va to
lowest order inV. Cannon and Fradkin examined the effect
of the gcs term and argued that it plays a crucial role in the
first-order CDW-SDW transition.22 Voit included thegrs and
gcs terms, as well as thegcs term, in the perturbative RG
analysis of the coupling constants, but did not consider the
grs term.24 Here we note that it is important to keep thegrs

term as well, since the global SU~2! symmetry in the spin
sector is guaranteed only whengs5gs , gcs5gcs , andgrs
5grs .

D. Renormalization-group equations

We perform a perturbative RG calculation to examine the
low-energy properties of the 1D EHM in the weak-coupling
regime, taking into account quantum fluctuations of the
phase fields. The operator product expansion~OPE! tech-
nique allows us to systematically handle the higher-order
terms in the bosonized Hamiltonian~2.19!. The one-loop RG
equations that describe changes in the coupling constants
during the scaling of the short-distance cutoff (a→aedl) are
given by ~see Appendix B for their derivation!

d

dl
Gr5 12 Gc

21Gcs
2 1Gs Grs , ~2.20!

d

dl
Gc5 12 Gr Gc2Gs Gcs2Gcs Grs , ~2.21!

d

dl
Gs5 22 Gs

22Gc Gcs2Gcs
2 , ~2.22!

d

dl
Gcs5 22 Gcs12 Gr Gcs24 Gs Gcs22 Gc Gs

22 Gc Grs24 Gcs Grs , ~2.23!
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d

dl
Grs5 22 Grs12 Gr Gs24 Gc Gcs24 Gcs

2 24 Gs Grs ,

~2.24!

whereGn are dimensionless coupling constants with the ini-
tial valuesGn(0)5gn /(4pta). The number of the indepen-
dent coupling constants is five, since the SU~2! spin symme-
try guarantees the relationsGs5Gs , Gcs5Gcs , and Grs

5Grs to hold in the scaling procedure. From these scaling
equations, one finds that theGr , Gc , andGs terms are mar-
ginal ~the scaling dimension52!,56,57 while theGcs andGrs
terms are irrelevant operators of the scaling dimension 4.

III. PHASE DIAGRAM OF THE HALF-FILLED
EXTENDED HUBBARD MODEL

A. Bond-charge-density-wave state

In this section, we show that the BCDW phase exists in
between the CDW and SDW phases in the weak-coupling
region of the 1D EHM.

First we focus on the weak-coupling limitU,V!t, where
we can neglect the irrelevant terms of scaling dimension 4
and restrict ourselves to the marginal terms} gr , gs , gc ,
andgs . Effects of the irrelevant terms are discussed later in
this section. Within this approximation, the Hamiltonian re-
duces to two decoupled sine-Gordon models, and we can
analyze the properties of the spin and charge modes, sepa-
rately. The one-loop RG equations for these coupling con-
stants are given by Eqs.~2.20!–~2.22! with Gcs5Grs50:

d

dl
Gr~ l !52 Gc

2~ l !, ~3.1!

d

dl
Gc~ l !52 Gr~ l ! Gc~ l !, ~3.2!

d

dl
Gs~ l !522 Gs

2~ l !. ~3.3!

The spin excitations are controlled by theGs coupling,
which is marginally relevant~marginally irrelevant! when
Gs,0 (Gs.0). If gs,0, then uGs( l )u increases with in-
creasingl. In this case the phase fieldf is locked atf50
modp to gain the energy@see Eq.~2.19!#, and consequently
the spin excitations have a gap. On the other hand, ifgs
.0, thenuGs( l )u decreases to zero asl increases, and thef
field becomes a free field; the spin sector has massless exci-
tations. The approach ofGs to zero is very slow (;1/l ), and
thef field has a strong tendency to be nearf5p/2 modp.
Although it eventually fails to lock the phasef, the margin-
ally irrelevant coupling still has an impact on low-energy
properties by giving rise to logarithmic corrections to corre-
lation functions.58

The charge sector is governed by the two couplingsGc
and Gr , whose RG flow diagram is of the Kosterlitz-
Thouless type. Sincegr5(U16V)a.0, Gc is a relevant
coupling and always flows to strong-coupling regime, unless
gc50. This means thatGc( l ) has two strong-coupling fixed

points,Gc( l )→` andGc( l )→2`, depending on its initial
valuegc.0 andgc,0. As seen from Eq.~2.19!, the relevant
gc with positive~negative! sign implies the phase locking of
u at the positionu50 (p/2) modp.

From the above standard arguments, the ground state can
be identified by simply looking at the initial value of the
coupling constantsgc andgs . The ground state is classified
into four cases as summarized in Table I, and the positions of
locked phases (u,f) for respective cases are shown in Fig. 3.

~i! gs,0 and gc,0: The phase fields are locked at
(u,f)5„(p/2)1pI 1 ,pI 2…, whereI 1 and I 2 are integers. In
this case, among the order parameters in Eqs.~2.18!, only the
CDW order parameter has a finite expectation value, and the
ground state is found to be the CDW state. Both charge and
spin excitations are gapped.

~ii ! gs,0 and gc.0: The phase fields are locked at
(u,f)5(pI 1 ,pI 2). The nonvanishing order parameter is
thenOBCDW, and the ground state is the BCDW state. Both
charge and spin excitations are gapped.

~iii ! gs.0 andgc,0: The fieldu is locked atu5(p/2)
1pI 1, and the fieldf tends to be aroundf5(p/2)1pI 2
although it is not locked in the low-energy limit. In this case
the dominant correlation is that of the BSDW state. The
charge excitations are gapped whereas the spin excitations
are gapless.

~iv! gs.0 andgc.0: The fieldu is locked atu5pI 1,
whereas the fieldf tends to be nearf5(p/2)1pI 2. The
dominant correlation is the SDW order. The charge excita-
tions are gapped while the spin excitations are gapless.

Combining the results of Table I and the coupling con-

TABLE I. Possible ground-state phases and positions of~quasi!
locked phase fields determined only from the marginal terms in Eq.
~2.19!.

Phase (u,f) (gc ,gs)

SDW (0,6p/2), (p,6p/2) (1,1)
CDW (6p/2,0), (6p/2,p) (2,2)
BCDW (0,0),(p,p), (0,p),(p,0) (1,2)
BSDW (6p/2,6p/2) (2,1)

FIG. 3. Positions of locked phase fieldsu and f in the SDW,
CDW, BCDW, and BSDW states.
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stants Eqs.~2.8a! and ~2.8c!, we obtain the ground-state
phase diagram of the 1D EHM in the weak-coupling limit.
For U larger than 2V such thatgc.0 andgs.0, we have
the SDW phase, while forU sufficiently smaller than 2V
(gc,0 andgs,0) we have the CDW phase. AtU52V, we
see from Eqs.~2.8a! and ~2.8c! that gs(5g1'),0 and gc
(5g3').0 due to theC2 term. This implies that a new
phase different from the CDW and SDW states appears for
U'2V. From Table I, we identify the new phase with the
BCDW phase. Within the approximation we employ here,
the phase boundary between the BCDW phase and the CDW
~SDW! phase is located atgc50 (gs50). In this phase dia-
gram, the charge excitations are gapful except on the CDW-
BCDW transition line, while the spin excitations are gapless
in the SDW phase and on the SDW-BCDW transition line.
From Eqs.~3.1!–~3.3!, we can estimate the charge gapDc
and the spin gapDs as

Dc'tS ugcu
ta D 2pta/gr

, Ds'texpS 2pta

gs
D ~3.4!

for ugcu!gr!ta and 0,2gs!ta, respectively.
Next we examine effects of the parallel-spin umklapp

scatteringgcs on the BCDW state. We consider the situation
very close to the CDW-BCDW transition by assuminggc
'0 andgs,0, i.e.,U22V52C2V2/pt1O(V3/t2). In this
case the spin gap is formed first as the energy scale is low-
ered. For energies below the spin gap, we can replace cos2f
with its averagê cos 2f&'(Ds/t)2. This means that the cou-
pling constantgc is modified as

gc* 5gc1gcŝ cos 2f&. ~3.5!

Thus we find that the BCDW state, which is realized for
gc* .0, becomes less favorable due to thegcs(,0) term. We
note, however, that the CDW-BCDW boundary does not
move across theU52V line because ugcŝ cos 2f&u
'2Vaexp@2c(t/V)2# is much smaller than theC2 term in Eq.
~2.8c! for V!t, where c is a positive constant. A similar
argument applies to the region near the SDW-BCDW transi-
tion. Suppose thatU22V51C2V2/pt1O(V3/t2) where
gs'0 andgc.0. In this case, as the energy scale is lowered,
the charge gap opens first and theu field is pinned atu50
mod p. Below the charge-gap energy scale, thef field is
subject to the pinning potentialgs* cos 2f with

gs* 5gs2gcŝ cos 2u&, ~3.6!

where^cos 2u&'(Dc /t)2(12Gr). Thus the BCDW phase, which
is now realized forgs* ,0, also becomes less favorable by
the2gcŝ cos 2u&(.0) term. Again the phase boundary is not
moved beyond the U52V line since ugcŝ cos 2u&u
'2Va(c8V/t)pt/V is much smaller than theC2 term in Eq.
~2.8a!, wherec8 is a constant of order 1. Therefore we con-
clude that the BCDW phase is robust against thegcs term in
the weak-coupling limit. The analysis in this section estab-
lishes the existence of the BCDW phase nearU'2V for 0
,U,V!t.

B. First-order SDW-CDW transition

In this section, we discuss how the BCDW phase becomes
unstable at strong coupling and how the two continuous tran-
sitions change into the first-order SDW-CDW transition.

To our knowledge, Cannon and Fradkin were the first to
argue that theg3i term ~describing the umklapp scattering of
parallel-spin electrons!, which is conventionally ignored due
to its large scaling dimension, can become relevant at largeU
and V and cause the first-order CDW-SDW transition.22 To
get an insight into the effect of thegcs term in the relevant
case, we perform a semiclassical analysis: we neglect spatial
variations of the fields in Eq.~2.19! and focus on the poten-
tial,

V~u,f!52gccos 2u1gscos 2f2gcscos 2u cos 2f,
~3.7!

where gcs5g3i,0. The order parameters of the SDW,
CDW, BCDW, and BSDW states take maximum amplitudes
when the fieldsu and f are pinned at (u,f)5„pI 1 ,(p/2)
1pI 2…, „(p/2)1pI 1 ,pI 2…, (pI 1 ,pI 2), and „(p/2)
1pI 1 ,(p/2)1pI 2…, respectively, whereI 1 and I 2 are inte-
gers. The potential energy in these states is obtained by in-
serting these pinned fields into Eq.~3.7!, e.g., VSDW
5V„pI 1 ,(p/2)1pI 2…, yielding

VSDW52gc2gs2ugcsu, ~3.8a!

VCDW51gc1gs2ugcsu, ~3.8b!

VBCDW52gc1gs1ugcsu, ~3.8c!

VBSDW51gc2gs1ugcsu. ~3.8d!

We find that thegcs term stabilizes the SDW and CDW states
while it works against the BCDW and BSDW states. Com-
paring these energies, we obtain the phase diagram in thegc-
gs plane at a fixedgcs ~Fig. 4!. In the presence of thegcs
term, the direct CDW-SDW transition line appears in this
phase diagram.

FIG. 4. Phase diagram obtained by minimizing the potential
V(u,f) for gcs,0. The double line denotes the first-order transi-
tion, while the single line denotes the second-order transition. Bi-
critical points are at (gc ,gs)5(6ugcsu,7ugcsu).
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We now discuss the nature of the phase transitions. The
potentialV(u,f) on various transition lines is shown in Fig.
5. On the boundary between the SDW and BCDW phases,
which is located atgs52ugcsu and gc.ugcsu, the potential
takes the form V(u,f)52gccos 2u1gscos 2f(12cos 2u)
@Fig. 5~a!#, which pins theu field atu5pI 1 and leaves thef
field completely free. We thus find that the SDW-BCDW
transition is continuous, i.e., the SDW and BCDW phases
coexist without potential barrier on the phase boundary. On
the boundary between the BCDW and CDW phases, located
at gc5ugcsu and gs,2ugcsu, the potential now takes the
form V(u,f)52gccos 2u(12cos 2f)1gscos 2f @Fig. 5~b!#.
The potential locks thef field at f5pI 2, where it has no
effect on theu field. Thus, we find that the CDW-BCDW
transition is also continuous. From similar considerations, we
find that the SDW-BSDW and BSDW-CDW transitions are
continuous as well. In Fig. 4, the phase boundaries of con-

tinuous transitions are shown by the solid lines. On the con-
trary, the phase boundary shown by the double line in Fig. 4
is of different nature from the others. The potentialV(u,f)
on the double line is shown in Fig. 5~c!, where the potential
minima are given by the isolated points (u,f)
5„pI 1 ,(p/2)1pI 2… and „(p/2)1pI 1 ,pI 2…. These minima
correspond to the SDW state and the CDW state, see Fig. 3.
The point to note is that there is a finite potential barrier of
height min(ugcsu,2ugcsu22ugcu) between the corresponding
minima for the SDW and CDW phases. Hence we conclude
that the CDW-SDW transition is first order whengcs is rel-
evant.

From the above arguments, we find that strong umklapp
scattering of the parallel-spin electrons destabilizes the
BCDW and BSDW states and gives rise to bicritical points
(gc ,gs)56(gcs ,2gcs) where the two continuous-transition
lines merge into the CDW-SDW first-order transition line.
Let us take a closer look at these bicritical points. Taking into
account the fact thatgc.0 and gs,0 for U'2V in the
original EHM, we will focus on the bicritical point at
(gc ,gs)5(ugcsu,2ugcsu). The effective potential at the bi-
critical point takes the form

V~u,f!52g~cos 2u1cos 2f2cos 2ucos 2f!, ~3.9!

which is shown in Fig. 6. This potential has an interesting
feature that its potential minima are not isolated points but
the crossing linesu5pm or f5pn (m, n: integer!. On
these lines eitheru or f becomes a free field; the theory has
more freedom than a single free bosonic field, but less than
two free bosonic fields. We thus expect that the theory of the
bicritical point should have a central charge larger than 1 but
smaller than 2. Detailed analysis of the critical theory is left
for a future study. We note that whengcs50 the first-order
CDW-SDW transition line collapses into a tetracritical point,
(gc ,gs)5(0,0), and the phase boundaries in Fig. 4 reduce to
the linesgc50 andgs50 where all the transitions are con-
tinuous.

Fabrizio et al.32 and Bajnoket al.59 discussed effects of
higher-frequency terms, such as sin 3u and cos 4u, which are
generated through the renormalization-group transformation.
From the semiclassical arguments, it can be seen that these
terms can also change a second-order transition to a first-
order transition.59 In fact, it was argued that these higher-

FIG. 5. ~Color online! The potentialV(u,f) on the SDW-
BCDW ~a!, BCDW-CDW ~b!, and CDW-SDW~c! transition lines.

FIG. 6. ~Color online! The potentialV(u,f) on the bicritical
point (gc ,gs)5(ugcsu,2ugcsu). The potential minima are the lines
u5pI 1 andf5pI 2.
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frequency terms make the SDW-CDW transition first order
in the strong-coupling regime of the 1D EHM.32 However,
we have shown that the SDW-CDW first-order transition can
occur simply due to thegcs term which is the leading irrel-
evant term in this system. Since the higher-frequency terms
are even less relevant than thegcs term, we expect that the
gcs term should play a dominant role in the first-order tran-
sition in the 1D EHM.

C. Global ground-state phase diagram

To obtain the global phase diagram of the 1D EHM, we
have numerically solved the scaling equations~2.20!–~2.24!.
We find out which phase is realized by looking at which one
of the couplingsGc , Gs , andGcs becomes relevant first, as
we have discussed in Secs. III A and III B. First, ifuGcu
grows with increasingl and reaches, say, 1 first among the
three couplings, then we stop the integration and compute
Gs* 5Gs2Gcs sgn(Gc). Since the charge fluctuations are
suppressed below this energy scale, we are left with Eq.
~3.3!, where Gs is replaced byGs* . We immediately see
from Table I that a positive~negative! Gs* leads to the SDW
~BCDW! state forGc.0 and the BSDW~CDW! state for
Gc,0. Second, ifuGsu becomes 1 first, or more precisely, if
Gs reaches21 first, then we are left with Eqs.~3.1! and
~3.2!, whereGr andGc are replaced byGr* 5Gr2Grs and
Gc* 5Gc1Gcs , respectively. We see that a positive~nega-
tive! Gc* leads to the BCDW~CDW! state. Finally, when
uGcsu reaches 1 first, we stop the calculation and compareGc
andGs . Since both charge and spin fluctuations are already
suppressed by theGcscos 2u cos 2f potential, we can deduce
the phase from the semiclassical argument. From Fig. 4 we
see that we have the SDW state forGs.2Gc and the CDW
state forGs,2Gc . Here we note that in the SDW state the
pinning potential to thef field is marginally irrelevant and
thus the spin sector should become gapless.

The phase diagram obtained in this manner is shown in
Fig. 7. The single lines denote continuous transitions, and the
double line denotes the first-order transition. In the weak-

coupling limit, the BCDW phase appears atU'2V and the
successive continuous transitions between the SDW, BCDW,
and CDW states occur asV/U increases. WhenU and V
increase along the lineU'2V, the BCDW phase first ex-
pands and then shrinks up to the bicritical point (Uc ,Vc)
'(5.0t,2.3t) where the two continuous-transition lines meet.
Beyond this point the BCDW phase disappears and we have
the direct first-order transition between the CDW and SDW
phases. The phase diagram~Fig. 7! is similar to the ones
obtained by using more sophisticated numerical methods.17,25

We note that the position of the first-order transition line in
Fig. 7 is not reliable quantitatively as we have used the per-
turbative RG equations. The recent Monte Carlo
calculation25 gives the most reliable estimate for the position
of the bicritical point, (Uc ,Vc)'„(4.760.1)t, (2.51
60.04)t…, which agrees with our estimate in Fig. 7 within
10%. The semiquantitative agreement gives us confidence
that our approach, semiclassical analysis of the low-energy
effective Hamiltonian derived with use of the perturbative
RG, is reliable even in the strong-coupling regime near the
multicritical point.

IV. EFFECT OF STAGGERED SITE POTENTIAL

In this section, we examine effects of alternating on-site
modulation of the chemical potential, i.e., the staggered site
potential, in the half-filled 1D EHM. The Hamiltonian to be
considered is given byH85H1HD with H defined in Eq.
~2.1! and

HD5D(
j ,s

~21! jnj ,s . ~4.1!

The model is called the ionic Hubbard model ifV50. When
U5V50, the system is a trivial band insulator, since theD
term induces a gap 2uDu at k56p/2 in the single-particle
spectrum and the lower band is fully filled. For many years
effects of theon-site repulsive interactionU on the band
insulator have been investigated intensively32–51 from both
numerical and analytical approaches. Using the standard
bosonization method, Fabrizio, Gogolin, and Nersesyan re-
cently argued that the ground state of the ionic Hubbard
model exhibits three phases asU increases: the band insula-
tor, the SDI, and the Mott insulator.32 The order parameter of
the SDI state is nothing but that of the BCDW state, and we
can regard the two states as essentially identical. It was also
argued that the quantum phase transition from the band in-
sulator to the SDI state belongs to the Ising universality class
whereas the other transition from the SDI state to the Mott
insulator is of the Kosterlitz-Thouless type. Recent numeri-
cal studies,34–41,45however, have reported controversial re-
sults on the existence of the SDI phase. Some claimed to find
two quantum phase transitions while others found evidences
of only one phase transition. With this issue of the SDI phase
in mind, in this section we investigate the phase diagram of
the 1D extended Hubbard model with the staggered site po-
tential and examine critical properties of the quantum phase
transitions.

FIG. 7. Phase diagram of the half-filled 1D extended Hubbard
model. The double line denotes the first-order transition, while the
single lines denote the second-order transitions. The bicritical point
is at (Uc ,Vc)'(5.0t,2.3t).

GROUND-STATE PHASE DIAGRAM OF THE ONE- . . . PHYSICAL REVIEW B 69, 035103 ~2004!

035103-9



We take into account the staggered site potential and the
correlation effects on equal footing by treating them as weak
perturbations. We use Eq.~2.17! to rewrite HD in the con-
tinuum limit asHD5*dxHD , where32,33

HD52
gD

2~pa!2
sinu cosf ~4.2!

with gD54pDa. Note that the CDW order parameterOCDW
is proportional toHD , andgD can be regarded as an external
force coupled toOCDW. This has the consequence thatOCDW
acquires a nonvanishing expectation value for any finiteU
andV, as long asgDÞ0. In this section we will denote the
insulating phase connected to the free-electron band insulator
(U5V50 andDÞ0) by the BI phase, rather than the CDW
phase.

The bosonized form of the HamiltonianH8 can be
thought of as a generalization of the so-called double sine-
Gordon~DSG! model asH8 contains sine/cosine terms with
different frequencies (sinu and cos 2u, cosf and cos 2f).
The DSG theory itself has been investigated
intensively32,59,60and shown to have a critical point belong-
ing to the Ising universality class@c5 1

2 conformal field
theory ~CFT!#. To obtain a qualitative understanding of the
critical properties in our system, we first perform a semiclas-
sical analysis in a similar way to Sec. III B, before examining
the global phase diagram ofH8 with use of the RG method.

A. Semiclassical analysis

In this section, we perform a semiclassical analysis to the
HamiltonianH85H1HD , whereH and HD are given by
Eqs.~2.19! and ~4.2!, respectively. We neglect spatial varia-
tions of the field and focus on the locking potential:

VD~u,f!52gccos 2u1gscos 2f2gcscos 2ucos 2f

2gD sinu cosf. ~4.3!

First, we examine the casegcs50, which corresponds to
the situation where thegcs term becomes irrelevant in the
RG scheme. The potential to be considered is

VD
0 ~u,f![VD~u,f!ugcs50

52gccos 2u1gs cos 2f2gD sinu cosf.

~4.4!

Due to its double-frequency structure, possible locations of
the phase locking are different from the ones we found in
Sec. III B. For example, whengc.0 (gs.0), the two kinds
of potentials proportional to sinu and cos 2u (cosf and
cos 2f) compete with each other.59,60 The locking of the
phasesu andf are determined from the saddle-point equa-
tions: cosu(4gcsinu2gDcosf)50 and sinf(24gscosf
1gDsinu)50. In order to simplify the notations, let us intro-
duce

au
0[Ucos21S gD

4gc
D U, af

0 [Ucos21S gD

4gs
D U, ~4.5!

where ugD /gcu<4, ugD /gsu<4, and 0<au
0 ,af

0 <p are as-
sumed. The solutions of the saddle-point equations yield the
following four states with distinct configurations of the
locked phase fieldsu andf ~modulo 2p): ~i! the SDW state
with u andf locked at (u,f)5(0,6p/2) or (p,6p/2); ~ii !
the BI state with (u,f)5(1p/2,0), (2p/2,p) if gD.0 and
with (u,f)5(1p/2,p), (2p/2,0) if gD,0; ~iii ! the
‘‘BCDW’’ state where the BCDW order and the CDW order
coexist and which is realized when (u,f)5(p/26au

0,0) or
(2p/26au

0 ,p); ~iv! the ‘‘BSDW’’ state where the BSDW
and the CDW order coexist and which is realized when
(u,f)5(p/2,06af

0 ) or (2p/2,6(p2af
0 )). Table II and

Fig. 8 summarize the possible ordered ground states and cor-
responding positions of locked phase fields. The potential
energies in these states are given by

VSDW
0 52gc2gs , ~4.6a!

VBI
0 51gc1gs2ugDu, ~4.6b!

VBCDW
0 52gc1gs2

gD
2

8gc
, ~4.6c!

VBSDW
0 51gc2gs2

gD
2

8gs
. ~4.6d!

In deriving Eqs. ~4.6c! and ~4.6d!, we have assumed
ugD /gcu<4 andugD /gsu<4, respectively. The CDW state is

TABLE II. Possible ordered ground states and the position of
~quasi!locked phase fields determined from Eq.~4.4!.

Phase (u,f)

SDW (0,6p/2),(p,6p/2)
BI (for gD.0) (1p/2,0), (2p/2,p)
BI (for gD,0) (1p/2,p), (2p/2,0)
BCDW „1(p/2)6au

0,0…, „2(p/2)6au
0 ,p…

BSDW (1p/2,06af
0 ), „2p/2,6„p2af

0 )…

FIG. 8. Positions of locked phase fieldsu and f in the four
states whengD.0.
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stabilized strongly by thegD term whereas the BCDW state
and the BSDW state are also stabilized by the second-order
contribution ofgD . By comparing these energies, we arrive
at the phase diagram shown in Fig. 9. As we go across the
boundary (gc5 1

4 gD) from the BI state to the BCDW state,
we find that each potential minimum splits into two minima,
e.g., (u,f)5(p/2,0)→„(p/2)6au

0 ,0…, and that the poten-
tial for the u phase field takes a double-well structure in the
BCDW state. Similarly, as we go from the BI state to the
BSDW state, each potential minimum splits into two
minima, e.g., (u,f)5(p/2,0)→(p/2,6af

0 ), and now the
potential for thef phase field has a double-well structure in
the BSDW state. As long asgcs50, any quantum phase
transition is continuous since a potential barrier between two
potential minima corresponding to two different states van-
ishes at the transition. The phase diagram~Fig. 9! indicates
that a direct transition from the SDW state to the BI state
takes place only when the parametersgc and gs are on the

multicritical point (gc ,gs)5( 1
4 ugDu, 1

4 ugDu), where the poten-
tial takes the form VD

0 (u,f)5 1
2 ugDu$211@sinu

2sgn(gD)cosf#2% and is minimized atf56@(p/2)2u#

and f56( 3
2 p1u) if gD.0, or at f56@(p/2)1u# and

f56( 3
2 p2u) if gD,0.

Let us take a closer look at low-energy excitations in the
BI state and the BCDW state. The massive sine-Gordon
model has topological excitations, solitons, and antisolitons.
They are characterized by the topological chargesQ andSz
for the charge and the spin sectors,

Q5
1

pE dx ]xu, Sz5
1

2pE dx ]xf. ~4.7!

In the noninteracting case (U5V50) with a finite D, the
lowest-energy excitation is a soliton ofu andf connecting

two neighboring minima of the2gDsinu cosf, e.g.,
(u,f)ux→2`5(2p/2,p) and (u,f)ux→`5(p/2,0). Such an
excitation carries the chargeQ561 and the spinSz56 1

2 ,
which is nothing but a single-electron excitation in the band
insulator. It has been pointed out32,46,47that in the SDI phase
~i.e., in the BCDW phase!, the topological chargeQ of the
lowest-energy excitation becomes fractional,Q562au

0/p,
reflecting the local double-well structure of the potential near
the potential minima, e.g., at (u,f)5(p/26au

0,0). This is a
unique feature of the BCDW phase and is contrasted from
the integer chargeQ561 of the lowest-energy excitation in
the pure BCDW phase where the phase fields are locked at
(u,f)5(0,0). Accordingly, the phase transition between the
BCDW state and the BI state belongs to a different univer-
sality class from the one between the pure BCDW state and
the CDW state discussed in Sec. III B. In the former case, a
small potential barrier in a double-well potential in the
BCDW state vanishes at the critical point and the effective
theory for the low-energy excitations is the ‘‘w4’’ theory
known to describe the Ising phase transition, rather than the
Gaussian theory that governs the transition between the
BCDW and CDW phases.

One might expect that a similar semiclassical analysis can
be applied to the spin fieldf. Within the semiclassical ap-
proach the topological chargeSz in the BSDW phase of Fig.
9 takes a fractional value,6af

0 /(2p). However, since the
Hamiltonian has the global SU~2! spin-rotation symmetry,
the SDW state and the BSDW state cannot have a true long-
range order. This implies that the phase fieldf cannot be
localized except in spin-gap phases wheref is locked at
^f&50 mod p. The global SU~2! symmetry thus prohibits
the Ising criticality in the spin sector. In fact, the BSDW
phase in Fig. 9 turns out to be just the BI phase.

Let us now consider the situation in whichgcsÞ0. In this
case, the phase fieldsu andf are locked in a similar way to
the casegcs50, but au

0 and af
0 are modified intoau

0→au

andaf
0 →af , where

au[Ucos21F gD

4~gc2ugcsu!
GU, ~4.8a!

af[Ucos21F gD

4~gs2ugcsu!
GU. ~4.8b!

Here we have assumedugD /(gc2ugcsu)u<4 and ugD /(gs
2ugcsu)u<4. The potential energies in the four states be-
come

VSDW52gc2gs2ugcsu, ~4.9a!

VBI51gc1gs2ugcsu2ugDu, ~4.9b!

VBCDW52gc1gs1ugcsu2
gD

2

8~gc2ugcsu!
, ~4.9c!

VBSDW51gc2gs1ugcsu2
gD

2

8~gs2ugcsu!
. ~4.9d!

FIG. 9. Phase diagram obtained by minimizing the potential
energy VD

0 (u,f) @Eq. ~4.4!#. The phase boundaries between the
SDW state and the BCDW state, and between the SDW state and
the BSDW state are given by the curvegs5gD

2 /(16gc) with gc

.0. The phase boundaries between the BI state and the BCDW
state, and between the BI state and the BSDW state are given by the
lines gc5

1
4 ugDu with gs,

1
4 ugDu and gs5

1
4 ugDu with gc,

1
4 ugDu,

respectively. All the phase transitions in this figure are continuous.

The tetracritical point is located at (gc ,gs)5( 1
4 ugDu, 1

4 ugDu).
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By comparing these energies we obtain the phase diagram
~Fig. 10!. In the limit gD→0 this phase diagram reduces to
Fig. 4. One can easily find that thegcs term favors the SDW
state and the BI state over the BCDW state and the BSDW
state. The direct SDW-BI transition line acquires a finite
length in the phase diagram, like in Fig. 4. The analysis of
critical properties of each quantum phase transition is more
complicated than that in Sec. III due to the presence of two
kinds of charge-spin coupled terms, thegD and gcs terms.
Along the phase boundary between the SDW state and the BI
state, the potential energy is minimized at discrete points,
(u,f)5(2p/2,p), (0,6p/2), (p/2,0), (p,6p/2) for
gD.0, or at (u,f)5(2p/2,0), (0,6p/2), (p/2,p),
(p,6p/2) for gD,0. These points correspond either to the
SDW state or to the BI state~see Table II!. Since any path
connecting these potential minima has to go over a potential
barrier, the direct SDW-BI transition is first order. In addi-
tion, both the transition between the SDW state and the
BCDW state and that between the SDW state and the BSDW
state become first order whengcsÞ0. On the phase bound-
ary between the SDW state and the BCDW state, the poten-
tial has isolated minima at (u,f)5(0,6p/2), (p,6p/2),
(2p/26au ,p), and (1p/26au ,0). The pinning of the
phase fields at these minima corresponds either to the SDW
state or to the BCDW state~see Fig. 8!. On the multicritical
points at (gc ,gs)5(1ugcsu1

1
4 ugDu,2ugcsu1

1
4 ugDu) and

(2ugcsu1
1
4 ugDu,1ugcsu1

1
4 ugDu), the potential takes the

form

VD
c1~u,f!52ugcsu~cos 2u1cos 2f2cos 2u cos 2f!

1
1

2
ugDu$211@sinu2sgn~gD!cosf#2%,

~4.10a!

VD
c2~u,f!51ugcsu~cos 2u1cos 2f1cos 2u cos 2f!

1
1

2
ugDu$211@sinu2sgn~gD!cosf#2%,

~4.10b!

respectively. The potential minima ofVD
c1(u,f) and

VD
c2(u,f) are located at (u,f)5(2p/2,p), (0,6p/2),

(p/2,0), and (p,6p/2) for gD.0 and at (u,f)
5(2p/2,0), (0,6p/2), (p/2,p), and (p,6p/2) for gD

,0.
Finally, we note that even in the SDW state~the Mott

insulator! the CDW order parameter has a nonvanishing ex-
pectation value. This is because the alternating site potential
HD has the same form as the CDW order parameterOCDW
}sinu cosf. Even though the semiclassical analysis indi-
cates that the phase fields are pinned, say, at (u,f)5(0,
6p/2), quantum fluctuations of the fields around the pin-
ning position lead to a nonvanishing^OCDW&. This can be
easily seen in the limit of smallD, where

^OCDW&}TrFexpF2E dx~H1HD!Gsinu cosf G
}gD TrFexpS 2E dxHD sin2u cos2f GÞ0.

~4.11!

B. Renormalization-group analysis

We perform RG analysis to take into account quantum
fluctuations that are ignored in the semiclassical analysis. As
in Sec. III, we obtain the RG equations using the OPE
method~see Appendix B!:

d

dl
GD51GD1

1

2
GD Gr2GD Gc2

3

2
GDGs

2
3

4
GDGcs2

3

8
GD Grs , ~4.12!

d

dl
Gr5 1

1

4
GD

2 12 Gc
21Gcs

2 1Gs Grs , ~4.13!

d

dl
Gc5 2

1

4
GD

2 12 Gr Gc2Gs Gcs2Gcs Grs ,

~4.14!

d

dl
Gs5 2

1

4
GD

2 22 Gs
22Gc Gcs2Gcs

2 , ~4.15!

d

dl
Gcs5 2

1

4
GD

2 22 Gcs12 Gr Gcs24 Gs Gcs22 Gc Gs

22 Gc Grs24 Gcs Grs , ~4.16!

FIG. 10. Phase diagram obtained by minimizing the potential
energyVD(u,f) @Eq. ~4.3!# for gcs,0. The phase boundaries are
given by gs52gc1

1
2 ugDu between the SDW and the BI states,

gc5ugcsu1
1
4 ugDu between the BI and the BCDW states,gs5ugcsu

1
1
4 ugDu between the BI and the BSDW states,gs52ugcsu

1gD
2 /@16(gc2ugcsu)# between the SDW and the BCDW states, and

gc52ugcsu1gD
2 /@16(gs2ugcsu)# between the SDW and the BSDW

states. Multicritical points are located at (gc ,gs)5(1ugcs

u1 1
4 ugDu,2ugcsu1

1
4 ugDu) and (2ugcsu1

1
4 ugDu,1ugcsu1

1
4 ugDu).

The single lines denote second-order transitions, while the double
lines denote first-order transitions.
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d

dl
Grs5 2

1

4
GD

2 22 Grs12 Gr Gs24 Gc Gcs

24 Gcs
2 24 Gs Grs . ~4.17!

The initial value ofGD( l ) is given byGD(0)5D/t, while
those of the other coupling constants are given byGn(0)
5gn /(4pta). Since the RG equations are invariant under
the sign change ofGD (GD→2GD), we can assume
GD(0)>0 without losing generality in the following argu-
ments.

We determine the ground-state phase diagram in a similar
way as in Sec. III. That is, we integrate the scaling equations
~4.12!–~4.17! numerically and find which one of the cou-
plings @GD( l ), Gc( l ), Gs( l ), andGcs( l )] becomes most rel-
evant. By doing so, we have encountered the following four
cases.

~i! The case whereGc( l ) grows fastest and becomes 1 at
l 5 l r1 . Below this energy scale~i.e., l> l r1), the charge
fluctuations are suppressed and the phase fieldu is locked at
u50 or p. For the discussion of the ground-state properties
we may first neglect thegD term sincê sinu &cosf50. The
Hamiltonian densityH8 then reduces to

H s1
eff 5

vF

2p (
p

~]xfp!22
vF

p
Gs* ~]xf1!~]xf2!

1
vF

pa2
Gs* cos 2f, ~4.18!

whereGs* 5Gs( l r1)2Gcs( l r1). We immediately see that, if
Gs* .0, the spin excitations are gapless and the ground state
is the SDW state. On the other hand, ifGs* ,0, then the
operators proportional toGs* are relevant@Gs* ( l )→2` un-
der scaling# and the phase fields are locked as (u,f)
5(0,0),(0,p),(p,0),(p,p), which corresponds to the
BCDW state withau→p/2 ~i.e., gD→0), see Table II. This
would become the BCDW state withau,p/2 in a more
realistic treatment where thegD term is not simply ignored.

~ii ! The case whereuGc( l )u grows most rapidly and
Gc( l )→21 at l 5 l r2 . The phase fieldu is then locked at
u56p/2 for l . l r2 . Below this energy scale one can re-
place the sinu potential by its averaged value, i.e., sinu
→^sinu&561. The effective Hamiltonian atl 5 l r2 is given
by

H s2
eff 5

vF

2p (
p

~]xfp!22
vF

p
Gs* ~]xf1!~]xf2!

7
vF

pa2
GD* cosf1

vF

pa2
Gs* cos 2f, ~4.19!

whereGD* 5GD( l r2) andGs* 5Gs( l r2)1Gcs( l r2), and the
sign 2/1 of the GD term corresponds to the position of the
phase lockingu51(p/2)/2(p/2). WhenGs* .0, the two
Gs* terms are marginally irrelevant, and the only relevant
operator is7cosf. Then the phase fieldf is locked atf
50 or p, depending on the position of the charge phase

locking u51(p/2) or 2(p/2). On the other hand, when
Gs* ,0, bothGD* andGs* terms become relevant. However,
these terms do not compete with each other. The only effect
of the GD* term is to lift the degeneracy between the neigh-
boring minima of2cos 2f, and hence the position of the
phase locking is the same as in the caseGs* .0. Therefore,
regardless of the sign ofGs* , the resultant phase is found to
be the BI state with the phase locking at (u,f)5(p/2,0) or
(2p/2,p).

~iii ! The case where eitheruGcs( l )u or uGD( l )u is most
relevant. Then both charge and spin fluctuations are sup-
pressed, and the classical treatment is sufficient at lower en-
ergy scale. In this case, we find to which phase the ground
state belongs by substituting the parametersGc( l ) andGs( l )
into gc andgs in Fig. 10.

~iv! The case whereGs( l ) is most relevant and becomes
21 at l 5 l s . Below this energy scale the spin fluctuations
are suppressed and the phase fieldf is locked asf→0 or p
for l . l s . The effective Hamiltonian of the remaining charge
sector is

H r
eff5

vF

2p (
p

~]xup!21
vF

p
Gr* ~]xu1!~]xu2!

7
vF

pa2
GD* sinu2

vF

pa2
Gc* cos 2u, ~4.20!

where Gr* 5Gr( l s)2Grs( l s), GD* 5GD( l s), and Gc*
5Gc( l s)1Gcs( l s). The sign2/1 of the GD* term corre-
sponds to the position of the phase lockingf50/p. In this
Hamiltonian, both of the nonlinear terms, sinu and cos 2u,
are relevant operators. IfGc* ,0, then the situation is the
same as the case~ii !: the GD* andGc* terms do not compete
with each other and the possible phase locking pattern isu
51p/2 (2p/2) for f50 (p), where the ground state is
the BI state. IfGc* .0, these two terms compete with each
other, since the2(1)sinu potential tends to lock the phase
field u at u51p/2 (2p/2), while the cos 2u potential tends
to lock it at u50 or p. In this case, possible ground states
are the BI state and the BCDW state, and the quantum phase
transition between them is of the Ising-transition type with
the central chargec51/2, as discussed in the preceding sec-
tion. However, it is hard to estimate quantitatively the critical
value of the coupling constants at the quantum phase transi-
tion. One way to estimate it is to find a critical point sepa-
rating the basins of attraction to the two strong-coupling
fixed points, (GD* ,Gc* )→(1`,2`) and (0,1`), in the
perturbative RG analysis.33,61 However, with this method
where the cosine and sine terms are treated perturbatively,
we cannot see the correct picture of the DSG theory with the
double-well potential structure which leads to the Ising tran-
sition. Instead, here we estimate the critical value for the
Ising transition from the semiclassical arguments: The criti-
cal value is determined from the conditionGc* /GD* 51/4.

We have used the above scheme to obtain the phase dia-
gram shown in Fig. 11, for whichD/t50.1. The phase dia-
gram at largeU andV is similar to Fig. 7, whereas a quali-
tative charge in the phase diagram is found in the region
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U,V&t. In agreement with Fabrizio, Gogolin, and
Nersesyan,32 we obtain two critical points (Uc1,Uc2) sepa-
rating three phases on theU axis: the BI state, the BCDW
state (5 the SDI state32!, and the SDW state. From compari-
son of Figs. 7 and 11, we see that the BCDW state in Fig. 7
has evolved continuously into the BCDW state when the
alternating site potentialD is switched on. The phase dia-
gram in theD-V plane is shown in Fig. 12, whereU/t51.
Both D andV promote the BI state, while the SDW ground
state is obtained for smallD(!U) andV(!U). We find that
the region of the BCDW state obtained in the EHM atD
50 is connected to the region of the BCDW state in the
Hubbard model with alternating site potential atV50.

Let us discuss in more detail the critical regime in the
limit of small U, V, and D. In this region we can safely
neglect the irrelevant terms and setGcs( l )5Grs( l )50 in the
RG equations~4.12!–~4.17!. First we consider the caseV
50. Integrating out the RG equations~4.12!–~4.15! analyti-
cally and following the criterion discussed above, we obtain
asymptotic expansion of the critical values for smallD/t:

Uc1
0 5

2pt

ln~ t/D! F12
C

ln~ t/D!
1•••G , ~4.21!

Uc2
0 5

2pt

ln~ t/D! F11C8
ln[ln~ t/D!]

ln~ t/D!
1OS 1

ln~ t/D! D G ,
~4.22!

whereC andC8 are positive constants of order unity. TheD
dependence ofUc1

0 is different from the result in Refs. 32
since the lowest correction to 2pt/ ln(t/D) is not
O(ln@ln(t/D)#/ln(t/D)), but O(1/ln(t/D)). Our results suggest
that the ratio of Uc2

0 to Uc1
0 becomes Uc2

0 /Uc1
0 51

1C8ln@ln(t/D)#/ln(t/D). At present we do not know where
this difference comes from. We extend this analysis to the
case with finiteV(!U) and examine theV dependence of
Uc1 andUc2. We note thatGr( l )ÞGc( l ) in this case since
the SU~2! symmetry of the charge sector is broken. We inte-
grate the RG equations analytically for smallVÞ0 and ob-
tain the corrections to orderV,

Uc15Uc1
0 2VF2

3
1OS 1

ln~ t/D! D G , ~4.23a!

Uc25Uc2
0 2VF2

3
1OS ln ln~ t/D!

ln~ t/D! D G , ~4.23b!

implying that the BCDW state survives upon inclusion of the
V(!U) term. We note thatUc1 andUc2 have a similar linear
dependence onV. From Eqs.~4.23! and Figs. 11 and 12, we
conclude that the phase diagram exhibits reentrant behavior
asV increases from zero withD andU being fixed at values
near a quantum critical point.

Since the HamiltonianH8 has three free parameters (U/t,
V/t, andD/t) at half filling, the ground-state phase diagram
becomes a three-dimensional~3D! diagram. Instead of draw-
ing such a 3D plot, here we show two-dimensional tomogra-
phic phase diagrams. Figure 13 shows schematic phase dia-
grams in theD-U plane for three typical casesV/t50, V/t
!1, andV/t@1. We see that the nearest-neighbor repulsion
enhances the BI phase and destroys the BCDW phase at
largeV, where the direct transition between the BI and SDW
phases is first order. The recent numerical study of the ionic
Hubbard model40 reports a similar phase diagram as Fig.
13~a!. The first-order transition line in Fig. 13~c! asymptoti-
cally approaches the lineU52D12V.

Figure 14 shows schematic phase diagrams in theD-V
plane forU/t!1 andU/t@1. At large U and V there ap-
pears a direct first-order transition between the BI and SDW
phases in Fig. 14~b!. This first-order transition is in agree-
ment with the results obtained from the strong-coupling
analysis47 and numerical calculations.48,62

FIG. 11. Phase diagram of the half-filled extended Hubbard
model atD/t50.1. The double line denotes the first-order transi-
tion, while the single lines denote the second-order transitions.

FIG. 12. Phase diagram of the half-filled extended ionic Hub-
bard model on the plane ofD/t andV/t, whereU/t51.

FIG. 13. Schematic phase diagram of the half-filled extended
Hubbard model at~a! V50, ~b! V!t, and ~c! V@t. The single
lines represent second-order transitions, and the double line in~c!
represents a first-order transition.
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C. Discussions on previous numerical results

As mentioned in Introduction, many groups have already
reported on numerical studies of the ground-state phase dia-
gram of the ionic Hubbard model. Various numerical tech-
niques were used in these studies, including the density-
matrix renormalization-group~DMRG! method,34–37,45 the
quantum Monte Carlo method,39,41 a finite-size cluster
method,38 and a level crossing analysis.40 The main issue
here is whether or not the SDI phase~BCDW phase! exists,
and so far these numerical studies do not seem to have
reached complete agreement yet. Although most of recent
studies report that the SDI phase appears near the boundary
between the SDW phase and the BI phase,35–37,39–41,45there
are still some conflicting claims in the literature. A less con-
troversial issue63 is the determination of the second critical
value Uc2 at which a spin gap closes and which can be
estimated by computing the spin gap directly34,35 or by ex-
amining the BCDW order parameter.37,45 The determination
of the critical pointUc1 and the critical behaviors around it
are more controversial issues. One way to estimate the criti-
cal valueUc1 is to use the complex parameter introduced by
Resta and Sorrela.50 Its diverging behavior atU5Uc1 indeed
allows one to determine the critical point.34,39 Another way
to determine the critical point is to find a gap closing point in
excitation spectra. Since the charge sector is responsible for
the quantum phase transition atU5Uc1, one might try to
look at a charge gap directly. However, numerical studies
have found that a naive charge gap does not vanish at the
critical point and is always finite. Recent studies have
shown35,36,45 that the excitation gap that vanishes atU
5Uc1 is the gap to the first excited state that has the same
charge and spin quantum numbers as the ground state. Let us
discuss this point in more detail below.

In numerical studies,34–36 the ‘‘charge gap’’ Dc was
defined as Dc5E0(L/211,L/2)1E0(L/221,L/2)
22E0(L/2,L/2), whereE0(N↑ ,N↓) is the lowest energy of a
finite-size system with an even number of sitesL that hasN↑
up-spin andN↓ down-spin electrons. This quantityDc mea-
sures the energy of the excitation with the topological charge
Q561 and Sz561/2 @Eq. ~4.7!#, and is rather a single-
electron excitation gap. According to the bosonization theory
~Sec. IV A!, the charge transition atU5Uc1 is described by
the ‘‘w4’’ theory and is in the Ising universality class. The
transition occurs when two degenerate local minima of the
effective potential for the charge fields merge into a single
local minimum. As one approaches the transition point from

the Ising ordered phase~that is, the SDI phase!, the topologi-
cal chargeQ562au /p of a lowest-energy excitation is de-
creasing to zero, while excitations withQ51 remain mas-
sive. Therefore the charge gapDc does not vanish at this
Ising critical point, and this quantum phase transition cannot
be detected withDc . Qin et al. and Manmanaet al. also
used De5E1(L/2,L/2)2E0(L/2,L/2) in their numerical
analysis, whereE1(N↑ ,N↓) is the energy of the first excited
state.35,45 The quantityDe measures excited states with the
same number of electrons, whose total topological charge
Q50 in the sine-Gordon scheme. In the Ising ordered phase,
the first excited state with the topological chargeQ50
would be a bound state~or breather! of a soliton with the
topological charge12au /p and an antisoliton with the
charge22au /p, whose energy vanishes at the critical point.
On the other hand, in the Ising disordered phase near the
critical point, the potential is almost flat and has very small
curvature. The low-energy excitations would then be small
oscillations around potential minima~rather than soliton/
antisoliton! whose energy approaches zero asU→Uc120.
Thus the exciton gapDe is a right measure to detect the
quantum phase transition atU5Uc1.

V. EFFECT OF BOND DIMERIZATION

In this section, we consider the 1D EHM with staggered
bond dimerization,64,65 i.e., the Peierls modulation of the
hopping matrix element. The total HamiltonianH9 is given
by H95H1Hd , whereH is defined in Eq.~2.1! and

Hd5d(
j ,s

~21! j ~cj ,s
† cj 11,s1H.c.!. ~5.1!

Without loss of generality we can assumed.0. WhenV
50, the model is called ‘‘Peierls-Hubbard model.’’ The one-
dimensional Mott insulator, realized whenU.0 andV50,
is known to be unstable against the Peierls distortion,1,7 and
as a result the ground state changes from the SDW state into
the BCDW state regardless of the magnitude of the Hubbard
interactionU. Such an instability comes from the fact that
the bond dimerization tends to concentrate the electron den-
sity onto bonds, without any conflict with the Hubbard,U,
repulsion.36 However, the nearest-neighbor Coulomb repul-
sion V competes with thisd term, since theV interaction
likes to localize two electrons on a single site and promotes
the CDW state. Here we investigate the instability of the
BCDW state against the intersite Coulomb repulsionV, and
clarify the critical behavior near the transition between the
BCDW state and the CDW state.

The bond dimerizationHd is bosonized asHd5*dxHd ,
where

Hd52
gd

2~pa!2
cosu cosf ~5.2!

and gd58pda. One finds that the EHM with the bond
dimerization also has a two-component DSG structure. Here
the charge phase fieldu is subjected to the potential cosu

FIG. 14. Schematic phase diagram of the half-filled extended
Hubbard model at~a! U!t and~b! U@t. The single lines represent
second-order transitions, and the double line represents a first-order
transition.
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instead of sinu of the gD term @Eq. ~4.2!#, while the locking
potential for the spin phase fieldf has the same structure as
that of thegD term.

It is important to note that the BCDW order parameter
OBCDW takes a nonvanishing expectation value for anyU and
V if dÞ0, asHd}OBCDW. In this section we will not use the
term BCDW to characterize phases, and, in particular, the
phase containing the trivial Peierls insulator (U5V50 and
dÞ0) is called the Peierls insulating~PI! phase.

A. Semiclassical analysis

We begin with semiclassical analysis of the model with
the gd term. We neglect spatial variations of the phase fields
in H1Hd and consider the potential

Vd~u,f!52gccos 2u1gscos 2f2gcscos 2ucos 2f

2gdcosu cosf, ~5.3!

wheregcs5g3i,0.
First, we consider the simpler case wheregcs50, which

corresponds to the situation wheregcs is irrelevant in the RG
sense. The potential in this case is

Vd
0~u,f!52gc cos 2u1gs cos 2f2gd cosu cosf.

~5.4!

The positions of the potential minima are determined by the
saddle-point equations]Vd

0(u,f)/]u50 and]Vd
0(u,f)/]f

50. We find that the potential has the double-well structure
for the u(f) phase field whengc,2ugdu/4 (gs.ugdu/4).
Here we introducegu

0 andgf
0 (0<gu

0 ,gf
0 <p) defined by

gu
05Ucos21S 2

gd

4gc
D U, gf

0 5Ucos21S gd

4gs
D U ~5.5!

for ugd /gcu<4 and ugd /gcu<4, respectively. The solutions
to the saddle-point equations can be classified into the fol-
lowing four classes: ~i! the PI state, (u,f)
5(0,0),(0,p),(p,0), or (p,p) @for gd.0, the phase fields
are locked at (u,f)5(0,0) or (p,p), while for gd,0 the
phase fields are locked as (u,f)5(0,p) or (p,0)]; ~ii ! the
pure BSDW state, (u,f)5(p/2,6p/2) or (2p/2,6p/2);
~iii ! the ‘‘SDW’’ state with both the SDW order and the
BCDW order, (u,f)5(0,6gf

0 ) or (p,6(p2gf
0 )); and~iv!

finally, the ‘‘CDW’’ state with both the CDW order and the
BCDW order, (u,f)5(6gu

0 ,0) or (6(p2gu
0),p). The

possible ground states and positions of locked phase fields
are summarized in Table III and Fig. 15. In these states the
potential energy reads

VPI
0 52gc1gs2ugdu, ~5.6a!

VBSDW
0 51gc2gs , ~5.6b!

VSDW
0 52gc2gs2

gd
2

8gs
, ~5.6c!

VCDW
0 51gc1gs1

gd
2

8gc
. ~5.6d!

In deriving Eqs. ~5.6c! and ~5.6d!, we have assumed
ugd /gsu<4 andugd /gcu<4, respectively. The PI state is sta-
bilized by the first-order contribution of thegd term. Further-
more, if gs.0 (gc,0), the SDW state~the CDW state! is
also stabilized due to second-order contribution ofgd . The
phase diagram obtained by comparing these energies is
shown in Fig. 16.

From the above semiclassical analysis one might con-
clude that the topological chargeSz @Eq. ~4.7!# becomes frac-
tional in the SDW phase and that the Ising-type phase tran-
sition in the spin sector takes place on the boundary between
the PI state and the SDW state. However, as discussed in
Sec. IV, the global SU~2! symmetry prohibits the Ising criti-
cality in the spin sector and changes the SDW phase in Fig.
16 into the PI phase.

Next we include thegcs term. Table III still stands if we
replacegc andgs with gc2ugcsu andgs1ugcsu in gu

0 andgf
0 ,

respectively. The phase diagram obtained by minimizing the
potential energyVd(u,f) is shown in Fig. 17. New features
compared with Fig. 16 are the appearance of a first-order
transition line and of the new phase in which the ground state
has the coexisting order of the SDW, CDW, BCDW, and
BSDW. The new phase is shown as the shaded region in Fig.
17, which is surrounded by the three curves defined by

~gc1ugcsu!~gs2ugcsu!52
gd

2

16
, ~5.7a!

TABLE III. Possible ground states and the position of locked
phase fields, determined from Eq.~5.4!.

Phase (u,f)

SDW (0,6gf),„p,6(p2gf)…
CDW (6gu ,0), „6(p2gu),p…

PI ~for gd.0) (0,0),(p,p)
PI ~for gd,0) (0,p), (p,0)
BSDW (6p/2,6p/2)

FIG. 15. Positions of locked phase fieldsu andf in the respec-
tive states forgd.0.
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~gc1ugcsu!~gs1ugcsu!252
gd

2

16
~gs2ugcsu!, ~5.7b!

~gs2ugcsu!~gc2ugcsu!252
gd

2

16
~gc1ugcsu!. ~5.7c!

Let us focus on the phases which can be realized when
gs.gc , in view of the fact that in the extended Hubbard
model both gs(5g1') and gc(5g3') are given by (U
22V) in the lowest order. Along the linegs.gc in Figs. 16
and 17, there are three possible phases: the SDW state, the PI

state, and the CDW state. Since the SDW state is prohibited
by the SU~2! symmetry and becomes the PI state, we expect
to have only two phases, the PI state and the CDW state, and
a single phase transition between them. The transition is con-
tinuous at ugcs /gdu!1 and changes into a discontinuous
transition whengcs exceedsugdu/4.

B. Renormalization-group analysis

Next we perform perturbative RG analysis to take into
account quantum fluctuations. The one-loop RG equations
for coupling constants inH1Hd are given by

d

dl
Gd5 1Gd1

1

2
Gd Gr1Gd Gc2

3

2
Gd Gs1

3

4
GdGcs

2
3

8
Gd Grs , ~5.8!

d

dl
Gr5 1

1

4
Gd

212 Gc
21Gcs

2 1Gs Grs , ~5.9!

d

dl
Gc5 1

1

4
Gd

212 Gr Gc2Gs Gcs2Gcs Grs ,

~5.10!

d

dl
Gs5 2

1

4
Gd

222 Gs
22Gc Gcs2Gcs

2 , ~5.11!

d

dl
Gcs5 1

1

4
Gd

222 Gcs12 Gr Gcs24 Gs Gcs22 Gc Gs

22 Gc Grs24 Gcs Grs , ~5.12!

d

dl
Grs5 2

1

4
Gd

222 Grs12 Gr Gs24 Gc Gcs

24 Gcs
2 24 Gs Grs . ~5.13!

The initial value of Gd( l ) is given by Gd(0)52d/t and
those of the other coupling constants areGn(0)
5gn /(4pt). We note that these RG equations are invariant
under the sign change ofGd( l ). We can thus assume
Gd(0)>0 without losing generality.

To find the ground-state phase diagram of the system, we
solve the scaling equations~5.8!–~5.13! numerically, as in
the preceding sections. We determine to which phase the
ground state belongs by looking at which one of the cou-
plings Gd( l ), Gc( l ), Gs( l ), and Gcs( l ) becomes most rel-
evant. For repulsiveU and V there are four possibilities as
listed below.

~i! If Gc is most relevant andGc( l )→1 at l 5 l r1 , then
the phase fieldu is locked atu50 or p, and the effective
Hamiltonian for the spin sector atl> l r1 becomes

FIG. 16. Phase diagram obtained by minimizing the potential
energyVd

0(u,f) @Eq. ~5.4!#. The phase boundary of the BSDW state
is given by the curvegcgs52gd

2/16 with gc,0. The phase bound-
ary between the PI state and the SDW state and that between the PI
state and the CDW state are given by the linesgs5ugdu/4 with gc

.ugdu/4 and gc52ugdu/4 with gs,ugdu/4, respectively. All the
phase transitions in this figure are continuous. A multicritical point
is at (gc ,gs)5(2ugdu/4,ugdu/4).

FIG. 17. Phase diagram obtained by minimizing the potential
energyVd(u,f) @Eq. ~5.3!# drawn forugdu/8,ugcsu,ugdu/4. Multi-
critical points are located at (gc ,gs)5(2ugcsu,ugcsu) and (2 1

4 ugdu
1ugcsu,

1
4 ugdu2ugcsu). The boundary of the BSDW phase is (gc

1ugcsu)(gs2ugcsu),2gd
2/16. The edges of the PI phase are defined

by the linesgc52
1
4 ugdu1ugcsu and gs5

1
4 ugdu2ugcsu. The double

line denotes a first-order transition, and the single lines denote con-
tinuous transitions. Within the semiclassical analysis the ground
state in the shaded region has the coexisting order of the SDW,
CDW, BCDW, and BSDW.
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H s1
eff 5

vF

2p (
p56

~]xfp!22
vF

p
Gs* ~]xf1!~]xf2!

7
vF

pa2
Gd* cosf1

vF

pa2
Gs* cos 2f, ~5.14!

whereGs* 5Gs( l r1)2Gcs( l r1) andGd* 5Gd( l r1), and the
sign 2/1 of theGd* term corresponds to the location of the
phase lockingu50/p. This effective theory is the same as
Eq. ~4.19!. As seen before, regardless of the sign ofGs* , the
phase fieldf is locked atf50 or p depending on the po-
sition of the charge phase lockingu50 or p. Thus we have
the phase locking (u,f)5(0,0) or (p,p), i.e., the PI state as
the ground state. We note that due to the SU~2! spin rotation
symmetry the SDW state cannot be realized even ifGs*
.0.

~ii ! If Gc is most relevant andGc( l )→21 at l 5 l r2 , then
the phase fieldu is locked atu56p/2. The effective Hamil-
tonian for the spin part is

H s2
eff 5

vF

2p (
p

~]xfp!22
vF

p
Gs* ~]xf1!~]xf2!

1
vF

pa2
Gs* cos 2f, ~5.15!

where Gs* 5Gs( l r2)1Gcs( l r2). We have verified numeri-
cally thatGs* always becomes negative in this case. TheGs*
terms are then marginally relevant@Gs* ( l )→2` under
scaling#. The phase fields are then locked at (u,f)
5(6p/2,0),(6p/2,p), which corresponds to the CDW
phase withgu→p/2 ~i.e., gd→0, see Table III!. SinceHd
}OBCDW the order parameter of the BCDW should have a
nonvanishing expectation value. We thus conclude that the
ground state is in the CDW phase.

~iii ! If either Gd or Gcs is most relevant, both charge and
spin fluctuations are suppressed. In this case the semiclassi-
cal treatment is justified, and we can determine to which
phase the ground state belongs by substitutingGc andGs to
gc andgs in Fig. 17.

~iv! If Gs is most relevant andGs( l )→21 at l 5 l s , the
spin fluctuations are suppressed and the phase fieldf is
locked atf→0 or p below this energy scale. The effective
Hamiltonian atl> l s is given by

H r
eff5

vF

2p (
p56

~]xup!21
vF

p
Gr* ~]xu1!~]xu2!

7
vF

pa2
Gd* cosu2

vF

pa2
Gc* cos 2u, ~5.16!

where Gr* 5Gr( l s)2Grs( l s), Gc* 5Gc( l s)1Gcs( l s), and
Gd* 5Gd( l s). The sign2/1 of the Gd* term corresponds to
the phase lockingf50/p. Both of the nonlinear terms cosu
and cos 2u are relevant perturbations. IfGc* ,0, these two
terms compete with each other, and this DSG model exhibits
the Ising criticality. The ground state is either in the PI phase

or in the CDW phase, and there is an Ising-type quantum
phase transition between the two phases. Here we estimate
the Ising critical point from the semiclassical analysis. That
is, the critical value is determined from the condition
Gc* /Gd* 521/4 ~see Fig. 16!. If Gc* .0, these two terms do
not compete and thus the phase locking isu50 (p) for f
50 (p), where the ground state is the PI state.

The resultant phase diagram in theU-V plane is shown in
Fig. 18. In the weak-coupling region, the transition from the
PI state to the CDW state is characterized by the appearance
of the double-well structure of the effective potential to theu
field, and thus the phase transition in Fig. 18 belongs to the
Ising universality class. As we increaseU and V, there ap-
pears a tricritical point at (Uc ,Vc)'(4.9t,2.3t), where the
phase transition changes from second order to first order.

Figure 19 shows schematic phase diagrams in thed-U
plane for V!t and V/t@1. When d50, we obtain three
phases~the CDW, BCDW, and SDW phases! for V!t ~a!
and two phases~the CDW and SDW phases! for V@t ~b!, as
we discussed in Sec. III~see Fig. 7!. Upon turning ond, the
SDW ground state changes into the PI state, where the tran-
sition is described by the Gaussian theory. On the other hand,
the BCDW state changes into the PI state without accompa-
nying any singularity: This change is merely lifting of the
doubly degenerate BCDW ground states.

Figure 20 shows schematic phase diagrams in thed-V
plane forU50, U/t!1, andU/t@1. At U50 we have a

FIG. 18. Phase diagram of the half-filled extended Hubbard
model withd/t50.1. The second-order transition line~single line!
turns into the first-order transition line~double line! at the tricritical
point (Uc ,Vc)'(4.9t,2.3t).

FIG. 19. Schematic phase diagram of the half-filled extended
Hubbard model at~a! V!t and~b! V@t. The single lines represent
second-order transitions, and the double line represents a first-order
transition.
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single critical valueVc which has thed dependence given by
Vc}1/ln(t/d) for small d. As U and V increase, the phase
boundary approaches theU52V line. The asymptotic form
of Vc for U,V@d and d!t is given by Vc5 1

2 U
1C9 U(d/t)2U/pt, whereC9 is a numerical constant of the
order of unity~see also Fig. 18!.

VI. CONCLUSIONS

In this paper we have studied the ground-state phase dia-
gram of the one-dimensional extended Hubbard model with
on-site and nearest-neighbor repulsionU andV. By including
higher-order corrections to coupling constants in theg-ology,
we have given a plausible theoretical argument within the
RG approach for the mechanism of the appearance of the
BCDW phase atU'2V in the weak-coupling limit. Our
two-step RG approach, however, is not complete in that there
remains a weak cutoff dependence in the phase boundaries.
This, albeit minor, defect should be resolved with use of a
more sophisticated systematic RG procedure. Away from the
weak-coupling limit the umklapp scattering between the
parallel-spin electronsg3i tends to destabilize the BCDW
state and eventually gives rise to a bicritical point where the
two continuous-transition lines merge into the SDW-CDW
first-order transition line~Fig. 7!. We should note, however,
that there still remains a difficult question as to whether our
phase diagram is qualitatively correct near the multicritical
point ~which we call bicritical!. One could imagine, for ex-
ample, a possibility that a continuous phase transition be-
tween the BCDW state and the CDW state becomes first
order before reaching the multicritical point, due to higher-
order effects that are ignored in our analysis. If the correct
topology of the phase diagram is indeed the same as ours
~Fig. 7!, then the critical properties of the multicritical point
remain to be understood. We hope that these issues will be
resolved by future studies.

We have also examined effects of additional staggered site
potential and bond dimerization in the extended Hubbard
model. In the presence of the staggered site potential, we
have found that the BCDW state is smoothly connected to
the SDI phase which is obtained forV50 by Fabrizioet al.32

In this BCDW phase the BCDW order coexists with the
CDW order, and the quantum phase transition between the
BI phase~or the CDW phase! and the BCDW phase belongs
to the Ising universality class (c5 1

2 CFT!. For finite V the
BCDW phase is also destabilized by theg3i term, and the
direct first-order quantum phase transition between the SDW
state (5 Mott insulating state! and the BI state takes place

~Fig. 11!. In the presence of the staggered bond dimerization
the SDW phase becomes unstable and the ground state at
V50 turns out to be the Peierls insulating state. ForVÞ0
the phase diagram consists of two phases, the PI state and the
CDW state, which are separated by a phase transition line of
the Ising criticality~Fig. 18!.
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APPENDIX A: BOSONIZATION

In this section, we derive the phase Hamiltonian of the 1D
extended Hubbard model by using the Abelian bosonization
method.66 We include not only the marginal terms but the
leading irrelevant terms which play a crucial role in the first-
order SDW-CDW transition at strong coupling.

The Lagrangian for the free massless boson theory in a
two-dimensional Euclidean space is given by

Lu5
1

4pE dxFv~]xu!21
1

v
~]tu!2G , ~A1!

whereu is a bosonic field,t is the imaginary time, andv is
velocity. The variable canonically conjugate tou is given by

P[
]L

]u̇
5

i

2pv
]tu, ~A2!

whereu̇5]u/]t and t is the real time (t5 i t ). As usual this
system is quantized by imposing the commutation relation at
equal times:@u(x),P(x8)#5 id(x2x8). Thus the Hamil-
tonian for the free boson theory is given byHu
5 i *dx P ]tu1Lu , i.e.,

Hu5
v

4pE dxF ~2pP!21S du

dxD
2G . ~A3!

Introducing two copies of this theory with fieldsu andf
and velocityv5vF , we arrive atH0 @Eq. ~2.11!#, where the
fieldsu andf represent the ‘‘charge’’ and ‘‘spin’’ degrees of
freedom. The chiral bosonic fieldsu6(x,t) andf6(x,t) are
introduced in Eqs.~2.12! and~2.13!, respectively, where the
right-moving ~left-moving! fields are functions of t
2 i (x/vF) @t1 i (x/vF)#.66 The phase fieldu (f) and its dual
phase fieldũ (f̃) are written in terms of the chiral fields as

u5u11u2 , ũ5u12u2 , ~A4!

f5f11f2 , f̃5f12f2 . ~A5!

FIG. 20. Schematic phase diagram of the half-filled extended
Hubbard model at~a! U50, ~b! U!t, and ~c! U@t. The single
lines represent second-order transitions, and the double line repre-
sents a first-order transition.
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They satisfy the following commutation relations:

@u~x!,ũ~x8!#5@f~x!,f̃~x8!#52 i 2p Q~2x1x8!,
~A6!

whereQ(x) is the Heaviside step function.
The electron field operatorscp,s(x) are given in Eq.

~2.17! in terms of a new set of chiral bosonic fieldswp,s
introduced in Eq.~2.15!. In this bosonization schemec1,s
and c2,s anticommute, and we only need to introduce the
Klein factor ks to ensure the anticommutation relation be-
tween fields with different spins; cf. the so-calledconstruc-
tive bosonization method.67 From Eqs.~2.16! and ~2.17! the
electron-density operator becomes

rp,s~x![:cp,s
† cp,s : 5

1

2p

d

dx
wp,s~x!. ~A7!

As is well known, the Hamiltonian density of free bosons
~2.11!, i.e.,

H05
vF

4p (
p56

(
s

S dwp,s

dx D 2

5pvF(
p,s

rp,s
2 ~x!, ~A8!

is equivalent to the Hamiltonian density of free fermions
with linear energy dispersion, Eq.~2.9!. This can be shown,
for example, by using the OPE method.68

Next we bosonize the interaction termH int . Without the
nearest-neighbor repulsionV, this can be easily done as18,54

Hint
V505

g4i1g4'

4p2
@~]xu1!21~]xu2!2#1

g4i2g4'

4p2
@~]xf1!2

1~]xf2!2#1
g2i1g2'2g1i

2p2
~]xu1!~]xu2!

1
g2i2g2'2g1i

2p2
~]xf1!~]xf2!2

g3'

2~pa!2
cos 2u

1
g1'

2~pa!2
cos 2f, ~A9!

whereg’s are given in and below Eq.~2.8!. In the presence
of V, the matrix element of the umklapp process with parallel
spinsHg3i

@the g3i process in Eq.~2.4!# has a finite ampli-
tude at lowest order ing-ology. This term can be bosonized
as

Hg3i
5 2

g3i

2~pa!2
cos 2u cos 2f, ~A10!

whereg3i522Va in the lowest order inV. This term, which
couples the charge and spin degrees of freedom, is often
neglected since it is an irrelevant perturbation with scaling
dimension 4, consisting of dim@cos 2u#52 plus
dim@cos 2f#52. Cannon and Fradkin were the first to sug-
gest that this term should play an important role in the first-
order SDW-CDW transition in the half-filled EHM.22 Voit
then derived RG equations including this term. However he

did not include all the operators with scaling dimension 4
and failed to keep the spin-rotational SU~2! symmetry.24 We
have to be careful in dealing with theV interaction to include
the important terms with scaling dimension up to 4. To this
end, we focus on theV interaction and bosonize each scat-
tering process separately.

First, theg1i term54 representing the backward scattering
with parallel spins is bosonized by using Eq.~2.17! as

Va(
p,s

cp,s
† ~x! c2p,s~x!c2p,s

† ~x1a! cp,s~x1a!

52
Va

~2pa!2 (
p,s56

eip[u(x1a)2u(x)] 1 ips[f(x1a)2f(x)]

5
Va

2p2 F(
p

~]xup!212~]xu1!~]xu2!G
1

Va

2p2 F(
p

~]xfp!212~]xf1!~]xf2!G
2

Va

4p2
a2~]xu!2~]xf!21•••, ~A11!

where we have expanded the exponent in the second line up
to the ordera4 for the u sector and thef sector, separately.
Since we are interested in operators that coupleu andf as in
Eq. ~A10!, we have discarded dimension-4 terms such as
a4(]xu)4 and a4(]xf)4 that involve only one sector. Such
terms as (]xu1)(]xu2) and (]xf1)(]xf2) are already re-
tained in Eq. ~A9!, while the last term proportional to
(]xu)2(]xf)2 is a new term with scaling dimension 212,
which was missed in Ref. 24. We note that the Fermi velocity
is renormalized by theg1i term due to the presence of
(p(]xup)2 and(p(]xfp)2. This is in contrast with the con-
ventional treatment where the velocity renormalization
comes only from the forward scattering termg4.54

In a similar way, the interaction terms of backward and
umklapp scattering with opposite spins~so-calledg1' and
g3' terms,54 respectively! are bosonized as

Va(
p,s

cp,s
† ~x! c2p,s~x! c

2p,s̄
†

~x1a!cp,s̄~x1a!

52
Va

~2pa!2 (
p,s56

eip[u(x1a)2u(x)] 2 ips[f(x1a)1f(x)]

52
2Va

2~pa!2
cos 2f1

2Va

2p2
~]xu1!~]xu2!cos 2f

1
2Va

4p2 F(
p

~]xup!2Gcos 2f1•••, ~A12!
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Va(
p,s

cp,s
† ~x!c2p,s~x! cp,s̄

†
~x1a! c2p,s̄~x1a!

5
Va

~2pa!2 (
p,s56

e2 ip[u(x1a)1u(x)] 1 ips[f(x1a)2f(x)]

51
2Va

2~pa!2
cos 2u2

2Va

2p2
~]xf1!~]xf2!cos 2u

2
2Va

4p2 F(
p

~]xfp!2Gcos 2u1•••, ~A13!

where s̄5↓(↑) for s5↑(↓). The potential cos 2f in Eq.
~A12! and the potential cos 2u in Eq. ~A13! are already re-
tained in Eq.~A9!, while the other terms are new and have
the scaling dimension 212.

The forward-scattering terms (g2i , g2' , g4i , and g4')
do not generate operators of dimension 212.

Hence the total Hamiltonian is given by

H5
1

2p (
p

@vr~]xup!21vs~]xfp!2#1
gr

2p2
~]xu1!~]xu2!

2
gs

2p2
~]xf1!~]xf2!2

g3'

2p2a2
cos 2u1

g1'

2p2a2
cos 2f

1
Va

p2a2
cos 2u cos 2f1

Va

2p2 F(
p

~]xup!2

12~]xu1!~]xu2!Gcos 2f2
Va

2p2 F(
p

~]xfp!2

12~]xf1!~]xf2!Gcos 2u2
Va3

4p2 F(
p

~]xup!2

12~]xu1!~]xu2!GF(
p

~]xfp!212~]xf1!~]xf2!G .
~A14!

The renormalized velocities are given byvr52ta1(U
16V)a/(2p) and vs52ta2(U22V)a/(2p). The cou-
pling constantsg1' and g3' are defined in Eq.~2.8!, and
gr([g2i1g2'2g1i) and gs([2g2i1g2'1g1i) are given
by

gr5~U16V!a1
C1

4pt
~U22V!2a1

C2

pt
V2a, ~A15a!

gs5~U22V!a2
C1

4pt
~U22V!2a2

C2

pt
V2a. ~A15b!

For the discussion of the SDW-CDW transition in the 1D
EHM, it is sufficient to have the coupling constants of di-
mension 4 in lowest order inV. We note that due to the
SU~2! spin-rotation symmetry of the theory, the coupling
constants for spin degrees of freedom must satisfygs

5g1' , in any order ofU andV. To proceed further, we ne-
glect the terms that involveV(p(]xup)2 or V(p(]xfp)2 in
Eq. ~A14!. These terms can lead to renormalization of the
velocity through the RG transformation~see Appendix B!.
This effect can be ignored if we are interested in qualitative
feature of the ground-state phase diagram of the model. The
final form of the bosonized Hamiltonian is thus given by Eq.
~2.19!.

APPENDIX B: DERIVATION OF RENORMALIZATION-
GROUP EQUATIONS

In this section, we derive one-loop RG equations for the
coupling constants including those operators with higher
scaling dimension. Our derivation is based on the operator
product expansion~OPE! method. The interaction part of the
actionSI in the presence of the staggered site potentialGD is
given by

SI5
Gr

p E d2r ~]zu!~] z̄u!2
Gs

p E d2r ~]zf!~] z̄f!

2
GD

p E d2r

a2
:sinu::cosf:2

Gc

p E d2r

a2
:cos 2u:

1
Gs

p E d2r

a2
:cos 2f:2

Gcs

p E d2r

a2
:cos 2u::cos 2f:

2
Grs

p E d2r ~]zu!~] z̄u!:cos 2f:

1
Gcs

p E d2r ~]zf!~] z̄f!:cos 2u:

1
Grs

p E d2r a2 ~]zu!~] z̄u!~]zf!~] z̄f!, ~B1!

where z5vFt1 ix, z̄5vFt2 ix, d2r 5vFdx dt, and Gi
5gi /2pvF . In this section, the operators are explicitly nor-
mal ordered.

In order to derive the RG equations, we use the following
OPE’s:

Jr~z! Jr~w!5
1

~z2w!2
1•••, ~B2a!

J̄r~ z̄! J̄r~w̄!5
1

~ z̄2w̄!2
1•••, ~B2b!

Jr~z!:eiau(w,w̄) : 5
a

2~z2w!
:eiau(w,w̄):1•••, ~B2c!

Jr~ z̄!:eiau(w,w̄) : 5
2a

2~ z̄2w̄!
:eiau(w,w̄):1•••, ~B2d!
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:eiau(z,z̄): :e2 iau(0,0):

5
1

uzua
2 1

a

uzua
2 ~zJr2 z̄J̄r!

1
2i

uzu2
~]z] z̄u!1

ia

2uzua
2 @z2~]z

2u!1 z̄2~] z̄
2
u!#

1
a2

2uzua
2 @z2:Jr

2 :1 z̄2: J̄r
2 :#2

a2

uzua
222

Jr J̄r1•••,

~B2e!

:eiau(z,z̄): :eibu(0,0): 5
1

uzu2ab
:ei (a1b)u:1•••, ~B2f!

where we have introduced U~1! currents:Jr(z)[ i ]zu(z,z̄),
J̄r( z̄)[2 i ] z̄u(z,z̄), Js(z)[ i ]zf(z,z̄), and J̄s( z̄)
[2 i ] z̄f(z,z̄). The parametersa and b (a1bÞ0) in the
vertex operator are numerical constants which determine the
scaling dimension. In deriving the above OPE’s, we have
used the Wick theorem and the correlators:^u1( z̄)u1(v̄)&
52 1

2 ln(z̄2v̄), ^u2(z)u2(v)&52 1
2 ln(z2v), and

^u(z,z̄)u(v,v̄)&52 ln uz2vu. From Eq.~B2!, one finds

@Jr~z! J̄r~ z̄!# @Jr~0! J̄r~0!#

5
1

uzu4
1

1

uzu4
~z2:Jr

2 :1 z̄2: J̄r
2 : !1•••, ~B3a!

@Jr~z! J̄r~ z̄!#:cosau~0,0!: 52
a2

4uzu2
:cosau:1•••,

~B3b!

@Jr~z! J̄r~ z̄!#:sinau~0,0!:52
a2

4uzu2
:sinau:1•••,

~B3c!

:cosau~z,z̄!::cosau~0,0!:

5
1

2uzua
2 1

a2

uzua
2 ~z2:Jr

2 :1 z̄2: J̄r
2 : !

2
a2

2uzua
222

Jr J̄r1
1

2
uzua

2
:cos 2au:1•••, ~B3d!

:cosau~z,z̄!::cosbu~0,0!:

5
1

2uzuab
:cos@~a2b!u#:

1
1

2uzu2ab
:cos@~a1b!u#:1•••. ~B3e!

Exchangingu→f andr→s yields the OPE’s for spin phase
fields.

Expanding the action in powers of coupling constants and
integrating out short-distance parts, we obtain the scaling
equations,

d

dl
GD5 GDS 11

1

2
Gr2

1

2
Gs2Gc2Gs2

1

2
Gcs

2
1

4
Grs2

1

4
Gcs2

1

8
GrsD , ~B4!

d

dl
Gr5 1

1

4
GD

2 12 Gc
21Gcs

2 1Gs Grs , ~B5!

d

dl
Gs5 2

1

4
GD

2 22 Gs
22Gcs

2 2Gc Gcs , ~B6!

d

dl
Gc5 2

1

4
GD

2 12 Gr Gc2~Gs1Grs!Gcs , ~B7!

d

dl
Gs5 2

1

4
GD

2 22 Gs Gs2~Gc1Gcs!Gcs , ~B8!

d

dl
Gcs5 2

1

4
GD

2 22~12Gr1Gs1Grs!Gcs

22 ~Gc1Gcs!~Gs1Grs!, ~B9!

d

dl
Grs5 2

1

4
GD

2 22~11Gs!Grs12 Gr Gs

24 ~Gc1Gcs! Gcs22 Gs Grs , ~B10!

d

dl
Gcs5 2

1

4
GD

2 22~12Gr!Gcs22 Gs Gc

24 ~Gs1Grs! Gcs22 Gc Grs , ~B11!

d

dl
Grs5 2

1

4
GD

2 22 Grs12 Gr Gs24 Gcs
2

24 Gc Gcs24 Gs Grs . ~B12!

Here we note that the number of the RG equations can be
reduced due to the spin-rotational SU~2! symmetry. To show
this point more transparently, we introduceX( l ), Y( l ), and
Z( l ) by X( l )5Gs( l )2Gs( l ), Y( l )5Gcs( l )2Gcs( l ), and
Z( l )5Grs( l )2Grs( l ). Their RG equations are obtained
from Eqs.~B5!–~B12! as

d

dl
X52 Gs X1~Gc2Gcs! Y, ~B13a!

d

dl
Y5 2 ~211Gr1Gs1Grs! Y12 ~Gc2Gcs!~X2Z!,

~B13b!
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d

dl
Z5 22 ~12Gs! Z22 ~Gr1Grs! X24 ~Gc2Gcs! Y.

~B13c!

One immediately finds that, ifX(0)5Y(0)5Z(0)50, they
vanish for alll, i.e.,X( l )5Y( l )5Z( l )50. This implies that
Gs( l )5Gs( l ), Gcs( l )5Gcs( l ), andGrs( l )5Grs( l ), which
are nothing but the constraints on the coupling constants due

to the spin-rotational SU~2! symmetry. In this case, we can
set Gs( l )5Gs( l ), Gcs( l )5Gcs( l ), and Grs( l )5Grs( l ) in
the RG equations~B4!–~B12!. Then the RG equations are
given by Eqs.~4.12!–~4.17!. The RG equations for the 1D
EHM without the staggered site potential are obtained by
settingGD( l )50, Eqs.~2.20!–~2.24!.

The RG equations can also be obtained in the presence of
the bond dimerization in a similar way.
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