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Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model
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We revisit the ground-state phase diagram of the one-dimensional half-filled extended Hubbard model with
on-site (U) and nearest-neighbdV) repulsive interactions. In the first half of the paper, using the weak-
coupling renormalization-group approact-¢logy) including second-order corrections to the coupling con-
stants, we show that bond-charge-density-wdB€DW) phase exists fot)~2V in between charge-density-
wave (CDW) and spin-density-wavéSDW) phases. We find that the umklapp scattering of parallel-spin
electrons disfavors the BCDW state and leads to a bicritical point where the CDW-BCDW and SDW-BCDW
continuous-transition lines merge into the CDW-SDW first-order transition line. In the second half of the paper,
we investigate the phase diagram of the extended Hubbard model with either additional staggered site potential
A or bond alternatiod. Although the alternating site potentialstrongly favors the CDW stat¢hat is, a band
insulatoy, the BCDW state is not destroyed completely and occupies a finite region in the phase diagram. Our
result is a natural generalization of the work by Fabrizio, Gogolin, and Ners¢Bysis. Rev. Lett83, 2014
(19991, who predicted the existence of a spontaneously dimerized insulating state between a band insulator
and a Mott insulator in the phase diagram of the ionic Hubbard model. The bond alterdat@stroys the
SDW state and changes it into the BCDW st@ie Peierls insulating stateAs a result the phase diagram of
the model withs contains only a single critical line separating the Peierls insulator phase and the CDW phase.
The addition of A or § changes the universality class of the CDW-BCDW transition from the Gaussian
transition into the Ising transition.

DOI: 10.1103/PhysRevB.69.035103 PACS nuntder71.10.Fd, 71.10.Hf, 71.10.Pm, 71.30

I. INTRODUCTION the on-site Coulomb repulsiod, the ground state is in the
Mott insulating state where the spin sector exhibits quasi-
It is well known that a one-dimensionélD) spin system long-range order of spin-density wa@DW); we call it the
has instability to dimerization that changes the system into &DW state. In the opposite limit of strong the ground state
nonmagnetic insulating state, the so-called spin-Peierlsf the half-filled EHM has a long-range order of the charge-
state! Indeed the spin-Peierls state is realized in many sysdensity wavgCDW); we call this state the CDW state. Fur-
tems including quasi-one-dimensional organic compotifids thermore, in the atomic limit where the electron hoppirig
and the inorganic materfaCuGeQ, and its properties have ignored, the CDW state appears forx 2V whereas the uni-
been studied extensively both experimentally and theoretiform state corresponding to the SDW state is stableUor
cally. Of particular interest is a situation in which a dimer- >2V in one dimension. Strong-coupling perturbation theory
ized state appears spontaneously due to strong correlatioitst has established that a first-order phase transition between
and frustratior’. A well-known example is the frustrated the SDW state and the CDW state occurdlat2V.18-2As
spin+ Heisenberg chain with nearest-neighkly, and next-  for the weak-coupling regime, perturbative renormalization-
nearest-neighbor)J,, antiferromagnetic exchange interac- group (RG) approach og-ology led to a similar conclusion
tions, where a spontaneously dimerized phase is realized fohat the ground state at half filling is either in the SDW state
J,=J,.=0.24),.5 Other systems of current interest are or in the CDW state with a continuous phase-transition line
quasi-one-dimensional electron systems in organic materialst U=2V.8 Thus, it had been considered for a long time
where the spin-Peierls state appears due to strong electroat the ground-state phase diagram of the EHM at half fill-
correlation at half filling=*and at quarter filling>*® ing has only two phases, the SDW and CDW states, and that
Recently it was pointed out by Nakamura andthe order of the phase transition Ht=2V changes from
co-workers’ that a spontaneously dimerized state occupies @ontinuous to first order at a tricritical point which was
finite parameter space in the ground-state phase diagram speculated to exist in the intermediate coupling
the 1D half-filled Hubbard model with the nearest-neighborregime?%:?2=24This common view was revised by the Naka-
repulsionV, i.e., the extended Hubbard mod&HM). This  mura’s discovery that the BCDW state existslat=2V in
spin-Peierls state is often called bond-charge-density-wavieetween the SDW and CDW phases in the weak-coupling
(BCDW) state or bond-ordered-wave state. The appearanaegion?!’ which is supported by recent large-scale Monte
of the BCDW state in the purely electronic model is non-Carlo calculation®?® Related studies of the dimerized state
trivial and has attracted much attention from theoretical pointn the EHM with additional correlation effects can be found
of view. To appreciate this surprising result, let us considein Refs. 27-31.
some limiting cases. In the limit of weak nearest-neighbor A related and still controversial issue of current interest is
repulsionV, or in the half-filled Hubbard model with only whether or not a spontaneously dimerized phase exists in the
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1D Hubbard model with alternating site potential, the so-of the EHM is continuously deformed to the SDI phase upon
called ionic Hubbard modéf~*° This system was intro- introducing the alternating site potential. In Sec. V, we study
duced as a simple minimal model for the neutral-ionic tranthe 1D EHM with additional bond dimerization, but without
sitions observed in quasi-one-dimensional  organidhe staggered potential. This model exhibits a quantum phase
material4®~*® and for ferroelectric perovskité$®® Obvi-  transition between a dimerized Peierls insulator and a CDW
ously the model has two insulating phases. The ground stafiate. Section VI is devoted to conclusions, and details of the
is (i) a band insulator with the CDW order when the stag-téchnical calculations are given in Appendixes.

gered site potential is much larger than the on-site repulsion

or (i) a Mott insulator with quasi-long-range SDW order Il. EXTENDED HUBBARD MODEL

when the staggered site potential is negligible. Early exact In the first half of this papefSecs. Il and Ill, we consider

diagonalization studié$=>! of small systems have found a : .
transition between the two phases and also reported dramafie® Standard 1D EHM which has on-sitd, and nearest-

enhancement of the electron-lattice interaction by strond’e'ghbor’v' interactions. The Hamiltonian is given by
electron correlation near a boundary between the band insu-

lating phasethe Bl stat¢ and the Mott insulating phaséhe H=—t>, (ijr oGt 1o+ H.C)+ u> NN

SDW state¢. Mostly through bosonization analysis of the jo 7 ' i

ionic Hubbard model, Fabrizio, Gogolin, and Nersesyan re-

cently argued that a phase of a spontaneously dimerized +VY niNjss, (2.1
insulator(SDI) intervenes between the ionic insulating phase i

(band insulatgrand the Mott insulating phase. The SDI state ot . B +

is closely related to the BCDW state mentioned above. EaiVhe€ré nj o=c¢;j ;¢j .~ z, nj=n;;+n;, andcj, denotes
lier numerical studie¥=36383%5have drawn contradictory the creation operator of an electron with spir(= T, |) on
conclusions as to whether the SDI phase exists or not, biifi€ jth site. We assume repulsive interactions, i.e., the cou-
more recent numerical studies find two phase transitions anling constantdJ andV are positive. Note that the Hamil-
the SDI phase in betweéh*%“5Nevertheless there still re- tonian has global S(2) spin symmetry. Following the pre-

main unresolved issues on the critical properties near th¥ious studies —on models with correlated-hopping
quantum phase transitions. interaction® we consider the CDW, SDW, BCDW, and

In this paper we give supporting theoretical arguments foond-spin-density-wavéBSDW) phases as potential ordered
the existence of the spontaneously dimerized insulatinground states at half filling. They are characterized by the
states in the 1D half-filled extended Hubbard model with andPrder parameters
without staggered potentials. We adopt the standard

bosonization approach and perform both perturbative RG Ocow=(=1)!(nj 1 +n;,)), (2.29
analysis valid in the weak-coupling regime and semiclassical _

analysis which is expected to give a qualitatively correct pic- Ospw=(—1)!(nj ;—nj ), (2.2
ture even in the strong-coupling regime. This paper is orga-

nized as follows. Sections Il and Il are devoted to the analy- Ogcpw=(— 1)j(c;f’ch+1,T+c;r’lcj+u+ H.c), (2.29
sis of the standard EHM, i.e., the system without the

staggered potential. Some of the results of this part are al- OBSDWE(_1)](CJ'T,TC]'+1,T_CjT,le+l,l+H-C')' (2.2d

ready presented in Ref. 52. In Sec. Il, we introduce the

model and reformulate the weak-coupling theory, theThe order parameter of the BCDW state corresponds to the
g-ology, to include higher-order corrections to coupling con-Peierls dimerization operator. We note that the BCDW state
stants. We bosonize low-energy effective Hamiltonian anctan be also regarded as thedensity-wave stat®® as
derive the renormalization-group equations. In Sec. lll, wethe order parameter of the BCDW state can be written
determine the ground-state phase diagram. First, from thgs S Ogcpw™ 2k, Sinka) cﬁgckﬂﬂ,a)'g, where ¢y,
perturbative RG analysis we show that the BCDW phase- N*1/22je*ikRjCj » With Rjzj'a (a: the lattice spacing\:
occupies a finite region near thé=2V line in the weak-  the number of sitds The BSDW state describes a site-off-
coupling limit. Next, from the semiclassical analysis we ar-diagonal SDW staté®

gue that the umklapp scattering of parallel-spin electrons de-
stabilizes the BCDW phase and gives rise to a bicritical point
where the CDW-BCDW and SDW-BCDW continuous-
transition lines merge into the CDW-SDW first-order transi- The hoppingt generates the energy band with dispersion
tion line. Finally, combining the perturbative RG equationse = —2tcoska, where the Fermi points are &= *kg
with the semiclassical analysis, we obtain the global phases += 7/2a at half filling. In order to analyze the low-energy
diagram of the 1D EHM. In Sec. IV we study the 1D EHM physics near the Fermi points, we introduce a momentum
with the staggered site potential. We take the same strategyutoff A (0<A<kg) and divide the momentum space into
as in the previous sections and perform a semiclassicdhe three sectorgFig. 1) (i) keR, (i) keL, and (iii)
analysis of the bosonized Hamiltonian. With the help of thek«¢ (RUL), whereR=[kg— A ,kg+A] andL=[—ke—A,
perturbative RG analysis we obtain the global phase diagram k+ A]. We then introduce the following fermion opera-
that indeed has the SDI phase. We find that the BCDW phas@ers:

A. g-ology approach

035103-2
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& klapp scattering, whileg, andg,, (g4 andg,,) denote
the matrix element of the forward scattering with the differ-
ent (samg branchp=+. The index||(L) of the coupling

; constants denotes the scattering of electrons with dame
\ / positg spins.
] _kF kF

| H 0 | -— I .
—Tt/a \ / A Ta B. Vertex corrections
': In the conventional weak-coupling approach to the 1D

EHM,'"*® one estimates the coupling constants in E44)
only up to the lowest order itJ andV:

FIG. 1. Single-particle energy band. The annihilation operator of 01, =03, =(U—-2V)a, (2.53
an electron near the Fermi points with momentkea[ —kg— A,
—ketAl(ke[ke—A,kg+A]) is denoteday — , (ay + ), and

= =(U+2V)a, 2.5b
that of an electron far away from the Fermi points is dendxggl. 921 =841 =( ) ( )

a; , forkeR 9y =03=~2Va, (2.59
Cko=) &0 for kel (2.3 g2/ =04 = +2Va. (2.50
by otherwise. _ .
’ In analyzing the low-energy physics of E@.4), one then
Electrons near the Fermi points are shuffled by the twoemploys the standarg-ology approachi i.e., the perturba-
particle scatteringtj,=UZ;n; ;n; gﬂrVE njn;.;. Follow-  tive RG method, and obtains flow equations for the marginal
ing the standarg-ology approaclﬁl we will focus on the terms in EqQ.(2.4). From this RG analyst&>* one finds that
scattering processes between electrons near the Fermi poinfe g,, term generates a gap in the charge excitation spec-
i.e., the scattering processes which invoage. , only. The  trym if 93, |> — (92 + 92, —91)) andgs, #0, whereas the

Hamiltonian for such interaction processes is g1, term y|e|ds a gap in the Spin excitation Spectrum if
ng |gn|>—(gz||—g2L.—ng) and g4, #0. Hence, with the
Hi= +50 kz : ll,p,aakz, p,aals,—p,aak4,p,oi lowest-order coupling constants E(.5, one would con-
p,o clude that the chargéspin excitations become massless at
U—-2V=0 (U-2V=0). This would mean that, a¥ in-
gli g a —. creases, both the charge and spin sectors become critical si-

a _ - :
o KPo Pk TP Tk, —p o P multaneously atU=2V, where a direct and continuous
g CDW-SDW transition takes place. This analysis is found to
92| T + i ici i . i
+ 224 oL z Al o8y poBL, p ok, —po b_e insufficient from th_e following argument. Tlaccidental
ki .o simultaneous vanishing ofi;; and g;, results from the
lowest-order estimate ik andV and there is no symmetry

921 + T inei i i
_. rinciple th nfor n vanish simultan ly.
z aklp(rakzp(rak = principle that enforceg,, andgs, to vanish simultaneously.

2L K p.o It is possible that the higher-order correctionsgdift the
degeneracy of zeros and change the topology of the phase
+ 93| 2 At a al a . diagram. Therefore, in order to analyze the phase diagram at
2L P ky oSk =P,k P o Thy, P U~2V, we need to go beyond the lowest-order calculation
of the coupling constants in thgology. In this section, we
+ 931 E -al a - a —a, . compute the vertex corrections due to virtual processes in-
2L (Go KPR Pk poSha TR volving high-energy statés by integrating outby . This
procedure allows us to obtain the effective coupling con-
+ t stantsg’s that include higher-order corrections.

94,
2L kEp(r %1 p.okp. 008y .7 By The second-order vertex diagrams for the coupling con-
stants are shown in Fig. 2. The solid lines denote the low-
energy statesy . ,, while the dashed lines denote high-
energy statesyy ,. The nonzero contributions from the

second-order virtual processes—(e) are

+ %4Li kzp(r al o8 (,al - P X
whereo= | (T) for o= 1(]), L is the length of the system,
and :: denotes normal ordering. The summation over the 2 V2

momentumk; is taken under the condition of the total mo- 69 =—59)=—- —D,a+—D,a, (2.69
mentum being conservagqual to*27/a for the umklapp 4t 7t

scattering. The index p=+/— denotes the right-/left-

moving electron. The coupling constargg andg,, (93 5g(c)_+5g(c) V(u-2v) D.a (2.6b
andgs, ) denote the matrix elements of the backwéudh- art 1= '

035103-3
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B RQY:

b)

T

FIG. 2. Vertex diagrams with second-order correctigas—(e)].

Solid lines denote electron states in the momentum shade or

PHYSICAL REVIEW B 69, 035103 (2004

and gy =+2Va, g, =(U+2V)a, gy=+2Va, and g,
=(U+2V)a. Except whemaA <1, theC;’s depend onA

only weakly, and we can sét= 7r/4 in the following analy-

sis as we are interested in the qualitative feature of the phase
diagram(different choices will only lead to small quantita-
tive changes in phase boundajidsicidentally, the logarith-

mic divergence ofC;(A) in the limit A—0 leads to the
familiar one-loop RG equations.

C. Bosonization

Having integrated out the high-energy virtual scattering
processes, we now focus on the low-energy states and linear-

keL, while the dashed lines denote electron states in the otheize the dispersion oy .. , around the Fermi points. The

momentum space.

89 =— 598 =— U—lea— V—2D2a, (2.69
4t t
V2
89§ =+ — Do, (2.60
8giP = — (U_ZA\f/ﬂDla— V—2D2a, (2.60
art at
V2
895 =— — Do, (2.6f)
89§ = — (U_ZXﬂDlzﬁ V—2D2a, (2.69
at t
where
mi2-ah  dk
Du(A)= J—mzwmﬁ’ 273
ml2—aA  sirfk
Dy(A)= ffqr/2+aAdkﬁ. (2.7
By introducing C;(A)=2In[cot@A/2)] and C,(A)

=2 cosaA, D;(A) and D,(A) are rewritten asDq(A)

=C4(A) andD,(A)=C4(A)—C,(A). In terms ofC, and
C,, the coupling constants with second-order corrections ar

given by
C
_2V2a,
7t
(2.8a

Cy
g, =(U-2V)a 1—m(u—2V)}—

—2Va-— (2.8b

C, , Co ,
ng— H(U—ZV) a— HV a,

=(U-2V)a +%V2a
g3i ot ’

(2.80

1+ 2L (U +ev
prprd )

C, C,
g3H——2Va——(U 2V)?a+ —v2 (2.80

kinetic-energy term with the linearized dispersion is given by

Ho= 2 ve(k—Ke)ak , o+ o

keR,o

* 2 ve(—koke)ag a0, (29

wherev=2ta is the Fermi velocity. The field operators of
the right- and left-moving electrons are given by

1

¢+'0_(X)E\/—_ 2 eIkX a'k +,0 (2103
1

Vo= 2 e ay . (2.108

We apply the Abelian bosonization method and rewrite the
kinetic-energy ternHy= [dx H, in terms of bosonic phase
fields as(see Appendix A

HOZZ—;[(ZWH9)2+(0X6)Z]+ :—;[(2771_[¢)2+(¢9X¢)2],

(2.19

where 6 (¢) is the bosonic field whose spatial derivative is
proportional to the chargéspin density,[ 6(x),#(y)]=0.
Ihe operatordl, and I, are canonically conjugate vari-
ables tof and ¢, respectively, and satisfy the conventional
commutation relations, [ 6(x),IT,(x")]1=[&(x),I14(x")]
=i8(x—x"). We also introduce chiral bosonic fields

Gi(x)zg 0(x)127-r£(xdx’ IT,(x") |, (2.12

b (X)=2= ¢(x)+27rjX dx'Iu(x") . (2.13

One can easily verify that these chiral fields satisfy the
commutation relationg 6. (x), 0+ (X")]=[ ¢+ (X),d+(Xx")]
=*i(m/2) sgnk—x") and [6,(X),0_(X")]
=[.(X),p_(X")]=iw/2. In terms of these fields, the
kinetic-energy density reads

035103-4
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Homae 3 [(0x6%+ (0l (214
p=+.—

To express the electron field operatofg , with the

bosonic phase fields, we introduce a new set of chiral

bosonic fields

‘Pp,T=0p+¢pa ‘Pp,izap_d)pa (2.19
which obey the commutation relations
[0+ ,0(X),@s o (X)]=EimSGNX—X") 85,07
(2.163
[(PJr,O'(X)!ng,o"(X,)]:iW60’,0” . (216b

In terms of the phase fields;, ,, the electron field operators
can be written as

Mo
\J2ma

where the Klein factor, satisfies the anticommutation re-
lation {7, , 7, }=26,, . One can verify that the operator
defined in Eq(2.17 satisfies the same anticommutation re-
lation as the fermion field operator. It follows from Eq.
(2.17 that the order parameters in EQ.2) are rewritten as

p,o(X)= exdipkex+ip ¢p o(X)],  (2.17)

Ospw(X) % €osO(X)sin ¢(X), (2.189
Ocpw(X)sin §(x)cosp(X), (2.18h
Ogcpw(X) *€0s6(x)cosd(X), (2.180
Opspw(X) SN A(x)sin ¢(X). (2.189

The interaction part of the Hamiltoniad,,;, Eq. (2.4),
can be also expressed in terms of the boson fiéldsand

PHYSICAL REVIEW B 69, 035103 (2004

9ps

25 (3,02)(0x0-)c05 2

Yco
+ ﬁ(axd)%—)(&xq‘)—)cos 20

+ 2 02(5,0.)(0,0 )oxd ) (). (219
2

The renormalized velocities arev,=2ta+ (g +da;
—0y)/27m and v,=2ta+ (g4 —9s —91))/27m. The mar-
ginal terms with the couplingg, andg. (g, andgs) deter-
mine low-energy properties of the char¢mpin modes'®>*
where g,=0d, + 92— 091, 9c=931, 9,=0921 —92 191,
andgs=g, . Thegcs, 9,s, 9er» @NAg,, terms with scaling
dimension 4 couple the spin and charge degrees of freedom.
The g¢s coupling comes from the umklapp scatterigg .
Theg,s (9,,) coupling is generated from the backward scat-
tering of antiparallel{parallely spin electrons while thg.,
coupling is generated from the umklapp scattering of elec-
trons with antiparallel spingsee Appendix A These cou-
pling constants are given @s=9,s=9c,=9,,= —2Vato
lowest order inV. Cannon and Fradkin examined the effect
of the g.s term and argued that it plays a crucial role in the
first-order CDW-SDW transitiofi” Voit included theg s and

Oc, terms, as well as thg.s term, in the perturbative RG
analysis of the coupling constants, but did not consider the
90 term?* Here we note that it is important to keep e,
term as well, since the global $2) symmetry in the spin
sector is guaranteed only whep=gs, gcs=UJcs, andg,s

:gpo'

D. Renormalization-group equations

We perform a perturbative RG calculation to examine the

¢- . It has been suggested that, besides the marginal operg@w-energy properties of the 1D EHM in the weak-coupling
tors, operators with higher scaling dimensions can play afiegime, taking into account quantum fluctuations of the

important role in the first-order CDW-SDW transitfori*
which is known to occur in the strong-coupling region of the
1D EHM.®~2YWe thus include all the terms of scaling di-
mension 4[ =2 (charge sector) 2 (spin sector). We also

phase fields. The operator product expansi@®E tech-
nigue allows us to systematically handle the higher-order
terms in the bosonized Hamiltoni&®.19. The one-loop RG
equations that describe changes in the coupling constants

note that there are some complications and subtleties ifluring the scaling of the short-distance cutaff-¢ae’) are
bosonizing the off-site interaction term, i.e., the nearestgiven by(see Appendix B for their derivation

neighbor interaction terrv (see Appendix A for detail We
obtain the bosonized Hamiltonian density,

1
Mg 3 (008 uy(dy)’]

(a0 )

9y
+ ——=(0,0,)(d,0_)—
(o) (0x0) =

Os

2ma

Jdec
2m2a?

CO0S 20+

COS 2¢p

2

gCS

2ma?

COS 20 COS 2

d _ 2 2
G,= +2G2+G2+ GG,

al (2.20
d
aGC: +2G,G—GsGes— GesG s (2.21
d 2 2
§7Cs= ~2GZ~ G Ges— G, (2.22
d
g7Ces= ~2Gest2G, Ges— 4Gy Ges— 2 G Gs
_260 Gps_4Gcstsa (2.23

035103-5
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d TABLE |. Possible ground-state phases and positiongjoés)
aG"S: —2G,s1t2G,Gs—4G.Gs— 4 Ggs— 4GsGs, locked phase fields determined only from the marginal terms in Eq.
2.19.
(2.24 %19
whereG, are dimensionless coupling constants with the ini-Phase 0.9) (9¢.95)

tial valuesG,(0)=g,/(4mta). The number of the indepen- s
dent coupling constants is five, since the(2lbspin symme-
try guarantees the relatior8, =G, G.,=Gs, andG,, W
=G, to hold in the scaling procedure. From these scaIingBSDW
equations, one finds that ti&, , G, andG terms are mar-
ginal (the scaling dimension2),°>" while the G.s and G,

terms are irrelevant operators of the scaling dimension 4.

DW (0= 7/2), (m,x7l2) (+,+)
CDW (£=m/2,0), (=x7/2,7) (—,-)
(0!0)1(77!77)! (0177)1(77!0) (+!_)

(= wl2,*+ 7/2) (=.+)

points, G,(I)—~ and G¢(l)— —, depending on its initial
valueg.>0 andg.<0. As seen from E¢2.19), the relevant
ll. PHASE DIAGRAM OF THE HALF-FILLED g. with positive (negative sign implies the phase locking of
EXTENDED HUBBARD MODEL 0 at the positiond=0 (7/2) mod .

From the above standard arguments, the ground state can
be identified by simply looking at the initial value of the

In this section, we show that the BCDW phase exists incoupling constantg, andgs. The ground state is classified
between the CDW and SDW phases in the weak-couplingnto four cases as summarized in Table I, and the positions of

A. Bond-charge-density-wave state

region of the 1D EHM. o locked phases#, ¢) for respective cases are shown in Fig. 3.
First we focus on the Weak'COUpllng IIthII,V<t, where (|) gs<0 and gc<0: The pha_se fields are locked at

we can neglect the irrelevant terms of scaling dimension 4 ¢ )= ((#/2)+ al,,l,), wherel, andl, are integers. In

and restrict ourselves to the marginal termsy,, 9,, 9c. this case, among the order parameters in Ej48), only the

andgs. Effects of the irrelevant terms are discussed later incDw order parameter has a finite expectation value, and the
this section. Within this approximation, the Hamiltonian re- ground state is found to be the CDW state. Both charge and
duces to two decoupled sine-Gordon models, and we cagpin excitations are gapped.

analyze the properties of the spin and charge modes, sepa- (jj) 0s<0 and g.>0: The phase fields are locked at
rately. The one-loop RG equations for these coupling con¢g, ¢)=(wl,,wl,). The nonvanishing order parameter is

stants are given by Eq&2.20—(2.22 with G;s=G,s=0: then Ogcpw, and the ground state is the BCDW state. Both
charge and spin excitations are gapped.
EG (Hh=2GX) 3.1) (iii) gs>0 andg.<0: The field§ is locked atf=(/2)
dl—r e ' + 14, and the field¢ tends to be around=(#/2)+ =l,

although it is not locked in the low-energy limit. In this case

d the dominant correlation is that of the BSDW state. The
aGc(I):ZGp(I) Ge(), (3.2 charge excitations are gapped whereas the spin excitations
are gapless.
d (iv) gs>0 andg.>0: The field d is locked atf= =l ,
JGS(I)z —2G§(|), (3.3  whereas the field tends to be neap=(w/2)+ ml,. The

dominant correlation is the SDW order. The charge excita-
tions are gapped while the spin excitations are gapless.

The spin excitations are controlied by t® coupling, Combining the results of Table | and the coupling con-

which is marginally relevantmarginally irrelevant when
G¢<0 (Gg>0). If gs<0, then|Gg(l)| increases with in-

creasingl. In this case the phase fielfl is locked at¢=0 ¢ ® SDW
mod 7 to gain the energjsee Eq(2.19], and consequently 1 o CDW
the spin excitations have a gap. On the other handjs if Dooeee Q- U A BCDW
>0, then|G4(l)| decreases to zero a#ncreases, and theé : § § ' | A BSDW
field becomes a free field; the spin sector has massless exci- ‘ _______ o ) S o ‘
tations. The approach @& to zero is very slow { 1/1), and : : : :
the ¢ field has a strong tendency to be néa¢ 7/2 mod . : ; :
Although it eventually fails to lock the phasf the margin- _A ¥ —0 An_’ 0
ally irrelevant coupling still has an impact on low-energy ' § , §
properties by giving rise to logarithmic corrections to corre- [ S— G- @----nn Y U ¢
lation functions>® ‘ : ‘ ‘

The charge sector is governed by the two coupli@gs

and G,, whose RG flow diagram is of the Kosterlitz-
Thouless type. Sincg,=(U+6V)a>0, G, is a relevant
coupling and always flows to strong-coupling regime, unless FIG. 3. Positions of locked phase fieldsand ¢ in the SDW,
0.=0. This means thaB.(l) has two strong-coupling fixed CDw, BCDW, and BSDW states.
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stants Egs.(2.89 and (2.89, we obtain the ground-state 8s
phase diagram of the 1D EHM in the weak-coupling limit.

For U larger than ¥ such thatg.>0 andgs>0, we have BSDW
the SDW phase, while fotJ sufficiently smaller than ¥ SDW
(g.<0 andg;<0) we have the CDW phase. At=2V, we g

see from Eqs(2.89 and (2.89 thatgs(=g;,)<0 andg, “
(=93,)>0 due to theC, term. This implies that a new lge

phase different from the CDW and SDW states appears for ' 0 : > 8c
U=2V. From Table I, we identify the new phase with the
BCDW phase. Within the approximation we employ here, T
the phase boundary between the BCDW phase and the CDW CDW
(SDW) phase is located af,=0 (gs=0). In this phase dia- BCDW
gram, the charge excitations are gapful except on the CDW-
BCDW transition line, while the spin excitations are gapless
in the SDW phase and on the SDW-BCDW transition line.

From Eqs(31)_(33)’ we can estimate the Charge gAQ FIG. 4. Phase diagram obtained by minimizing the potential
and the spin gap, as V(6,¢) for g.s<0. The double line denotes the first-order transi-

tion, while the single line denotes the second-order transition. Bi-
2mtalg, 2rta critical points are atd.,9s) =(*|9cd, ¥ |9csl) -
. Ag~tex
S

lgcl

A.~t ta

(3.9

B. First-order SDW-CDW transition

In this section, we discuss how the BCDW phase becomes

for <(g,<ta and 0< —ggs<ta, respectively. . )
9] 9 Js P Y unstable at strong coupling and how the two continuous tran-

Next we examine effects of the parallel-spin umklapp™." . X "
scatteringg., on the BCDW state. We consider the situation SItions change into the first-order SDW-CDW transition.
very close to the CDW-BCDW transition by assumigg To our knowledge, Cannon and Fradkin were the first to
~0 andg,<0, i.e.,U—2V=—C,V/mt+0(V3t?). In this argue that_thcg3” term (des_cnpmg the umklapp ;cattermg of
case the spin gap is formed first as the energy scale is |Ov\parallel-sp|n electronswhich is conventionally ignored due

ered. For energies below the spin gap, we can replaced;coszto its large scaling dimgnsion, can become reIevant?gt ldrge
with its average/cos 25)~(A./t)2. This means that the cou- andV and cause the first-order CDW-SDW transitforilo

pling constan, is modified as get an insight into the effect of thg. term in the relevant
¢ case, we perform a semiclassical analysis: we neglect spatial

variations of the fields in Eq2.19 and focus on the poten-
93 =0+ Jcs(COS 20). (3.5 tial,

Thus we find that the BCDW state, which is realized for __ _

g% >0, becomes less favorable due to the(<0) term. We V(0.4)= ~9cC0S 2+ 9,C0S 2) ~ esC0S 2 COS 2¢&3_7)

note, however, that the CDW-BCDW boundary does not

move across theU=2V line because |g.(cos2p)|  Where gcs=gs<0. The order parameters of the SDW,
~2Vaex —c(t/V)?] is much smaller than thg, term in Eq. CDw, BCD_W, and BSDW sta.tes take maximum amplitudes
(2.89 for V<t, wherec is a positive constant. A similar When the fields§ and ¢ are pinned at ¢, ¢) = (7l ,(7/2)
argument applies to the region near the SDW-BCDW transi-" 7l2),  (@w/2)+ wly,7lo),  (mly,wlp), and ((7/2)

tion. Suppose that) —2V=+C,V2/wt+O(V3/t?) where T ml1,(m/2)+7ly), respectively, wheré, andl, are inte-
gs~0 andg,>0. In this case, as the energy scale is loweredgers. The potential energy in these states is obtained by in-
the charge gap opens first and thdield is pinned at9=0  Serting these pinned fields into Ed3.7), e.g., Vspw

mod . Below the charge-gap energy scale, theield is = V(7l1,(7/2)+7l,), yielding

subject to the pinning potential cos 2 with

Vspw= —0c—0s— |gcs|7 (3.89
0s =05 Ges(COS 2), 36 Veow=+0ct s [9ed (3.8b
where(cos ¥)~(A./1)?4~S). Thus the BCDW phase, which o gtat
is now realized forg* <0, also becomes less favorable by Vecow= ~Gct s+ [Ged, (389
the — g.(cos X)(>0) term. Again the phase boundary is not Visow= + 9e— Os+|ed (3.80)
Cc S Csl- .

moved beyond theU=2V line since |g.<cos )|
~2Va(c'VIt)y™" is much smaller than th€, term in Eq.  We find that theg, term stabilizes the SDW and CDW states
(2.88, wherec’ is a constant of order 1. Therefore we con- while it works against the BCDW and BSDW states. Com-
clude that the BCDW phase is robust againstgheterm in  paring these energies, we obtain the phase diagram ig.the
the weak-coupling limit. The analysis in this section estabg, plane at a fixedy.s (Fig. 4). In the presence of thg.
lishes the existence of the BCDW phase ndat2V for 0  term, the direct CDW-SDW transition line appears in this
<U,V<t. phase diagram.
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FIG. 6. (Color onling The potentialV(8,¢) on the bicritical
point (g¢,9s)=(|9cd, —|dcd). The potential minima are the lines
0=ml, and ¢p=l,.

(b)

tinuous transitions are shown by the solid lines. On the con-

PITTIINN T trary, the phase boundary shown by the double line in Fig. 4
V (AR N, e is of different nature from the others. The potentld, ¢)
¥ R on the double line is shown in Fig.(8), where the potential
R minima are given by the isolated points 6,¢)
,"ﬁggigj'g,, =(mly,(7/2)+ 7l,) and ((7/2)+ 7l 1, 7l5). These minima_t
e "!;:;f.f,','..n correspond to the SDW state and the CDW state, see Fig. 3.

L
&y,
S2e Y

The point to note is that there is a finite potential barrier of
height min(g.d,2/d.s| —2|d.|) between the corresponding
minima for the SDW and CDW phases. Hence we conclude
that the CDW-SDW transition is first order whep; is rel-
evant.

From the above arguments, we find that strong umklapp
scattering of the parallel-spin electrons destabilizes the
BCDW and BSDW states and gives rise to bicritical points
(9¢,9s) = = (des, — 9cg) Where the two continuous-transition
lines merge into the CDW-SDW first-order transition line.

7
7R
2L
WIS

XX 2
AXG) \.V#..,"F»

2 O\ Let us take a closer look at these bicritical points. Taking into
account the fact thafj.>0 and g;<0 for U~2V in the
original EHM, we will focus on the bicritical point at
(9¢,9s)=(lgcd,—19cd). The effective potential at the bi-
critical point takes the form

FIG. 5. (Color online The potentialV(#,4) on the SDW- V(6,¢p)=—g(cos 20+ cos 2p—cos 20cos 2p), (3.9

BCDW (a), BCDW-CDW (b), and CDW-SDW(c) transition lines which is shown in Fig. 6. This potential has an interesting

feature that its potential minima are not isolated points but

We now discuss the nature of the phase transitions. Thghe crossing line9=mm or ¢==n (m, n: integey. On
potentialV(#,#) on various transition lines is shown in Fig. these lines eitheé or ¢ becomes a free field; the theory has
5. On the boundary between the SDW and BCDW phasesnore freedom than a single free bosonic field, but less than
which is located ags=—|g.s andg.>|g.4, the potential two free bosonic fields. We thus expect that the theory of the
takes the formV(#,®)= —g.cos 2+g.os 2H(1—cos ) bicritical point should have a central charge larger than 1 but
[Fig. 5@], which pins thed field at = 71, and leaves thé smaller than 2. Detailed analysis of the critical theory is left
field completely free. We thus find that the SDW-BCDW for a future study. We note that whep =0 the first-order
transition is continuous, i.e., the SDW and BCDW phasesCDW-SDW transition line collapses into a tetracritical point,
coexist without potential barrier on the phase boundary. Orfg.,gs) =(0,0), and the phase boundaries in Fig. 4 reduce to
the boundary between the BCDW and CDW phases, locatethe linesg.=0 andg,=0 where all the transitions are con-
at g.=|d.d and gs<—|g.4, the potential now takes the tinuous.
form V(6, ) = — g.cos H(1—cos 2h)+gcos 2 [Fig. 5b)]. Fabrizio et al®? and Bajnoket al>® discussed effects of
The potential locks thep field at = 7l,, where it has no higher-frequency terms, such as sihahd cos 4, which are
effect on theé field. Thus, we find that the CDW-BCDW generated through the renormalization-group transformation.
transition is also continuous. From similar considerations, wd=rom the semiclassical arguments, it can be seen that these
find that the SDW-BSDW and BSDW-CDW transitions are terms can also change a second-order transition to a first-
continuous as well. In Fig. 4, the phase boundaries of conerder transitiorr® In fact, it was argued that these higher-
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4 - - - coupling limit, the BCDW phase appearslat=2V and the
successive continuous transitions between the SDW, BCDW,
and CDW states occur a¢/U increases. WheJ and V
increase along the linel~2V, the BCDW phase first ex-
pands and then shrinks up to the bicritical poikt.(V.)
~(5.0,2.3) where the two continuous-transition lines meet.
2r 1 Beyond this point the BCDW phase disappears and we have
BCDW the direct first-order transition between the CDW and SDW
phases. The phase diagrdifig. 7) is similar to the ones
SDW 1 obtained by using more sophisticated numerical mettoéfs.
We note that the position of the first-order transition line in
Fig. 7 is not reliable quantitatively as we have used the per-
00 ' 4 ' 3 turbative RG equations. The recent Monte Carlo
Uit calculatior?® gives the most reliable estimate for the position
: i of the bicritical point, Vo)~ ((4.7:0.1)t, (2.51
FIG. 7. Phase diagram of the half-filled 1D extended Hubbard, g o4y - \hich agre?es With%cur é)stirfn(ate in Fi)g. g within
model. The double line denotes the first-order transition, while the 0%. The semiquantitative agreement gives us confidence
single lines denote the second-order transitions. The bicritical poin ) . . ;
is at (U, V) ~(5.0t,2.3). that our approlachz semlc'lasswa.l analysis of the Iow—engrgy
effective Hamiltonian derived with use of the perturbative
RG, is reliable even in the strong-coupling regime near the
multicritical point.

CDW

Vit

frequency terms make the SDW-CDW transition first order
in the strong-coupling regime of the 1D EH¥ However,
we have shown that the SDW-CDW first-order transition can

occur simply due to theg, term which is the leading irrel- IV. EFFECT OF STAGGERED SITE POTENTIAL
evant term in this system. Since the higher-frequency terms

are even less relevant than thg, term, we expect that the
Ocs term should play a dominant role in the first-order tran-

In this section, we examine effects of alternating on-site
modulation of the chemical potential, i.e., the staggered site

sition in the 1D EHM. potential, in the half-filled 1D EHM. The Hamiltonian to be
considered is given byd’'=H-+H, with H defined in Eq.
(2.1 and

C. Global ground-state phase diagram

To obtain the global phase diagram of the 1D EHM, we .
have numerically solved the scaling equati¢220—(2.24. Ha=AY (—1)n;,. 4.9
We find out which phase is realized by looking at which one he

of the couplingse, Gs, andGes becomes relevant first, as The model is called the ionic Hubbard modeVi=0. When

we have discussed in Secs. Ill A and Il B. First, |®| —V=0 th ; vial band insul . H
grows with increasind and reaches, say, 1 first among the Y = ._0' the system Is a trivia and insu a’For, since the
rm induces a gap|2| at k== /2 in the single-particle

three couplings, then we stop the integration and comput&e . ,
G* =G,—Gcs5gn(G,). Since the charge fluctuations are spectrum and the lower band is fully filled. For many years

. . effects of theon-site repulsive interactiond on the band
suppressed below this energy scale, we are left with Eq; . . . T
(3.3, where G, is replaced byG* . We immediately see Yhsulator have been investigated intensid1§t from both

. . numerical and analytical approaches. Using the standard
from Table | that a positivénegative G¢ leads to the SDW bosonization method, Fabrizio, Gogolin, and Nersesyan re-

(BCDW) state forG.>0 and the BSDWMCDW) state for  conty argued that the ground state of the ionic Hubbard
G,<0. Second, ifG4| becomes 1 first, or more precisely, if \1q4el exhibits three phases dsincreases: the band insula-
Gs reaches—1 first, then we are left with Eqd3.1) and o/ the SDI, and the Mott insulaté?.The order parameter of
(3.2, whereG,, andG,; are replaced by5; =G,~G,s and  he SDI state is nothing but that of the BCDW state, and we
Gg =G +Ggs, respectively. We see that a positileega-  can regard the two states as essentially identical. It was also
tive) G} leads to the BCDWCDW) state. Finally, when argued that the quantum phase transition from the band in-
|G.4 reaches 1 first, we stop the calculation and com@are sulator to the SDI state belongs to the Ising universality class
andG,. Since both charge and spin fluctuations are alreadwhereas the other transition from the SDI state to the Mott
suppressed by th8.,cos 2 cos 2p potential, we can deduce insulator is of the Kosterlitz-Thouless type. Recent numeri-
the phase from the semiclassical argument. From Fig. 4 weal studies**1“°however, have reported controversial re-
see that we have the SDW state ®y>— G, and the CDW  sults on the existence of the SDI phase. Some claimed to find
state forG,< —G.. Here we note that in the SDW state the two quantum phase transitions while others found evidences
pinning potential to thep field is marginally irrelevant and of only one phase transition. With this issue of the SDI phase
thus the spin sector should become gapless. in mind, in this section we investigate the phase diagram of

The phase diagram obtained in this manner is shown ithe 1D extended Hubbard model with the staggered site po-
Fig. 7. The single lines denote continuous transitions, and theential and examine critical properties of the quantum phase
double line denotes the first-order transition. In the weak4ransitions.
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We take into account the staggered site potential and the TABLE Il. Possible ordered ground states and the position of
correlation effects on equal footing by treating them as weakduas)locked phase fields determined from K4.4).
perturbations. We use E@.17) to rewrite H, in the con-

tinuum limit asH = [dxH, , wheré?33 Phase 0,9)
SDW (0x7/2), (7, £ ml2)
Hy=— sin 6 cos¢ (4.2) Bl (for g,>0) (+m/2,0), (—m/2,1)
2(ma)? BI (for g,<0) (+l2,7), (—/2,0)
BCDW (+(712) = a5,0), (—(7/2)*aS,7)

with gy =4mAa. Note that the CDW order paramet@¢py

is proportional tdH, , andg, can be regarded as an external
force coupled t@¢py . This has the consequence tiaipy
acquires a nonvanishing expectation value for any fihite
andV, as long agy, #0. In this section we will denote the

BSDW (+72,0xaf), (- 7/2,%(7—al))

where|ga/gs <4, |ga/gs|<4, and (xag,a?,)sw are as-

) : . sumed. The solutions of the saddle-point equations yield the
insulating phase connected to the free-electron band mSUlat%llowing four states with distinct configurations of the
(ld;\elzo andA #0) by the Bl phase, rather than the CDW locked phase field8 and ¢ (modulo 2r7): (i) the SDW state

P | with 8 and ¢ locked at @, ¢) =(0,= w/2) or (m, = 7w/2); (ii)

The bosonized form of the Hamiltoniakl’ can be : B - .
thought of as a generalization of the so-called double sinelle Bl state with ¢, ¢) = (+/2,0), (=m/2,m) if g,>0 and

) : i : > with (0,¢)=(+m/2,7), (—/2,0) if g,<O; (iii) the
Gprdon(DSG) moc_lel asl-_| contains sine/cosine terms with “BCDW?” state where the BCDW order and the CDW order
different frequencies (sthand cos 2, cos¢ and cos 2).

The DSG theory itself has been investigatedCoeXiSt anéj which is realized whei () = (/2= a;,0) or
intensivelyf252%and shown to have a critical point belong- (~ 7/2% @4, m); (iv) the “BSDW” state where the BSDW

ing to the Ising universality classc=2 conformal field and the CDW ozder coexist and wh|gh is realized when
theory (CFT)]. To obtain a qualitative understanding of the (6,¢)=(7/2,0= ;) or (= m/2,*(m—a,)). Table Il and
critical properties in our system, we first perform a semiclasfi9- 8 summarize the possible ordered ground states and cor-
sical analysis in a similar way to Sec. Il B, before examining"&sponding positions of locked phase fields. The potential

the global phase diagram bf’ with use of the RG method. €nergies in these states are given by

0 _
A. Semiclassical analysis Vepw= ~9c— Os. (4.69
In this section, we perform a semiclassical analysis to the 0 _
Hamiltonian®' =H+H,, whereH and H, are given by Ver=+9ct 9594l (4.6
Egs.(2.19 and(4.2), respectively. We neglect spatial varia- )
tions of the field and focus on the locking potential: 0 9a
Vecow= ~9ct0s— a, (4.60
VA(6,¢)=—0.C0S 20+ gsC0S 2b— g.LOS 20C0S 2 ¢
—ga Sinf cose. 4.3 o
VgSDW= +0c—0s— 8_95, (4.60

First, we examine the casg =0, which corresponds to
the situation where the.s term becomes irrelevant in the |, deriving Egs. (4.60 and (4.6d, we have assumed

RG scheme. The potential to be considered is lgs/9c|<4 and|g, /g =<4, respectively. The CDW state is
V3(6,6)=Va(0,8)|g -0 0
- — g si ® SDW
0.C0S 20+ g5 COS 2p— g, Sin 6 COSeh. A
T o Bl
4.9 po A Qoo gty | A Bepw
1 A | H
Due to its double-frequency structure, possible locations of i ] g i | A BSDW
the phase locking are different from the ones we found in | SR S b G R *
Sec. llI B. For example, wheg,>0 (gs>0), the two kinds § § i §
of potentials proportional to sthand cos2 (cos¢ and i ; 0 Al p O
cos 2p) compete with each othét® The locking of the | § i 5
phasest and ¢ are determined from the saddle-point equa- - P ) S P
tions: cos#(4g.sin#—gacosdp)=0 and singy(—4gLosg ’ ; ; *
+g,sin#)=0. In order to simplify the notations, let us intro- § 4 ; ;
duce :'“'A"O‘"A“"""""'L""""J‘
4 9 _4[ 9.
a%=|cos 1(@) , aS,E cos ! ﬁ) , (4.5 FIG. 8. Positions of locked phase fieldsand ¢ in the four
Cc S

states wherg,>0.
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8&s two neighboring minima of the—g,sinécos¢, e.g.,
(60,0)|x_. o= (—m2,7) and (6, })|1_...= (7/2,0). Such an
BSDW SDW excitation carries the chargg@=+1 and the spirS,= + 3,
which is nothing but a single-electron excitation in the band
insulator. It has been pointed d&f®4that in the SDI phase
(i.e., in the BCDW phase the topological charg® of the
lowest-energy excitation becomes fraction@k= i2a2/ T,
reflecting the local double-well structure of the potential near
the potential minima, e.g., aB(¢) = (m/2+ a%,0). This is a
unique feature of the BCDW phase and is contrasted from
the integer charg®= *1 of the lowest-energy excitation in
the pure BCDW phase where the phase fields are locked at
(0,%)=(0,0). Accordingly, the phase transition between the
BCDW state and the Bl state belongs to a different univer-
FIG. 9. Phase diagram obtained by minimizing the potentialsality class from the one between the pure BCDW state and
energy V3(6,¢) [Eq. (4.9)]. The phase boundaries between thethe CDW state discussed in Sec. Ill B. In the former case, a
SDW state and the BCDW state, and between the SDW state ansimall potential barrier in a double-well potential in the
the BSDW state are given by the curge=g3/(169:) with .  BCDW state vanishes at the critical point and the effective
>0. The phase boundaries between the Bl state and the BCDVEheory for the low-energy excitations is thep*” theory
state, and between the Bl state and the BSDW state are given by th&,o\wn to describe the Ising phase transition, rather than the

5 8

BI BCDW

lines go=7 [ga| with g¢<7 |gal andgs=7%|ga| with 9<% |0al,  Gaussian theory that governs the transition between the
respectively. All the phase transitions in this figure are continuousgcpw and CDW phases.
The tetracritical point is located a{,gs)=(7 |94/, 7 194l)- One might expect that a similar semiclassical analysis can

be applied to the spin fielep. Within the semiclassical ap-
stabilized strongly by the, term whereas the BCDW state proach the topological chargg in the BSDW phase of Fig.
and the BSDW state are also stabilized by the second-ordey takes a fractional valuet a%/(Zﬂ'). However, since the
contribution ofg, . By comparing these energies, we arrive Hamiltonian has the global SB) spin-rotation symmetry,
at the phase diagram shown in Fig. 9. As we go across thfhe SDW state and the BSDW state cannot have a true long-
boundary =7 ga) from the BI state to the BCDW state, range order. This implies that the phase figidcannot be
we find that each potential minimum splits into two minima, |ocalized except in spin-gap phases whefds locked at
e.g. (0,¢)=(m/2,0—((m/2)=«3,0), and that the poten- (4)=0 mod . The global SW2) symmetry thus prohibits
tial for the ¢ phase field takes a double-well structure in thethe |sing criticality in the spin sector. In fact, the BSDW
BCDW state. Similarly, as we go from the Bl state to the phase in Fig. 9 turns out to be just the BI phase.
BSDW state, each potential minimum splits into two | et us now consider the situation in whighs#0. In this
minima, e.g., @,$)=(m/2,0—(m/2,=aJ), and now the case, the phase fieldsand ¢ are locked in a similar way to
potential for thes phase field has a double-well structure in the caseg..=0, but ag and a?b are modified int0a2—>a9
the BSDW state. As long ag.s=0, any quantum phase gpg a0¢>—>0‘¢’ where
transition is continuous since a potential barrier between two
potential minima corresponding to two different states van-

_ g
ishes at the transition. The phase diagr@dig. 9) indicates a,=|cos* WH (4.89
that a direct transition from the SDW state to the Bl state ¢ ves
takes place only when the parametggsand gg are on the g
multicritical point (9. ,9s) = (5|9al.%94]), where the poten- a,=|cos —AH (4.8b
4(93_ |gcs|)

tial takes the form V3(6,¢)=%|gal{—1+[sino
—sgn@,)cos¢l?t and is minimized at¢=*[(m/2)~60]  Here we have assumeld),/(g.—|ded)|<4 and |g/(gs
and ¢==*(3m+06) if g,>0, or atp==[(7w/2)+ 6] and —|dcd)|<4. The potential energies in the four states be-
d=+CEm—0) if g,<0. come
Let us take a closer look at low-energy excitations in the
Bl state and the BCDW state. The massive sine-Gordon
model has topological excitations, solitons, and antisolitons.
They are characterized by the topological char@eand S, Ver= *9ct s~ gesl —[0al, (4.9b
for the charge and the spin sectors,

Vspw= _gc_gs_|gcs|’ (4.9a

2
9a
1 1 Vecow= —dct st |ded — 8(9e—19.0)" (4.99
Q= ;j dxd,0, SZ:%J dX dyh. 4.7 ¢ s
2
In the noninteracting casdJ=V=0) with a finite A, the Vv = d.—O.+ _ 9a _ 4.9
lowest-energy excitation is a soliton éfand ¢ connecting psow=+0c~ 0 |G 8(9s—[9cd) 459
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& VS2(6,¢) = +|gcd (cOS 20+ cos 24+ cos 26 cos 2p)

BSDW 1 . ,
N SDW +519a{~1+[sin—sgrigs)cose]?},

\ (4.100
N

<. respectively. The potential minima of\/f(e,qﬁ) and
° T VS2(0,4) are located at 4, ¢)=(—/2,7), (0m/2),
(7/2,0), and @,=w/2) for g,>0 and at @,¢)
BI BCDW =(—m/2,0), (0x#w/2), (w/2,7), and (m,=m/2) for g,
<0.

Finally, we note that even in the SDW statihe Mott
insulato) the CDW order parameter has a nonvanishing ex-
Ipectation value. This is because the alternating site potential
‘H, has the same form as the CDW order paraméigsy
xsinfcos¢. Even though the semiclassical analysis indi-

FIG. 10. Phase diagram obtained by minimizing the potentia

energyV,(6,¢) [Eq. (4.3)] for g..<0. The phase boundaries are
iven by g¢=—gc+3 bet the SDW and the BI stat : :

given by ge= ~dc ™ 2 19| between the and me Bl SIS cates that the phase fields are pinned, say,6at)= (0,

0.=19cd + 7 |0a| between the Bl and the BCDW stateg=|0.4 . . .

1 = +/2), quantum fluctuations of the fields around the pin-
+7|gs] between the Bl and the BSDW stategs=—|d.d . tion lead t ishi Thi b
+93/[16(g.—|gcs) ] between the SDW and the BCDW states, andnmg_I position er? I'O a ?Onvgﬂls Iﬁ(‘(pCDV\»' IS can be
gc=—|9cd + 93/[16(gs— |gcd) ] between the SDW and the BSDW easily seen in the limit of smal, where
states. Multicritical points are located atg.(,gs)=(+|dcs
| +319al,—19cd + 3 19al) and (~1gcd + 7 9al, +19ed + 7 [9a]). O yocT
The single lines denote second-order transitions, while the double (Ocpw) > Tr
lines denote first-order transitions.

sinf cosq¢

ex;{ — J’ dX(H+Hy)

#0.

By comparing these energies we obtain the phase diagram gy Tr ex;{ —f dXH)Sinzﬂ cos'e
(Fig. 10. In the limit g,—0 this phase diagram reduces to

Fig. 4. One can easily find that tlgg term favors the SDW (4.1
state and the Bl state over the BCDW state and the BSDW
state. The direct SDW-BI transition line acquires a finite

length in the phase diagram, like in Fig. 4. The analysis of
critical properties of each quantum phase transition is more We perform RG analysis to take into account quantum
complicated than that in Sec. Il due to the presence of twdluctuations that are ignored in the semiclassical analysis. As
kinds of charge-spin coupled terms, thg andg.s terms. in Sec. lll, we obtain the RG equations using the OPE

Along the phase boundary between the SDW state and the Bhethod(see Appendix B

state, the potential energy is minimized at discrete points,

(0,0)=(—ml2,7), (0,£w/2), (m/2,0), (m,£ml2) for

B. Renormalization-group analysis

0,>0, or at (6,¢)=(-m20), (0Fml2), (m2m), O = 4G+ 26, G,— G, Goe 2G40,
(w, = m/2) for g,<0. These points correspond either to the dl 2 g 2

SDW state or to the Bl statesee Table Il. Since any path 3

connecting these potential minima has to go over a potential — —G7Ges— =G, G, (4.12
barrier, the direct SDW-BI transition is first order. In addi- 4 8 ’

tion, both the transition between the SDW state and the

BCDW state and that between the SDW state and the BSDW d 1

state become first order whep#0. On the phase bound- 3= ZGi+ZG§+ Gi+GsG,s, (413

ary between the SDW state and the BCDW state, the poten-
tial has isolated minima até(¢)= (0, #w/2), (7, * wl2),
(=72t ay,m), and (+ /2= a,,0). The pinning of the

d 1
_ T2 _ _
phase fields at these minima corresponds either to the SDW dl Ge= 4 GCi+2G, G GsGes™Ges Gy,

state or to the BCDW stat@ee Fig. 8 On the multicritical (4.14

points at @c,ds)=(+ |gcs| + 411|gA| v |gcs| + 4l |gA|) and

(_lgcs| +% |gA|1+ |gcs| +%f |9A|), the pOtentiaI takes the d 1

form EGS: — ZGi—Z G§—GC GCS—Gﬁs, (4.19

V§H(6,¢) = — |gcd (COS 20+ cOS 2¢p— cOS 26 COS 2p)
1 d 1,
+ E |gA|{— 1+[sing— sgr(gA)cos¢]2}, aGcs: - ZGA_ 2Gest2 Gp Ges™ 4 GsGes— 26, Gs

(4.103 —2G:G,s—4 GG, (4.1
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d 1, locking 6=+ (7/2) or —(/2). On the other hand, when
41Crs™ 77627265 +t2G, Gs— 4G Ges G¥ <0, bothG} andG?* terms become relevant. However,
these terms do not compete with each other. The only effect
—4655—4GSGPS. (4.17  of the G} term is to lift the degeneracy between the neigh-

boring minima of —cos 2p, and hence the position of the
phase locking is the same as in the c&e>0. Therefore,
regardless of the sign @& , the resultant phase is found to
be the BI state with the phase locking &, §)=(7/2,0) or
(—ml2,7).

(i) The case where eithdG.((1)| or |G,(l)| is most
Jrelevant. Then both charge and spin fluctuations are sup-
Qressed, and the classical treatment is sufficient at lower en-
ergy scale. In this case, we find to which phase the ground
state belongs by substituting the parame@¢8) andG¢(I)

Ijnto 0. andgs in Fig. 10.

(iv) The case wher&(l) is most relevant and becomes
—1 atl=I,. Below this energy scale the spin fluctuations
are suppressed and the phase figli$ locked asp— 0 or 7
for 1>1,. The effective Hamiltonian of the remaining charge
Ssector is

The initial value ofG,(l) is given byG,(0)=A/t, while
those of the other coupling constants are givenGy0)
=g,/(4mta). Since the RG equations are invariant under,
the sign change ofG, (G,——G,), we can assume
GA(0)=0 without losing generality in the following argu-
ments.

We determine the ground-state phase diagram in a simil
way as in Sec. Ill. That is, we integrate the scaling equation
(4.12—(4.17 numerically and find which one of the cou-
plings[G4(l), G.(I), G(l), andG.(1)] becomes most rel-
evant. By doing so, we have encountered the following fou
cases.

(i) The case wher&(l) grows fastest and becomes 1 at
I=1,,. Below this energy scalé.e., [=1,,), the charge
fluctuations are suppressed and the phase fieddlocked at
0=0 or 7. For the discussion of the ground-state propertie
we may first neglect thg, term since(sind)cos¢=0. The

Hamiltonian density+’ then reduces to H§ﬁ=;—; Ep (9x0p) >+ I%G:(&xm)(&x&_)
UVE UVE
HE == > (94p)>— —G* (9 dyh_ v v
s 2W§<x¢p> —GL(9xbs) (dx-) = Gt sino- °F Groos, .20
a a
1%
+ —— G#cos 24, (419 where G;=G,(I,)=G,(l,), Gi=Gu(l,), and G}
ma

=G¢(l,)+Ges(l,). The sign—/+ of the G} term corre-
sponds to the position of the phase lockis#hg 0/7r. In this
Hamiltonian, both of the nonlinear terms, girand cos 2,
8l%e relevant operators. [BY <0, then the situation is the
same as the cagé): the GX andG} terms do not compete
with each other and the possible phase locking pattemh is
=+m/2 (—w/2) for =0 (7), where the ground state is
the BI state. IfG} >0, these two terms compete with each
other, since the- (+)sin @ potential tends to lock the phase
field @ at 6= + 7/2 (— 7/2), while the cos 2 potential tends
to lock it at 6=0 or 7. In this case, possible ground states
are the Bl state and the BCDW state, and the quantum phase
transition between them is of the Ising-transition type with
the central charge=1/2, as discussed in the preceding sec-
tion. However, it is hard to estimate quantitatively the critical
b value of the coupling constants at the quantum phase transi-
y tion. One way to estimate it is to find a critical point sepa-
v v rating the basins of attraction to the two strong-coupling
nef —-E ((9X¢p)2__FG§((9X¢+)((9X¢7) fixed points, G} ,G¥)—(+%,—=) and (0i%), in the
2m °p ™ perturbative RG analysis:®* However, with this method
; ; where the cosine and sine terms are treated perturbatively,
YF s YF s we cannot see the correct picture of the DSG theory with the
a? Gacosd+ a2 Gs cos 2, (4.19 double-well potential structure which leads to the Ising tran-
sition. Instead, here we estimate the critical value for the
whereGy =G, (l,-) andGg =Gg(l,-)+ Gl ,-), and the  |sing transition from the semiclassical arguments: The criti-
sign —/+ of the G, term corresponds to the position of the cal value is determined from the conditi@®} /G} = 1/4.
phase lockingd= + (7/2)/—(m/2). WhenGZ >0, the two We have used the above scheme to obtain the phase dia-
G: terms are marginally irrelevant, and the only relevantgram shown in Fig. 11, for whicA/t=0.1. The phase dia-
operator is¥ cos¢. Then the phase fielg is locked at¢ gram at largeJ andV is similar to Fig. 7, whereas a quali-
=0 or 7, depending on the position of the charge phasdative charge in the phase diagram is found in the region

whereG§ =Gg(l ) — Gl ,+). We immediately see that, if
G} >0, the spin excitations are gapless and the ground st
is the SDW state. On the other hand,Gf <0, then the
operators proportional t&3 are relevanf G% (1)— —< un-
der scaling and the phase fields are locked a8,d)
=(0,0),(04r),(7,0),(,7), which corresponds to the
BCDW state withay— /2 (i.e.,gy—0), see Table Il. This
would become the BCDW state with,</2 in a more
realistic treatment where ttgg, term is not simply ignored.
(i) The case wherdG(l)| grows most rapidly and
Gc(l)——1 atl=1,_. The phase field is then locked at
¢==m/2 for I>1,_. Below this energy scale one can re-
place the sir® potential by its averaged value, i.e., $in
—(sing)==1. The effective Hamiltonian dt=I,_ is given

e
T
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4 U (@ u ® U ()
SDW SDW SDW
=
BCDW. BCDW BI
0 BL A Bl A A
2 FIG. 13. Schematic phase diagram of the half-filled extended
Hubbard model ata) V=0, (b) V<t, and(c) V>t. The single
lines represent second-order transitions, and the double lif@ in
represents a first-order transition.
2t In[In(t/A 1
0 uo— 2T Infin(t/A)] |
0 ¢ In(t/A) In(t/A) In(t/A)

(4.22

are positive constants of order unity. The
dependence obtl?; is different from the result in Refs. 32
since the lowest correction to 7&/In(t/A) is not

U,V<t. In agreement with Fabrizio, Gogolin, and O(In[IN(tA)}/In(/A)), but O(L/In(t/A)). Our results suggest
Nersesyari2 we obtain two critical points;<U.,) sepa- that the ratio of UZ, to UJ becomes Ug,/Ug =1
rating three phases on thé axis: the Bl state, the BCDW +C'In[In(/A)}/In(t/A). At present we do not know where
state & the SDI stat#?), and the SDW state. From compari- this difference comes from. We extend this analysis to the
son of Figs. 7 and 11, we see that the BCDW state in Fig. Tase with finiteV(<U) and examine th&/ dependence of
has evolved continuously into the BCDW state when theU¢; andU¢,. We note thaiG (1) # G(l) in this case since
alternating site potentiah is switched on. The phase dia- the SU2) symmetry of the charge sector is broken. We inte-
gram in theA-V plane is shown in Fig. 12, whefd/t=1. grate the RG equations analytically for smei=0 and ob-
Both A andV promote the Bl state, while the SDW ground tain the corrections to ordéf,

state is obtained for smal(<U) andV(<U). We find that

FIG. 11. Phase diagram of the half-filled extended Hubbard,haorec andc’
model atA/t=0.1. The double line denotes the first-order transi-
tion, while the single lines denote the second-order transitions.

the region of the BCDW state obtained in the EHM At —110 _ 2 1 H
=0 is connected to the region of the BCDW state in the Ua=Ua V[3+O(In(t/A) ' (4.233
Hubbard model with alternating site potential\&t0.
Let us discuss in more detail the critical regime in the 0 2 Inin(t/A)
limit of small U, V, and A. In this region we can safely Uea=Ue=V §+ “In(t/a) |’ (4.230

neglect the irrelevant terms and €&t (1) =G, s(1)=0 inthe ] ] ] )
RG equations4.12—(4.17. First we consider the cas¢  implying that the BCDW state survives upon inclusion of the
=0. Integrating out the RG equatiof.12—(4.15 analyti-  V(<U) term. We note thall;; andU, have a similar linear

cally and following the criterion discussed above, we obtaindependence ol. From Eqs.(4.23 and Figs. 11 and 12, we

asV increases from zero with andU being fixed at values

0 2t C near a quantum critical point.
Ucl:m(t/A) 1- In(t/A) T (4.2 Since the Hamiltoniail’ has three free parameterd/,
V/t, andA/t) at half filling, the ground-state phase diagram
0.6 y ' becomes a three-dimensioriaD) diagram. Instead of draw-

ing such a 3D plot, here we show two-dimensional tomogra-
phic phase diagrams. Figure 13 shows schematic phase dia-
grams in theA-U plane for three typical casagdt=0, V/t

<1, andV/t>1. We see that the nearest-neighbor repulsion
enhances the Bl phase and destroys the BCDW phase at
largeV, where the direct transition between the Bl and SDW
phases is first order. The recent numerical study of the ionic
Hubbard modéf reports a similar phase diagram as Fig.

13(a). The first-order transition line in Fig. 18§ asymptoti-
SDW BCDW 1 cally approaches the lingd=2A +2V.
Figure 14 shows schematic phase diagrams inARé
()0 0.005 0.01 plane forU/t<1 andU/t>1. At largeU andV there ap-
At pears a direct first-order transition between the Bl and SDW

phases in Fig. 1d). This first-order transition is in agree-
FIG. 12. Phase diagram of the half-filled extended ionic Hub-ment with the results obtained from the strong-coupling
bard model on the plane d¥/t andV/t, whereU/t=1. analysi8’ and numerical calculatior§:%

035103-14



GROUND-STATE PHASE DIAGRAM OF THE ONE. .. PHYSICAL REVIEW B 69, 035103 (2004

v @ 14 (b) the Ising ordered phagthat is, the SDI phagethe topologi-
cal chargeQ=*=2a,/ 7 of a lowest-energy excitation is de-
BI Bl creasing to zero, while excitations witQ=1 remain mas-
sive. Therefore the charge gdyp, does not vanish at this
BCDW SDW ) Ising critical point, and this quantum phase transition cannot
BCDW be detected withA.. Qin et al. and Manmaneet al. also
L3P A o A used A,=E;(L/2L/2)—Ey(L/2,L/2) in their numerical
analysis, wherds;(N; ,N ) is the energy of the first excited
FIG. 14. Schematic phase diagram of the half-filled extendedstgte3>45 The quantityA, measures excited states with the
Hubbard model ata) U<t and(b) U>t. The single lines represent same number of electrons, whose total topological charge
seconq-order transitions, and the double line represents a first—ordgzo in the sine-Gordon scheme. In the Ising ordered phase,
transition. the first excited state with the topological char@e=0
would be a bound statéor breather of a soliton with the
topological charge+2a,/7 and an antisoliton with the
As mentioned in Introduction, many groups have alreadycharge— 2«4/, whose energy vanishes at the critical point.
reported on numerical studies of the ground-state phase di®n the other hand, in the Ising disordered phase near the
gram of the ionic Hubbard model. Various numerical tech-critical point, the potential is almost flat and has very small
niques were used in these studies, including the densityeurvature. The low-energy excitations would then be small
matrix renormalization-grougfDMRG) method®*~3"“*the  oscillations around potential minimé&ather than soliton/
quantum Monte Carlo methdd/! a finite-size cluster antisolito) whose energy approaches zerolas:U ., —0.
method®® and a level crossing analy$%.The main issue Thus the exciton gap, is a right measure to detect the
here is whether or not the SDI pha@CDW phase exists,  quantum phase transition &t=U_;.
and so far these numerical studies do not seem to have
reached complete agreement yet. Although most of recent
studies report that the SDI phase appears near the boundary
between the SDW phase and the Bl ph&sé!=*~**3here In this section, we consider the 1D EHM with staggered
are still some conflicting claims in the literature. A less con-bond dimerizatioi$*%° i.e., the Peierls modulation of the
troversial issu® is the determination of the second critical hopping matrix element. The total Hamiltoniat is given
value U, at which a spin gap closes and which can beby H"=H+H, whereH is defined in Eq(2.1) and
estimated by computing the spin gap direttfi? or by ex-
amining the BCDW order paramet&r*® The determination _
of the critical pointU.; and the critical behaviors around it Hs=082 (—1))(c] i 1,4 H.C). (5.9
are more controversial issues. One way to estimate the criti- b
cal valueU_; is to use the complex parameter introduced byW

Resta and Sorrefl.Its diverging behavior at)=U_, indeed =0, the model is called “Peierls-Hubbard model.” The one-

allows one to determine the critical poftft® Another way i oi0o1 Mott insulator. realized whéhs>0 andV=0
to determine the critical point is to find a gap closing point in; ' '

N ; . . is known to be unstable against the Peierls distortiband
excitation spectra. Since the charge sector is responsible f%rs a result the ground state changes from the SDW state into
the quantum phase transition dt=U.;, one might try to

. ) . the BCDW state regardless of the magnitude of the Hubbard
look at a charge gap directly. However, numerical studie

SnteractionU. Such an instability comes from the fact that

ha}\{e founq that a .”aive Chafg‘? gap does not VaT“Sh at tr}ﬁe bond dimerization tends to concentrate the electron den-
critical point and is alwgyg finite. Recent sfcudles havesity onto bonds, without any conflict with the Hubbatd,
showri®>3®4® that the excitation gap that vanishes @t

_ , , repulsion®® However, the nearest-neighbor Coulomb repul-
=U, is the gap to the first excited state that has the samgjo, \/ competes with thiss term, since theV interaction
charge and spin quantum numbers as the ground state. Let g, 5 |ocalize two electrons on a single site and promotes
discuss this point in ”_‘Ogrf_fﬁeta" below. ) the CDW state. Here we investigate the instability of the

In numerical studies,™ the “charge gap”A. was  gcpyy state against the intersite Coulomb repulsigrand

defined  as Ac=Eo(L/2+1L/2)+Eo(L/2=1LI2)  (¢iarify the critical behavior near the transition between the
—2Ey(L/2L12), whereEy(N;,N)) is the lowest energy of a gcpw state and the CDW state.
finite-size system with an even number of sitethat hasN; The bond dimerizatiot ; is bosonized a#i ;= [dxH,,

up-spin andN; down-spin electrons. This quantity. mea-  \ynere

sures the energy of the excitation with the topological charge

Q==1 andS,==*1/2 [Eq. (4.7)], and is rather a single-

electron excitation gap. Acco_r_ding to the b_osonizafcion theory Hy=— 9 oS0 COSeh (5.2)
(Sec. IV A), the charge transition & =U,, is described by 2(ma)?

the “¢* theory and is in the Ising universality class. The

transition occurs when two degenerate local minima of theand gs;=8wda. One finds that the EHM with the bond
effective potential for the charge fields merge into a singledimerization also has a two-component DSG structure. Here
local minimum. As one approaches the transition point fromthe charge phase field is subjected to the potential cés

C. Discussions on previous numerical results

V. EFFECT OF BOND DIMERIZATION

ithout loss of generality we can assumie-0. WhenV
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TABLE Ill. Possible ground states and the position of locked
phase fields, determined from E&.4).

Phase 0. 9)
SDW (0= yy), (m, (7= 74))
CDW (£7,0), (=(m—yg),m)
PI (for g5>0) (0,0), @, m)
PI (for g5<0) (0.m), (7,0)

BSDW (= m/2,+ 7l2)

instead of sirg of theg, term[Eqg. (4.2)], while the locking
potential for the spin phase fielfl has the same structure as
that of theg, term.

It is important to note that the BCDW order parameter

Ogcpw takes a nonvanishing expectation value for ahgnd
Vif 6#0, asH s« Ogcpw- In this section we will not use the

PHYSICAL REVIEW B 69, 035103 (2004

® SDW
o CDW
A PI

A BSDW

FIG. 15. Positions of locked phase fieldsand ¢ in the respec-
tive states forg;>0.

term BCDW to characterize phases, and, in particular, th@ossible ground states and positions of locked phase fields

phase containing the trivial Peierls insulatdf€V=0 and
6#0) is called the Peierls insulatin@l) phase.

are summarized in Table lll and Fig. 15. In these states the
potential energy reads

A. Semiclassical analysis =—gctgs g4, (5.69
We begin with semiclassical analysis of the model with Visow= T 9c—Js. (5.6b
the gs term. We neglect spatial variations of the phase fields

in H+ Hs and consider the potential 95

Veow=—0c— s 80. (5.60
V5(6,¢)=—0.C0S 20+ g,C0S 2 — g.LO0S 20C0S 2p 9s’
—QsC0SH CoSo, (5.3 g3

’ VgDW: t0ct9st 5 (5.60

whereg.s=g3<0. ¢

First, we consider the simpler case whegg=0, which
corresponds to the situation whegg, is irrelevant in the RG
sense. The potential in this case is

In deriving Egs. (5.69 and (5.6d, we have assumed
lgs/9s<4 and|gs/g.|<4, respectively. The PI state is sta-
bilized by the first-order contribution of thge; term. Further-
more, if g<>0 (g.<0), the SDW statdthe CDW statgis

also stabilized due to second-order contributiorggf The
phase diagram obtained by comparing these energies is

Vg( 0,¢)=—g. COS 20+ gsCOS 2p— g5 COSH cos¢>.( )
5.4

Js

5|

49.

95

49, ®9

0
Vo= yy=|cos?

shown in Fig. 16.
The positions of the potentlal minima are determined by the Erom the above semiclassical analysis one might con-
saddle-point equationsV3(6,¢)/d6=0 anddV}(6,¢4)/d¢  clude that the topological charge [Eq. (4.7)] becomes frac-
=0. We find that the potential has the double-well structurejonal in the SDW phase and that the Ising-type phase tran-
for the 6(¢) phase field wherg.< |gﬁll4 (9s>194//4).  sition in the spin sector takes place on the boundary between
Here we introduceyy and y5 (0<+9,v}=<m) defined by the PI state and the SDW state. However, as discussed in
Sec. IV, the global S(2) symmetry prohibits the Ising criti-
1 cality in the spin sector and changes the SDW phase in Fig.
cos 7| — 16 into the PI phase.
Next we include they.s term. Table 1l still stands if we
for |g5/9¢/<4 and|gs/g.|<4, respectively. The solutions replaceg, andgs with g.—|gcd andgs+|ged in 5 andy?/,,
to the saddle-point equations can be classified into the folrespectively. The phase diagram obtained by minimizing the
lowing four classes: (i) the Pl state, §,¢) potential energy 5( 6, ¢) is shown in Fig. 17. New features
=(0,0),(04r),(7,0), or (m,m) [for gs>0, the phase fields compared with Fig. 16 are the appearance of a first-order
are locked at §,¢)=(0,0) or (w, ), while for gs<0 the transition line and of the new phase in which the ground state
phase fields are locked a#,¢)=(0,7) or (w,0)]; (i) the has the coexisting order of the SDW, CDW, BCDW, and
pure BSDW state, {4, ¢)=(7/2,=w/2) or (— w/2,= w/2); BSDW. The new phase is shown as the shaded region in Fig.
(iii) the “SDW” state with both the SDW order and the 17, which is surrounded by the three curves defined by
BCDW order, @, $)=(0,+ ) or (7, % (7—3)); and(iv)
finally, the “CDW” state with both the CDW order and the 95
BCDW order, @,¢)=(*75,0) or (+(7—+9),7). The

(gc+|gcs|)(gs |gcs|)_ (5.79
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&s state, and the CDW state. Since the SDW state is prohibited

by the SU2) symmetry and becomes the PI state, we expect
BSDW SDW to have only two phases, the PI state and the CDW state, and
a single phase transition between them. The transition is con-
tinuous at|g.s/gs/<1 and changes into a discontinuous
transition wheng. exceeddg /4.

B. Renormalization-group analysis

CDW PI Next we perform perturbative RG analysis to take into
account quantum fluctuations. The one-loop RG equations
for coupling constants ift{ +H s are given by

FIG. 16. Phase diagram obtained by minimizing the potential d 1
energyVy( 6, ¢) [Eq. (5.4)]. The phase boundary of the BSDW state mGﬁ: +Gst 2 Gs5Gp+GsGem 2 GsGst 4 GsGes
is given by the curvg.gs= —g§/16 with g.<0. The phase bound-
ary between the PI state and the SDW state and that between the PI 3
state and the CDW state are given by the liges |g,|/4 with g o §G§Gps' 5.9
>|gsl/4 and g.=—|gsl/4 with gs<|g4/4, respectively. All the
phase transitions in this figure are continuous. A multicritical point

is at @c,9s)=(—194//4,/94/4). 1
2
9s
(gc+|gcs|)(gs+|gcs|)2:_1_6(gs_|gcs|)l (5-7b)
d 1
¢ §7Gec= +7G5+2G, Ge= G Ges—Ges Gy,
(gs_|gcs|)(gc_|gcs|) :__(gc+|gcs|)- (5-7© (5.10)
16
Let us focus on the phases which can be realized when d 1
gs=gc, in view of the fact that in the extended Hubbard §7Gs= ~ —G%-2G2-G,G—G%, (5.1)
model bothgs(=9g,,) and g.(=g3,) are given by U d 4
—2V) in the lowest order. Along the lings=g. in Figs. 16
and 17, there are three possible phases: the SDW state, the P} 1
. aGcs= +ZG§—2 Gest2G,Gs—4GsGs—2G Gy
-2 Gc GpS_4 GCSGp51 (5.12
BSDW SDW
d 1.,
aGpS: - ZGﬁ—Z G,st2G,Gs—4 GG
5 g —4GZ—4G.G . (5.13
cDW I The initial value of G4(l) is given by G40)=26/t and
those of the other coupling constants ar@,(0)
=g,/(4mt). We note that these RG equations are invariant
under the sign change oG4(l). We can thus assume

Gs(0)=0 without losing generality.

FIG. 17. Phase diagram obtained by minimizing the potential To find the ground-state phase diagram of the system, we
energyV (6, ¢) [Eq. (5.3)] drawn for|g,/8<|g.d<|gs//4. Multi-  solve the scaling equation$.8)—(5.13 numerically, as in
critical points are located ag(,ds) = (—|gcd,|ded) and (- 5|93 the preceding sections. We determine to which phase the
+]9ed, 195/~ 9cd). The boundary of the BSDW phase igq( gr.ound state belongs by looking at which one of the cou-
+]9cd) (9s— |9ed) < — 9%16. The edges of the Pl phase are definedPliNgs G,(1), Ge(l), Gy(l), andG.(l) becomes most rel-
by the linesg.= — 2|gs +|ged andge=2|gs —|ged. The double €vant. For repulsivéJ andV there are four possibilities as
line denotes a first-order transition, and the single lines denote corlisted below.
tinuous transitions. Within the semiclassical analysis the ground (i) If G is most relevant an&.(I)—1 atl=I,, , then
state in the shaded region has the coexisting order of the SDWhe phase field is locked atd=0 or r, and the effective
CDW, BCDW, and BSDW. Hamiltonian for the spin sector &&1,, becomes
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Vg UVE
Mo =gy 2 (59~ CL(342)(0x6-)

_UF & UVF &
+— G} cos¢p+ — Gg cos 2, (5.19

7a 7a
whereGg =Gg(l,+) — Gyl ,+) andG5=G4(l,,), and the
sign —/+ of the G% term corresponds to the location of the
phase lockingd=0/m. This effective theory is the same as
Eqg. (4.19. As seen before, regardless of the sigrGdf, the
phase fieldg is locked at¢p=0 or 7 depending on the po-
sition of the charge phase lockirgg=0 or 7. Thus we have
the phase locking, ¢)=(0,0) or (m, ), i.e., the Pl state as
the ground state. We note that due to the&$pin rotation
symmetry the SDW state cannot be realized everGif
>0.

(i) If G¢ is most relevant an@.(I)——1 atl=I,_, then
the phase field is locked atd= = 7/2. The effective Hamil-
tonian for the spin part is

eff _U_F 2_U_F *
My =gy 2 (0xp)* = - CL(0x2) (340-)

Ur
+ —ZG;‘ COS 2¢, (5.15
ma
where G5 =G4(l,,-)+ G4l ,-). We have verified numeri-
cally thatG} always becomes negative in this case. Gie
terms are then marginally relevafGs (1)— — under
scaling. The phase fields are then locked ab,d)

=(=#/2,0),(=w/2,7), which corresponds to the CDW
phase withy,— w/2 (i.e., gs—0, see Table I). Since’H

PHYSICAL REVIEW B 69, 035103 (2004

Vit

%

4
Uit
FIG. 18. Phase diagram of the half-filled extended Hubbard
model with §/t=0.1. The second-order transition litgngle line
turns into the first-order transition lifelouble ling at the tricritical
point (U.,V)~(4.9,2.3).

or in the CDW phase, and there is an Ising-type quantum
phase transition between the two phases. Here we estimate
the Ising critical point from the semiclassical analysis. That
is, the critical value is determined from the condition
G;/G%=—1/4 (see Fig. 18 If G} >0, these two terms do
not compete and thus the phase lockingdisO (7) for ¢
=0 (), where the ground state is the PI state.

The resultant phase diagram in tbeV plane is shown in
Fig. 18. In the weak-coupling region, the transition from the
Pl state to the CDW state is characterized by the appearance
of the double-well structure of the effective potential to the
field, and thus the phase transition in Fig. 18 belongs to the
Ising universality class. As we increatkandV, there ap-
pears a tricritical point aty.,V.)~(4.%,2.3t), where the

*Ogcpw the order parameter of the BCDW should have aphase transition changes from second order to first order.
nonvanishing expectation value. We thus conclude that the Figure 19 shows schematic phase diagrams in ¢

ground state is in the CDW phase.
(iii ) If either G5 or G is most relevant, both charge and

plane forV<t and V/t>1. When §=0, we obtain three
phases(the CDW, BCDW, and SDW phasefor V<t (a)

spin fluctuations are suppressed. In this case the semiclaséind two phase@he CDW and SDW phasgor V>t (b), as
cal treatment is justified, and we can determine to whichwe discussed in Sec. l(see Fig. 7. Upon turning ons, the

phase the ground state belongs by substituBRgand G, to
g. andgs in Fig. 17.

(iv) If G4 is most relevant anGg(l)——1 atl=I,, the
spin fluctuations are suppressed and the phase feid
locked at¢p— 0 or 7 below this energy scale. The effective
Hamiltonian atl =1, is given by

UVE VE
M =gy 2 (3:00)%+ -GL(3:8.)(3,0-)

(5.16

_ UF UF
F——G%cosfd— — G} cos 20,

2 2

Ta Ta

where G:j =G,(l,)—G,s(l,), Gf=G(l,)+GCcdl,), and
G3=Gy(l,). The sign—/+ of the G’ term corresponds to

the phase lockingg=0/7. Both of the nonlinear terms cés
and cos 2 are relevant perturbations. G <0, these two

SDW ground state changes into the PI state, where the tran-
sition is described by the Gaussian theory. On the other hand,
the BCDW state changes into the PI state without accompa-
nying any singularity: This change is merely lifting of the
doubly degenerate BCDW ground states.

Figure 20 shows schematic phase diagrams in &hé
plane forU=0, U/t<1, andU/t>1. At U=0 we have a

U U

@ )

SDW

PI

~SDW PI

+-BCDW
cow

X<CDW
0 3 0 )

FIG. 19. Schematic phase diagram of the half-filled extended
Hubbard model ata) V<t and(b) V>t. The single lines represent

terms compete with each other, and this DSG model exhibitsecond-order transitions, and the double line represents a first-order
the Ising criticality. The ground state is either in the PI phasaransition.
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14 (@ vy b y cow (c) (Fig. 13). In the presence of the staggered bond dimerization
CDW - thS SDW phase becomes u.nstat')Ie anq the ground state at
CDW SDW V=0 turns out to be the Peierls insulating state. Mot 0
BCDW I the phase d|agr_am consists of two phases, the PI state a_md the
77 s JSSDW PI s 5 CDW state, which are separated by a phase transition line of
0 the Ising criticality (Fig. 18.
FIG. 20. Schematic phase diagram of the half-filled extended
Hubbard model ata) U=0, (b) U<t, and(c) U>t. The single ACKNOWLEDGMENTS
lines represent second-order transitions, and the double line repre- . .
sents a first-order transition. One of the authoréM.T.) thanks E. Orignac, M. Sugiura,

Y. Suzumura, K. Yonemitsu, and H. Yoshioka for valuable
discussions. The authors also thank S. Qin for useful discus-
sions. A.F. is grateful to Aspen Center for Physics for its
hospitality, where this paper was finished. This work was
supported in part by a Grant-in-Aid for Scientific Research
on Priority Areas from the Ministry of Education, Culture,
Sports, Science and Technology, JapdGrant No.
12046238.

single critical valueV. which has thes dependence given by
V.« 1/Int/6) for small 5. As U andV increase, the phase
boundary approaches thé=2V line. The asymptotic form
of V. for UV>3§ and é<t is given by V.=3U
+C" U(8/t)2Y'™ whereC” is a numerical constant of the
order of unity(see also Fig. 18

VI. CONCLUSIONS APPENDIX A: BOSONIZATION

In this paper we have studied the ground-state phase dia- |, s section, we derive the phase Hamiltonian of the 1D
gram of the one-dimensional extended Hubbard model withyenged Hubbard model by using the Abelian bosonization
on-site and nearest-_ne|ghbor rep_uls[d)landv. By_lncludlng method® We include not only the marginal terms but the
higher-order corrections to coupling constants ingf®0ogY, |gading irrelevant terms which play a crucial role in the first-
we have given a plausible theoretical argument within thg,.jer SDW-CDW transition at strong coupling.

RG approach for the mechanism of the appearance of the The | agrangian for the free massless boson theory in a
BCDW phase atU~2V in the weak-coupling limit. Our vq_dimensional Euclidean space is given by

two-step RG approach, however, is not complete in that there

remains a weak cutoff dependence in the phase boundaries. 1

This, albeit minor, defect should be resolved with use of a Ly= EJ dx
more sophisticated systematic RG procedure. Away from the

weak-coupling limit the umklapp scattering between thewhere# is a bosonic fields is the imaginary time, and is
parallel-spin electronglz| tends to destabilize the BCDW velocity. The variable canonically conjugatefads given by
state and eventually gives rise to a bicritical point where the

two continuous-transition lines merge into the SDW-CDW aL i

first-order transition lin€Fig. 7). We should note, however, 1= 6—92 %(970, (A2)
that there still remains a difficult question as to whether our

phase diagram is qualitatively correct near the multicritical yhere h= 56/4t andt is the real time ¢=it). As usual this

point (which we call bicritica). One could imagine, for ex-  qystem is quantized by imposing the commutation relation at
ample, a possibility that a continuous phase transition beéqual times:[ 6(x),IT(x")]=i8(x—x'). Thus the Hamil-
tween the BCDW state and the CDW state becomes fir§fy i for the free boson theory is given bi,
order before reaching the multicritical point, due to higher'zi]dxH 9.0+L, ie
order effects that are ignored in our analysis. If the correct T or
topology of the phase diagram is indeed the same as ours v
(Fig. 7), then the critical properties of the multicritical point H0=4—j dx
remain to be understood. We hope that these issues will be &
resolved by future studies.

We have also examined effects of additional staggered sit
potential and bond dimerization in the extended Hubbarcf . ” e
model. In the presence of the staggered site potential, W|eld50 and represent the “charge” and “spin” degrees of

: feedom. The chiral bosonic fields. (x,7) and¢. (x,7) are
have found that the BCDW state is smoothly connected to . = =
the SDI phase which is obtained =0 by Fab):izioet a3z  introduced in Eqs(2.19 and(2.13, respectively, where the
In this BCDW phase the BCDW order coexists with therlght—movmg .(leﬂ'movégg) fields are funct|on§ of 7
CDW order, and the quantum phase transition between thE'(X/v F_) [I+'~(X/UF)]' ) The_phase field (¢) a_nd 't_s dual
Bl phase(or the CDW phaseand the BCDW phase belongs Phase fieldd (¢) are written in terms of the chiral fields as
to the Ising universality classcE 2 CFT). For finite V the

v(ax0)2+%(a79>2 . (A1)

de\?
(27TH)2+(&) } (A3)

Introducing two copies of this theory with fieldsand ¢
nd velocityv =vg, we arrive atH, [Eq. (2.11)], where the

BCDW phase is also destabilized by thg term, and the 0=0.+60_, 6=0.—0_, (Ad)
direct first-order quantum phase transition between the SDW 3
state (= Mott insulating stateand the BI state takes place d=d,+d_, Pd=¢,—P_. (A5)
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They satisfy the following commutation relations:

[0(x),0(x")]=[$(x), $(x')]=—i 27 O(—x+X),
(AB)

where®(x) is the Heaviside step function.

The electron field operatorg, ,(x) are given in Eq.
(2.17) in terms of a new set of chiral bosonic fields,
introduced in Eq(2.195. In this bosonization schemg,
and¢_
Klein factor k., to ensure the anticommutation relation be-
tween fields with different spins; cf. the so-callednstruc-
tive bosonization metho. From Egs.(2.16 and(2.17) the
electron-density operator becomes

Pp.c(X) =) iy 5t = (A7)

> dx el

As is well known, the Hamiltonian density of free bosons
(2.1, i.e.,

v
Helf S S

p=* o

d(Pp,a' 2_ 2
i ) =moE2, pp,(X). (AB)

is equivalent to the Hamiltonian density of free fermions
with linear energy dispersion, E¢R.9). This can be shown,
for example, by using the OPE meth@4.

Next we bosonize the interaction terh,,. Without the
nearest-neighbor repulsidy this can be easily done &s*

i 0= P (5,0, (0021 S (8,7
(o 21+ AT G a0
+ AT 4 (b )~ —2—cos 20
2(ma)?
2(%71;)2(:08 2, (A9)

whereg’s are given in and below Eq2.8). In the presence

PHYSICAL REVIEW B 69, 035103 (2004

did not include all the operators with scaling dimension 4
and failed to keep the spin-rotational G symmetry** We
have to be careful in dealing with théinteraction to include
the important terms with scaling dimension up to 4. To this
end, we focus on th¥ interaction and bosonize each scat-
tering process separately.

First, theg, tern™ representing the backward scattering
with parallel spins is bosonized by using Eg.17) as

anticommute, and we only need to introduce the

VaE U o) Y p s ()P (X +8) Py (X +a)

Va

glPLo(x+a)— ()] +ips[#(x+a) — ¢(X)]
(2ma)? ps==

=23 (axep)2+2<axe+>(axe)}
p

T

V
+7a2[§ (ax¢p>2+2<ax¢+><ax¢>}

- V_azaz(‘?xa)z(ax(ﬁ)z"' (All)
41

where we have expanded the exponent in the second line up
to the ordera® for the ¢ sector and theb sector, separately.
Since we are interested in operators that codd@d ¢ as in
Eq. (A10), we have discarded dimension-4 terms such as
a*(9,0)* and a*(dy¢)* that involve only one sector. Such
terms as §,0,)(d,0_) and (@y¢ . )(dx¢p_) are already re-
tained in Eq.(A9), while the last term proportional to
(9,0)?(d4)? is a new term with scaling dimension+2,
which was missed in Ref. 24. We note that the Fermi velocity
is renormalized by theg, term due to the presence of

S ,(9x0,)? and = (9 )% This is in contrast with the con-
ventional treatment where the velocity renormalization
comes only from the forward scattering tegy.>*

In a similar way, the interaction terms of backward and

of V, the matrix element of the umklapp process with parallelimkiapp scatterlng with opposite spiKso-calledg;, and

spinsHg, 3 [the g5 process in Eq(2.4)] has a finite ampli-

tude at lowest order ig-ology. This term can be bosonized
as

93

—__,C0s 26 cos
2( ma)? 2

9y = (A10)

wheregs = —2Vain the lowest order itV. This term, which

g3, terms> respectively are bosonized as

vay, gl

p,o

o(X) - pU(X)llf oo Xt @)y s(X+a)

Va

(2ma)? ps==

el PLO(x+2a) = 6(x)] —ips[#(x+a) + $(x)]

couples the charge and spin degrees of freedom, is often
neglected since it is an irrelevant perturbation with scaling
dimension 4, consisting of dimos¥]=2 plus
dim[ cos 2p]=2. Cannon and Fradkin were the first to sug-
gest that this term should play an important role in the first-
order SDW-CDW transition in the half-filled EHKf. Voit

then derived RG equations including this term. However he
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E N + =0y, , in any order ofU andV. To proceed further, we ne-
Vap’U Up,o(X) h—p,o(X) (X Q) thp (X +a) glect the terms that inVOIVE/'S ;(d48,)? or VE ,(dxhp)? in

Eq. (A14). These terms can lead to renormalization of the
velocity through the RG transformatiaisee Appendix B

This effect can be ignored if we are interested in qualitative
feature of the ground-state phase diagram of the model. The
final form of the bosonized Hamiltonian is thus given by Eg.

Va

= e~ iplo(x+a)+ ()] +ips[#(x+a)— ¢(X)]
(27a)? ps==

+ 2va 20 Zva(a ¢.)(d.p_)cos 20 (2.19
= COS 20— _)Ccos . .
2(ma)? 272 T
2Va , APPENDIX B: DERIVATION OF RENORMALIZATION-
T > (9xpp)?|cos 26+ - - -, (A13) GROUP EQUATIONS
w p

_ In this section, we derive one-loop RG equations for the
where o= [ (1) for c=1(l). The potential cos@ in Eq.  coupling constants including those operators with higher
(A12) and the potential cos?in Eqg. (A13) are already re- scaling dimension. Our derivation is based on the operator
tained in Eq.(A9), while the other terms are new and have product expansiofOPE method. The interaction part of the
the scaling dimension22. action$S, in the presence of the staggered site poteGials

The forward-scattering termsy§, g,, , 94|, andga,) given by
do not generate operators of dimensioh 2.
Hence the total Hamiltonian is given by

G G,
S.=;”J dzr(aze)(@e)—7f d?r (3,0 (77)

2 [v,(d ep>2+va<ax¢p>2]+ 75(0:0:)(3,0-) )
G, [ d°r
— sma 1COS¢: | = 1COS 20:
a’
9s Js. 11
——(d dyp_)— c0326+ cos
277_2( x¢+)( x¢ ) a 772a2 2¢) GS dzr GCS d2
+— —chos2¢ —— | —=:C0S 20::C0S 2¢:
Va ™ a ™ a?

. ; (dx0p)?

Tea 21

GPS . .
- ?f d?r (9,0)(,0):cos 2p:

+2(dx0+)(9x0-)

cos%—ﬁ[z (dxepp)?
22| % P r(d,¢)(d5¢):cos 26:

va’® E 2 G
PG N GG [0S 5 (40 #2220 (0,0)(970) () (720, ®Y)
+2(0x01) (90 HZ (0x¢p)2+2(ﬁx¢+)(ﬁx¢—)} where z=ver+ix, z=vpr—ix, d?r=vedxdr, and G,
=g;/2mve . In this section, the operators are explicitly nor-

(A14)  mal ordered.

. " . In order to derive the RG equations, we use the followin
The renormalized velocities are given hy,=2ta+ (U OPE'’s: a g

+6V)a/(27) and v,=2ta—(U—2V)a/(2m). The cou-
pling constantsy,, andgs, are defined in Eq(2.8), and

=g,+0y, — andg, (=—g,+0,, + are given 1
gg( 921+ 92. —91)) 9o(=—0z T 92, +9)) g 3,(2) 3,(w)= (Z_W)2+ . (B2a)
Cq ,  Ca
=(U+6V)a+ 4_77'[(U_2V) a+ EV a, (A15a) 1
J,(2) 3,(w)= w*‘ (B2b)
Ci ,  Ca
=(U-2V)a— —(U-2V)“a— — V-a. (A15b)
47t Tt _ o
J :eim‘}(w,w): elaﬁ(w W) I B2¢
For the discussion of the SDW-CDW transition in the 1D o(2) 2(z—w)’ (B29)
EHM, it is sufficient to have the coupling constants of di-
mension 4 in lowest order ivV. We note that due to the _ B
SU(2) spin-rotation symmetry of the theory, the coupling J (2):€/ @t . = — Y giabww). . (B2d)
constants for spin degrees of freedom must satigfy P 2(z—w)
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@i a8(22). - o =1a6(0,0). Exchangingd— ¢ andp— o yields the OPE’s for spin phase
fields.
. Expanding the action in powers of coupling constants and
= |Z|a2+|Z|7(ZJP—ZJp) integrating out short-distance parts, we obtain the scaling
equations,
2i [
9,070) + 2X(520)+22(9%0 d. _ 1 1 1
*ip 2%) W[ (970)+2°(7,6)] §iGa= G414 56,~ 56, Gc~ Gy~ 5Ges
2 2
X o 2. 22, @ — 1 1 1
+2|Z|“2[Z Jyitz 'JP']_WTzJPJP+"" _ZGPS_ZGCU_§GPU , (B4)
(B2e) d 1
3G +4G +2 G+ G+ GG s (B5)
gl @022 g1 B0(0.0). — ! elethe. . (B2f)
|z|~«f d 1, s
EG": _ZGA_Z G:—Gi— G Ge, s (B6)
where we have introduced(l) currents:J (z)=id,6(z, z)
J,()=-i50(22), I,(D)=id,p(z.2), and J,(2) d 1,
=—id;¢(z,z). The parameters: and B8 (a+ B+#0) in the g1 Cc= ~ 761126, G (Gs*+Gpe)Ces, (BT
vertex operator are numerical constants which determine the
scaling dimension. In deriving the above OP_E’s, we have d 1
used the Wick theorem and the correlatqg; (z) 6. (w)) §i%s= ~ ZGi—Z Gy Gs—(Gc+Gey)Ges,  (BY)
=——In(z a)) (0_(2)0_(0))=—3 In(z—w), and
(6(2,2) 6(w,w))=—In|z—w|. From Eq.(B2), one finds d 1,
- B JGCS: - ZGA—Z(l—Gp+G(,+Gp,,)GCS
[J,(2) 3,(2)1[3,(0) J,(0)]
_2 (GC+GC(7')(GS+ Gps)! (Bg)
1 1
=+ — (2 R+ (B3a d 1
1z|* | 47 Cr= —ZGi—2(1+Gg)GpS+2GPGS
2
R (874 — —
[3,(2) 3,(D)]:Cosab(0,0): =~ ——:cosaf:+ -, 4(GctGer) Ges=2G5 Gy, (B1O)
B3b d 1
(B3b) 37 Ger= —Zei—z(l—ep)ew—z G, G,
2
- o
[J,(2) J,(2)]:sina6(0,0):= — EE :sina@:+- - -, —4(Gst+Gps) Ges—2G: G, (B11)
z
(B3c) d 1, )
B EGP": —ZGA—ZGP(,+2 G,G,—4Gg
:cosa 6(z,z)::cosa6(0,0):
, —4G.G,—4 GG (B12)
1
— aa (2% J2 +22 J D) Here we note that the number of the RG equations can be
2|Z| |Z| reduced due to the spin-rotational @Jsymmetry. To show
2 1 this point more transparently, we introduxél), Y(I), and
— 3,3+ 5|7 cos 2+ -+, (B3 Z(D by X(N=G,(1)=GCs(l), Y(1)=Ges(l) ~Geo(1), and
2|z|*" 2 2 Z(1)=G,4(1)—G,,(l). Their RG equations are obtained
from Eqgs.(B5)—(B12) as
:COSaH(z,?)::cosﬁa(0,0): d
ax=2 G X+(G.— Gy Y, (B133a
= :cog(a—pB)0]:
g 0L (e B)f]
d
—=Y=2(—1+G,+Gs+G,5) Y+2 (G~ G¢o)(X—2),
+ co§(a+pB)6]:+---. (B3e) dl ps ( es)(
22| (B13b)
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Z=—-2(1-Gg) Z—2(G,+G,s) X—4 (G~ Geo) Y.
(B13¢

One immediately finds that, X(0)=Y(0)=2(0)=0, they
vanish for alll, i.e., X(1)=Y(I)=Z(I)=0. This implies that
G (1)=G4(l), Geyl)=Geu(l), andG (1) =G,,,(I), which

2o

PHYSICAL REVIEW B 69, 035103 (2004

to the spin-rotational S(2) symmetry. In this case, we can
setG,(1)=Gs(l), Geo(l)=GCes(l), and G, (1)=G,4(1) in
the RG equation§B4)—(B12). Then the RG equations are
given by Egs.(4.12—(4.17. The RG equations for the 1D
EHM without the staggered site potential are obtained by
settingG, (1) =0, EQgs.(2.20—(2.24).

The RG equations can also be obtained in the presence of

are nothing but the constraints on the coupling constants dutae bond dimerization in a similar way.
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