34 research outputs found

    Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, \u3ci\u3eGryllus firmus\u3c/i\u3e: Implications for life-history evolution

    Get PDF
    The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity – in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight-capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer. Nine supplemental files attached below

    Cry1F resistance among lepidopteran pests: A model for improved resistance management?

    Get PDF
    The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize

    Cry1F resistance among lepidopteran pests: A model for improved resistance management?

    Get PDF
    The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize

    Functional, proteomic and bioinformatic analyses of Nrf2- and Keap1- null skeletal muscle

    Get PDF
    Key points Nrf2 is a master regulator of endogenous cellular defences, governing the expression of more than 200 cytoprotective proteins, including a panel of antioxidant enzymes. Nrf2 plays an important role in redox haemostasis of skeletal muscle in response to the increased generation of reactive oxygen species during contraction. Employing skeletal muscle-specific transgenic mouse models with unbiased-omic approaches, we uncovered new target proteins, downstream pathways and molecular networks of Nrf2 in skeletal muscle following Nrf2 or Keap1 deletion. Based on the findings, we proposed a two-way model to understand Nrf2 function: a tonic effect through a Keap1-independent mechanism under basal conditions and an induced effect through a Keap1-dependent mechanism in response to oxidative and other stresses. Although Nrf2 has been recognized as a master regulator of cytoprotection, its functional significance remains to be completely defined. We hypothesized that proteomic/bioinformatic analyses from Nrf2-deficient or overexpressed skeletal muscle tissues will provide a broader spectrum of Nrf2 targets and downstream pathways than are currently known. To this end, we created two transgenic mouse models; the iMS-Nrf2flox/flox and iMS-Keap1flox/flox, employing which we demonstrated that selective deletion of skeletal muscle Nrf2 or Keap1 separately impaired or improved skeletal muscle function. Mass spectrometry revealed that Nrf2-KO changed expression of 114 proteins while Keap1-KO changed expression of 117 proteins with 10 proteins in common between the groups. Gene ontology analysis suggested that Nrf2 KO-changed proteins are involved in metabolism of oxidoreduction coenzymes, purine ribonucleoside triphosphate, ATP and propanoate, which are considered as the basal function of Nrf2, while Keap1 KO-changed proteins are involved in cellular detoxification, NADP metabolism, glutathione metabolism and the electron transport chain, which belong to the induced effect of Nrf2. Canonical pathway analysis suggested that Keap1-KO activated four pathways, whereas Nrf2-KO did not. Ingenuity pathway analysis further revealed that Nrf2-KO and Keap1-KO impacted different signal proteins and functions. Finally, we validated the proteomic and bioinformatics data by analysing glutathione metabolism and mitochondrial function. In conclusion, we found that Nrf2-targeted proteins are assigned to two groups: one mediates the tonic effects evoked by a low level of Nrf2 at basal condition; the other is responsible for the inducible effects evoked by a surge of Nrf2 that is dependent on a Keap1 mechanism

    Genetics of Dispersal

    Get PDF
    Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.Peer reviewe

    Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, \u3ci\u3eGryllus firmus\u3c/i\u3e: Implications for life-history evolution

    Get PDF
    The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity – in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight-capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer. Nine supplemental files attached below

    \u3ci\u3eDe Novo\u3c/i\u3e Transcriptome Assembly from Fat Body and Flight Muscles Transcripts to Identify Morph-Specific Gene Expression Profiles in \u3ci\u3eGryllus firmus\u3c/i\u3e

    Get PDF
    Wing polymorphism is a powerful model for examining many aspects of adaptation. The wing dimorphic cricket species, Gryllus firmus, consists of a long-winged morph with functional flight muscles that is capable of flight, and two flightless morphs. One (obligately) flightless morph emerges as an adult with vestigial wings and vestigial flight muscles. The other (plastic) flightless morph emerges with fully-developed wings but later in adulthood histolyzes its flight muscles. Importantly both flightless morphs have substantially increased reproductive output relative to the flight-capable morph. Much is known about the physiological and biochemical differences between the morphs with respect to adaptations for flight versus reproduction. In contrast, little is known about the molecular genetic basis of these morph-specific adaptations. To address this issue, we assembled a de novo transcriptome of G. firmus using 141.5 million Illumina reads generated from flight muscles and fat body, two organs that play key roles in flight and reproduction. We used the resulting 34,411 transcripts as a reference transcriptome for differential gene expression analyses. A comparison of gene expression profiles from functional flight muscles in the flight-capable morph versus histolyzed flight muscles in the plastic flight incapable morph identified a suite of genes involved in respiration that were highly expressed in pink (functional) flight muscles and genes involved in proteolysis highly expressed in the white (histolyzed) flight muscles. A comparison of fat body transcripts from the obligately flightless versus the flight-capable morphs revealed differential expression of genes involved in triglyceride biosynthesis, lipid transport, immune function and reproduction. These data provide a valuable resource for future molecular genetics research in this and related species and provide insight on the role of gene expression in morphspecific adaptations for flight versus reproduction
    corecore