158 research outputs found

    Evidence for variation in the effective population size of animal mitochondrial DNA

    Get PDF
    Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation

    Molecular evolution of genes in avian genomes

    Get PDF
    Nam K, Mugal C, Nabholz B, et al. Molecular evolution of genes in avian genomes. Genome Biology. 2010;11(6): R68.Background: Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1:1 orthologs of chicken, zebra finch, a lizard and three mammalian species. Results: We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an overrepresentation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton. Conclusions: Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between Ο‰ and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes

    Impact of Deep Coalescence on the Reliability of Species Tree Inference from Different Types of DNA Markers in Mammals

    Get PDF
    An important challenge for phylogenetic studies of closely related species is the existence of deep coalescence and gene tree heterogeneity. However, their effects can vary between species and they are often neglected in phylogenetic analyses. In addition, a practical problem in the reconstruction of shallow phylogenies is to determine the most efficient set of DNA markers for a reliable estimation. To address these questions, we conducted a multilocus simulation study using empirical values of nucleotide diversity and substitution rates obtained from a wide range of mammals and evaluated the performance of both gene tree and species tree approaches to recover the known speciation times and topological relationships. We first show that deep coalescence can be a serious problem, more than usually assumed, for the estimation of speciation times in mammals using traditional gene trees. Furthermore, we tested the performance of different sets of DNA markers in the determination of species trees using a coalescent approach. Although the best estimates of speciation times were obtained, as expected, with the use of an increasing number of nuclear loci, our results show that similar estimations can be obtained with a much lower number of genes and the incorporation of a mitochondrial marker, with its high information content. Thus, the use of the combined information of both nuclear and mitochondrial markers in a species tree framework is the most efficient option to estimate recent speciation times and, consequently, the underlying species tree

    Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay

    Get PDF
    The European wild boar Sus scrofa was first introduced into Uruguay, in southern South America during the early decades of the last century. Subsequently, and starting from founder populations, its range spread throughout the country and into the neighbouring Brazilian state Rio Grande do Sul. Due to the subsequent negative impact, it was officially declared a national pest. The main aim in the present study was to provide a more comprehensive scenario of wild boar differentiation in Uruguay, by using mtDNA markers to access the genetic characterization of populations at present undergoing rapid expansion. A high level of haplotype diversity, intermediate levels of nucleotide diversity and considerable population differentiation, were detected among sampled localities throughout major watercourses and catchment dams countrywide. Phylogenetic analysis revealed the existence of two different phylogroups, thereby reflecting two deliberate introduction events forming distantly genetic lineages in local wild boar populations. Our analysis lends support to the hypothesis that the invasive potential of populations emerge from introgressive hybridization with domestic pigs. On taking into account the appreciable differentiation and reduced migration between locales in wild boar populations, management strategies could be effective if each population were to be considered as a single management unit

    The genome of a songbird

    Get PDF
    The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chickenthe only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat- based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour. Β© 2010 Macmillan Publishers Limited. All rights reserved

    Bio++: Efficient Extensible Libraries and Tools for Computational Molecular Evolution

    Get PDF
    Efficient algorithms and programs for the analysis of the ever-growing amount of biological sequence data are strongly needed in the genomics era. The pace at which new data and methodologies are generated calls for the use of pre-existing, optimizedβ€”yet extensibleβ€”code, typically distributed as libraries or packages. This motivated the Bio++ project, aiming at developing a set of C++ libraries for sequence analysis, phylogenetics, population genetics, and molecular evolution. The main attractiveness of Bio++ is the extensibility and reusability of its components through its object-oriented design, without compromising the computer-efficiency of the underlying methods. We present here the second major release of the libraries, which provides an extended set of classes and methods. These extensions notably provide built-in access to sequence databases and new data structures for handling and manipulating sequences from the omics era, such as multiple genome alignments and sequencing reads libraries. More complex models of sequence evolution, such as mixture models and generic n-tuples alphabets, are also included

    DNA sequence diversity and the efficiency of natural selection in animal mitochondrial DNA

    Get PDF
    Selection is expected to be more efficient in species that are more diverse because both the efficiency of natural selection and DNA sequence diversity are expected to depend upon the effective population size. We explore this relationship across a data set of 751 mammal species for which we have mitochondrial polymorphism data. We introduce a method by which we can examine the relationship between our measure of the efficiency of natural selection, the nonsynonymous relative to the synonymous nucleotide site diversity (Ο€N/Ο€S), and synonymous nucleotide diversity (Ο€S), avoiding the statistical non-independence between the two quantities. We show that these two variables are strongly negatively and linearly correlated on a log scale. The slope is such that as Ο€S doubles, Ο€N/Ο€S is reduced by 34%. We show that the slope of this relationship differs between the two phylogenetic groups for which we have the most data, rodents and bats, and that it also differs between species with high and low body mass, and between those with high and low mass-specific metabolic rate

    Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica

    Get PDF
    The maximum size and age that clonal organisms can reach remains poorly known, although we do know that the largest natural clones can extend over hundreds or thousands of metres and potentially live for centuries. We made a review of findings to date, which reveal that the maximum clone age and size estimates reported in the literature are typically limited by the scale of sampling, and may grossly underestimate the maximum age and size of clonal organisms. A case study presented here shows the occurrence of clones of slow-growing marine angiosperm Posidonia oceanica at spatial scales ranging from metres to hundreds of kilometres, using microsatellites on 1544 sampling units from a total of 40 locations across the Mediterranean Sea. This analysis revealed the presence, with a prevalence of 3.5 to 8.9%, of very large clones spreading over one to several (up to 15) kilometres at the different locations. Using estimates from field studies and models of the clonal growth of P. oceanica, we estimated these large clones to be hundreds to thousands of years old, suggesting the evolution of general purpose genotypes with large phenotypic plasticity in this species. These results, obtained combining genetics, demography and model-based calculations, question present knowledge and understanding of the spreading capacity and life span of plant clones. These findings call for further research on these life history traits associated with clonality, considering their possible ecological and evolutionary implications

    Recombination Drives Vertebrate Genome Contraction

    Get PDF
    Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process

    Domestication history and geographical adaptation inferred from a SNP map of African rice

    Get PDF
    African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa-3,000 years ago. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began-13,000-15,000 years ago with effective population size reaching its minimum value-3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within-300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species
    • …
    corecore