16 research outputs found

    Action of earthworms on flint burial – a return to Darwin’s estate

    Get PDF
    For thirty years, from the early 1840s, Charles Darwin documented the disappearance of flints in the grounds of Down House in Kent, at a location originally known as the “Stony Field”. This site (Great Pucklands Meadow - GPM) was visited in 2007 and an experiment set up in this ungrazed grassland. Locally-sourced flints (either large - 12 cm, or small – 5 cm dia.) were deposited at two densities within sixteen 1 m2 plots in a randomised factorial design. The area selected was distant from public access routes and remained unmown throughout the duration here reported. Fixed point photographs were taken at the outset to enable later photogrammetric analysis. After 6 years, the site was re-examined. The flints had generally been incorporated into the soil. Photographs were re-taken, proportion of buried flints recorded and measurements made of burial depth from a quarter of each plot. Results showed that large flints were more deeply incorporated than smaller (p=0.025), but more of the latter were below the soil surface. A controlled laboratory experiment was also conducted using Aporrectodea longa (the dominant earthworm species in GPM) to assess effects of casting in the absence of other biota. Results suggested that this species has a major influence on flint burial through surface casting. Combined with a long term, but small scale collection of A. longa casts from an area close to GPM, all results were consistent with those provided by Darwin and showed that rate of flint burial was within the range 0.21-0.96 cm y-1

    The importance of sub-peat carbon storage as shown by data from Dartmoor, UK

    Get PDF
    Peatlands are highly valued for their range of ecosystem services, including distinctive biodiversity, agricultural uses, recreational amenities, water provision, river flow regulation and their capacity to store carbon. There have been a range of estimates of carbon stored in peatlands in the United Kingdom, but uncertainties remain, in particular with regard to depth and bulk density of peat. In addition, very few studies consider the full profile with depth in carbon auditing. The importance of sub-peat soils within peatland carbon stores has been recognized, but remains poorly understood and is included rarely within peatland carbon audits. This study examines the importance of the carbon store based on a study of blanket peat on Dartmoor, UK, by estimating peat depths in a 4 × 1 km survey area using ground penetrating radar (GPR), extraction of 43 cores across a range of peat depth, and estimation of carbon densities based on measures of loss-on-ignition and bulk density. Comparison of GPR estimates of peat depth with core depths shows excellent agreement, to provide the basis for a detailed understanding of the distribution of peat depths within the survey area. Carbon densities of the sub-peat soils are on average 78 and 53 kg C/m3 for the overlying blanket peat. There is considerable spatial variability in the estimates of total carbon from each core across the survey area, with values ranging between 56.5 kg C/m2 (1.01 m total depth of peat and soil) and 524 kg C/m2 (6.63 m total depth). Sub-peat soil carbon represents between 4 and 28 per cent (mean 13.5) of the total carbon stored, with greater values for shallower peat. The results indicate a significant and previously unaccounted store of carbon within blanket peat regions which should be included in future calculations of overall carbon storage. It is argued that this store needs to be considered in carbon audits. © 2013 British Society of Soil Science

    Determining the effect of drying time on phosphorus solubilization from three agricultural soils under climate change scenarios

    Get PDF
    Climate projections for the future indicate that the United Kingdom will experience hotter, drier summers and warmer, wetter winters, bringing longer dry periods followed by rewetting. This will result in changes in phosphorus (P) mobilization patterns that will influence the transfer of P from land to water. We tested the hypothesis that changes in the future patterns of drying–rewetting will affect the amount of soluble reactive phosphorus (SRP) solubilized from soil. Estimations of dry period characteristics (duration and temperature) under current and predicted climate were determined using data from the UK Climate Projections (UKCP09) Weather Generator tool. Three soils (sieved 25°C are predicted in some places and dry periods of 30 to 90 d extremes are predicted. Combining the frequency of projected dry periods with the SRP concentration in leachate suggests that this may result overall in increased mobilization of P; however, critical breakpoints of 6.9 to 14.5 d dry occur wherein up to 28% more SRP can be solubilized following a rapid rewetting event. The precise cause of this increase could not be identified and warrants further investigation as the process is not currently included in P transfer models

    Assessing on-farm productivity of Miscanthus crops by combining soil mapping, yield modelling and remote sensing

    Get PDF
    Crown Copyright © 2015 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Biomass from agricultural land is a key component of any sustainable bioenergy strategy, and 2nd generation, ligno-cellulosic feedstocks are part of the UK government policy to meet the target of reduced CO2 emission. Pre-harvest estimates of the biomass supply potential are usually based on experimental evidence and little is known about the yield gap between biologically obtainable and actual achievable on-farm biomass yields. We propose a systematic integration of mapped information fit for estimating obtainable yields using an empirical model, observed on-farm yields and remote sensing. Thereby, one can identify the sources of yield variation and supply uncertainty. Spatially explicit Miscanthus potential yields are compared with delivered on-farm yields from established crops ≄5 years after planting, surveyed among participants in the Energy Crop Scheme. Actual on-farm yield averaged at 8.94 Mg ha−1 and it varied greatly (coefficient of variation 34%), largely irrespective of soil type. The average yield gap on clay soils was much larger than that on sandy or loamy soils (37% vs 10%). Miscanthus is noticeably slower to establish on clay soils as shown by fitting a logistic Gompertz equation to yield time series. However, gaps in crop cover as identified by density counts, visual inspection (Google Earth) and remote sensing (Landsat-5) correlated with observed on-farm yields suggesting patchiness as causal for reduced yields. The analysis shows ways to improve the agronomy for these new crops to increase economic returns within the supply chain and the environmental benefits (reduced GHG emission, greater carbon sequestration) and reduce the land demand of bio-energy production.Peer reviewedFinal Published versio

    Monitoring British Upland Ecosystems With the Use of Landscape Structure as an Indicator for State-and-Transition Models

    No full text
    Remote sensing and landscape ecology concepts can provide a useful framework for state-and-transition models (STM) in order to quantify thresholds at different scales, and provide useful information for scientists, land managers, and conservationists in relation to resilience management. The overall aim of this research was to develop a spatially explicit STM to quantify thresholds based on the scale of disturbance processes impacting a grazing system. Specific objectives were to develop a conceptual STM framework for upland grazing ecosystems, to quantify spatial dynamics of stable and degraded pastures, and to assess threshold occurrence. Color aerial photography from Armboth Fell in the English Lake District National Park (United Kingdom) was classified into bare rock, dwarf shrub heath (DSH), and grassland/degraded wet heath (GDWH) in four pastures with different degrees of grazing pressure. Vegetation communities from these pastures were combined with soils, climate, and landform data to create a conceptual STM framework. Each pasture was sampled with 2-ha plots to quantify DSH and GDWH spatial structure. The proposed STM consisted of two reference and three alternative states. Low–grazing-pressure areas showed significantly higher percentage of DSH cover with larger contiguous patches and lower patch density than high–grazing-pressure areas. Breakpoints, considered to be thresholds, in mean patch area were identified in our data when DSH percentage cover was  77%. The present study has shown the value of a robust, reliable, and repeatable approach to identify landscape dynamics and integrate it with field data to inform a conceptual STM framework for upland grazing ecosystems. It also demonstrates the importance of selecting scales relevant to the predominant disturbance process to test for threshold occurrence, and how this approach can be integrated with current assessment methods for resilience management

    Evidence against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter

    Get PDF
    The stability of global soil carbon (C) represents a major uncertainty in forecasting future climate change. In the UK, substantial soil C losses have been reported, while at the same time dissolved organic carbon (DOC) concentrations in upland waters have increased, suggesting that soil C stocks may be destabilising in response to climate change. To investigate the link between soil carbon and DOC at a range of sites, soil organic matter, soilwater and streamwater DOC were analysed for radiocarbon (14C). DOC exported from C-rich landscapes appears younger than the soil C itself, much of it comprising C assimilated post-1950s. DOC from more intensively managed, C-poor soils is older, in some cases >100 years. Results appear consistent with soil C destabilisation in farmed landscapes, but not in peatlands. Reported C losses may to a significant extent be explained by mechanisms other than climate change, e.g. recovery from acidification in peatlands, and agricultural intensification in managed systems
    corecore