73 research outputs found
Smart Skin Patterns Protect Springtails
Springtails, arthropods who live in soil, in decaying material, and on plants, have adapted to demanding conditions by evolving extremely effective and robust anti-adhesive skin patterns. However, details of these unique properties and their structural basis are still unknown. Here we demonstrate that collembolan skin can resist wetting by many organic liquids and at elevated pressures. We show that the combination of bristles and a comb-like hexagonal or rhombic mesh of interconnected nanoscopic granules distinguish the skin of springtails from anti-adhesive plant surfaces. Furthermore, the negative overhang in the profile of the ridges and granules were revealed to be a highly effective, but as yet neglected, design principle of collembolan skin. We suggest an explanation for the non-wetting characteristics of surfaces consisting of such profiles irrespective of the chemical composition. Many valuable opportunities arise from the translation of the described comb-like patterns and overhanging profiles of collembolan skin into man-made surfaces that combine stability against wear and friction with superior non-wetting and anti-adhesive characteristics
Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection
Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits
Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes
Abstract: Purpose: This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. Methods: Web of Science and Google Scholar were used to review published papers spanning the period 2013–2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018–2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. Scope: Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. Conclusions: The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach
Mating and aggregative behaviors among basal hexapods in the Early Cretaceous
Among the many challenges in paleobiology is the inference and reconstruction of behaviors that rarely, if ever, leave a physical trace on the environment that is suitable for fossilization. Of particular significance are those behaviors tied to mating and courtship, individual interactions critical for species integrity and continuance, as well as those for dispersal, permitting the taxon to expand its distribution as well as access new habitats in the face of local or long-term environmental change. In this context, two recently discovered fossils from the Early Cretaceous amber of Spain (ca. 105 mya) give a detailed view of otherwise fleeting ethologies in Collembola. These occurrences are phylogenetically spaced across the class, and from species representing the two major clades of springtailsÐSymphypleona and Entomobryomorpha. Specifically, we report unique evidence from a symphypleonan male (Pseudosminthurides stoechus SaÂnchez-GarcõÂa & Engel, 2016) with modified antennae that may have functioned as a clasping organ for securing females during mating on water's surface, and from an aggregation of entomobryomorphan individuals (Proisotoma communis Sánchez-García & Engel, 2016) purportedly representing a swarming episode on the forest floor. We demonstrate that the mating behavioral repertoire in P. stoechus, which is associated with considerable morphological adaptations, likely implied elaborate courtship and maneuvering for guarantee sperm transfer in an epineustic species. These discoveries reveal significant behaviors consistent with modern counterparts and a generalized stasis for some ancient hexapod ethologies associated with complex mating and courtship and social or pre-social aggregations, so critical to specific constancy and dispersal
Clinical Management and Patient Outcomes Among Children and Adolescents Receiving Telemedicine Consultations for Obesity
Rural residents report lower likelihood of exercising, and higher rates of obesity, heart disease, and diabetes compared to their urban counterparts. Our goals were to (1) investigate the outcomes of telemedicine consultations for pediatric obesity on changes/additions to diagnoses, diagnostic evaluation or treatment, and (2) determine whether changes in diagnostic and management recommendations made by the consultant were associated with improvements in patient nutrition, activity level, and weight. We conducted a retrospective medical record review of patients referred to a University-affiliated Children's Hospital Pediatric Telemedicine Weight Management Clinic for a diagnosis of obesity. Of the 139 children and adolescents who received pediatric weight management consultations during the study period, 99 patients met inclusion criteria. Weight management consultations resulted in changes/additions to diagnoses in 77.8% of patients and changes/additions to diagnostic evaluation in 79.8% of patients. Of patients seen more than once, 80.7% showed improvement in clinical outcomes. Of patients seen more than once, 80.6% improved their diet, 69.4% increased activity levels, 21.0% showed slowing of weight gain or weight maintenance, and 22.6% showed weight reduction. Improvements in clinical outcomes were not associated with changes/additions to diagnoses (Odds Ratio [OR] = 0.98; 95% Confidence Interval [CI] = 0.25–3.98) and were weakly associated with changes/additions to diagnostic evaluations (OR = 2.23; 95% CI = 0.58–8.73). However, changes/additions to treatment were associated with improvement in weight status (OR = 9.0; 95% CI = 1.34–76.21). Obesity consultations were associated with changes/additions to diagnoses, diagnostic evaluation, and treatment. Treatment changes were associated with improvement in weight status. Telemedicine weight management consultations have the potential to result in modifications in patient care plans and outcomes
- …