1,882 research outputs found

    Particle Approximations of the Score and Observed Information Matrix for Parameter Estimation in State Space Models With Linear Computational Cost

    Get PDF
    Poyiadjis et al. (2011) show how particle methods can be used to estimate both the score and the observed information matrix for state space models. These methods either suffer from a computational cost that is quadratic in the number of particles, or produce estimates whose variance increases quadratically with the amount of data. This paper introduces an alternative approach for estimating these terms at a computational cost that is linear in the number of particles. The method is derived using a combination of kernel density estimation, to avoid the particle degeneracy that causes the quadratically increasing variance, and Rao-Blackwellisation. Crucially, we show the method is robust to the choice of bandwidth within the kernel density estimation, as it has good asymptotic properties regardless of this choice. Our estimates of the score and observed information matrix can be used within both online and batch procedures for estimating parameters for state space models. Empirical results show improved parameter estimates compared to existing methods at a significantly reduced computational cost. Supplementary materials including code are available

    On the off-axis tensile test for unidirectional composites

    Get PDF
    The off axis tensile test was examined experimentally to obtain actual displacement fields over the surface of graphite polyimide coupon specimens. The experimental results were compared with approximate analytical solutions and generated finite element results. An optical method of high sensitivity moire interferometry was used to determine the actual displacements to high precision. The approximate analytical solution and the finite element results compare very favorably with the measured centerline displacements in the test section, and the finite element displacement fields provide excellent agreement with the moire displacements throughout the specimen. A 15 degree fiber orientation and coupon aspect ratios of 5 and 15 are presented

    KIC7668647: a 14 day beaming sdB+WD binary with a pulsating subdwarf

    Get PDF
    The recently discovered subdwarf B (sdB) pulsator KIC7668647 is one of the 18 pulsating sdB stars detected in the Kepler field. It features a rich g-mode frequency spectrum, with a few low-amplitude p-modes at short periods. We use new ground-based low-resolution spectroscopy, and the near-continuous 2.88 year Kepler lightcurve, to reveal that KIC7668647 consists of a subdwarf B star with an unseen white-dwarf companion with an orbital period of 14.2d. An orbit with a radial-velocity amplitude of 39km/s is consistently determined from the spectra, from the orbital Doppler beaming seen by Kepler at 163ppm, and from measuring the orbital light-travel delay of 27 by timing of the many pulsations seen in the Kepler lightcurve. The white dwarf has a minimum mass of 0.40 M_sun. We use our high signal-to-noise average spectra to study the atmospheric parameters of the sdB star, and find that nitrogen and iron have abundances close to solar values, while helium, carbon, oxygen and silicon are underabundant relative to the solar mixture. We use the full Kepler Q06--Q17 lightcurve to extract 132 significant pulsation frequencies. Period-spacing relations and multiplet splittings allow us to identify the modal degree L for the majority of the modes. Using the g-mode multiplet splittings we constrain the internal rotation period at the base of the envelope to 46-48d as a first seismic result for this star. The few p-mode splittings may point at a slightly longer rotation period further out in the envelope of the star. From mode-visibility considerations we derive that the inclination of the rotation axis of the sdB in KIC7668647 must be around ~60 degrees. Furthermore, we find strong evidence for a few multiplets indicative of degree 3 <= L <= 8, which is another novelty in sdB-star observations made possible by Kepler.Comment: arXiv admin note: text overlap with arXiv:1206.387

    Compression-Loaded Composite Panels With Elastic Edge Restraints and Initial Prestress

    Get PDF
    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance

    Effect of Boundary Conditions on the Axial Compression Buckling of Homogeneous Orthotropic Composite Cylinders in the Long Column Range

    Get PDF
    Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials

    Observation of a New Type of Low Frequency Waves at Comet 67P/Churyumov-Gerasimenko

    Get PDF
    We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low activity state. Quasi-coherent, large-amplitude (δB/B∼1\delta B/B \sim 1), compressional magnetic field oscillations at ∼\sim 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied comet-interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pick-up ion driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.Comment: 6 pages, 3 Figure

    Solar wind interaction with comet 67P: impacts of corotating interaction regions

    Get PDF
    International audienceWe present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1–2.7 AU from the Sun and the neutral outgassing rate ∼1025–1026 s−1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10–30 km. The ionospheric low-energy (∼5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below −20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (∼10–100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2–5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events

    Two-Dimensional Spectroscopy of Extended Molecular Systems: Applications to Energy Transport and Relaxation in an α-Helix

    Get PDF
    A simulation study of the coupled dynamics of amide I and amide II vibrations in an α-helix dissolved in water shows that two-dimensional (2D) infrared spectroscopy may be used to disentangle the energy transport along the helix through each of these modes from the energy relaxation between them. Time scales for both types of processes are obtained. Using polarization-dependent 2D spectroscopy is an important ingredient in the method we propose. The method may also be applied to other two-band systems, both in the infrared (collective vibrations) and the visible (excitons) parts of the spectrum.

    K2 observations of pulsating subdwarf B stars: Analysis of EPIC 203948264 observed during Campaign 2

    Get PDF
    We apply asteroseismic tools to the newly discovered subdwarf B (sdB) pulsator EPIC 203948264, observed with K2, the two-gyro mission of the Kepler space telescope. A time series analysis of the 83-d Campaign 2 (C2) short-cadence data set has revealed a g-mode pulsation spectrum with 22 independent pulsation periods between 0.5 and 2.8 h. Most of the pulsations fit the asymptotic period sequences for ℓ = 1 or 2, with average period spacings of 261.3 ± 1.1 and 151.18 ± 0.37 s, respectively. The pulsation amplitudes are below 0.77 ppt and vary over time. We include updated spectroscopic parameters, including atmospheric abundances and radial velocities, which give no indication for binarity in this star. We detect one possible low-amplitude multiplet, which corresponds to a rotation period of 46 d or longer. EPIC 203948264 appears as another slowly rotating sdB star
    • …
    corecore