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A simulation study of the coupled dynamics of amide I and amide II vibrations in an R-helix dissolved in
water shows that two-dimensional (2D) infrared spectroscopy may be used to disentangle the energy transport
along the helix through each of these modes from the energy relaxation between them. Time scales for both
types of processes are obtained. Using polarization-dependent 2D spectroscopy is an important ingredient in
the method we propose. The method may also be applied to other two-band systems, both in the infrared
(collective vibrations) and the visible (excitons) parts of the spectrum.

I. Introduction

Nonlinear spectroscopy exploiting sequences of ultrashort
pulses of visible or infrared radiation offers a rich tool box for
unraveling the energetics and ultrafast dynamics of electronic
and vibrational states of molecular systems. In particular, two-
dimensional infrared (2DIR) and visible (2Dvis) spectroscopy1

are rapidly gaining popularity to probe energy transport and
relaxation in complex molecular systems. These spectroscopies
have been developed during the past decade as analogues of
two-dimensional NMR (2DNMR) experiments. In particular,
the analogues of the NOESY variant of 2DNMR allow for the
study of dynamics, because they involve a waiting time t2 that
may be controlled at the femtosecond time scales, thus allowing
one to take snapshots of a system while it evolves.2,3 Examples
of systems that have been studied using 2DIR or 2Dvis
spectroscopies with nonzero waiting times include relatively
simple few-level systems, such as the coupled amide I and amide
II vibrations in N-methylacetamide (NMA)4 and vibrations in
other small organic molecules,5 as well as extended systems
with a multitude of levels, such as the amide I band in
polypeptides or proteins,6,7 the excitonic transitions in the
photosynthetic Fenna-Matthew-Olsen complex,8 and the ex-
citonic transitions in double-wall molecular nanotubes.9

In the simplest situation, with only two interacting vibrational
or electronic states of interest, it is rather straightforward to
obtain information about their coupled dynamics from the
waiting time dependence of the 2D spectrum. In particular, the
evolution of the diagonal peak of each state in this spectrum
yields direct information on its lifetime (induced by decay to
the other state or to a bath), while the cross peak between both
states yields direct information on population transfer between
them and possible coherence in the dynamics involved. More
specifically, the waiting time dependence of the intensity of the
cross peak normalized by the diagonal peak intensity is directly
proportional to the population transfer, as has been shown for
the amide I to amide II energy transfer in NMA.10,11 For systems
with a few, but more than two, states of interest, the dynamics
may be deduced in a similar way.

The situation is less obvious for the coupled dynamics of
two types of vibrations or electronic excitations in extended
systems composed of many coupled building blocks. Such so-
called two-band problems are ubiquitous in nature and in
synthetic systems. Examples are the electronic energy transfer
and relaxation in and between the B800 and the B850 rings of
the light-harvesting antenna system in purple bacteria,12–15 the
dynamics of vibrational energy of the amide I and amide II
vibrations in peptide helices, and electronic energy transfer in
and between the inner and the outer cylinder in double-wall
molecular nanotubes.9 Each type of excitation in such extended
systems gives rise to a band of collective excited states, which
may be delocalized over many building blocks. As a result of
(approximate) symmetry, usually only a fewsso-called bright
or superradiantsstates dominate the optical (absorption) spec-
trum of each band; the many other states are dark, that is, they
are not or are hardly visible in the spectrum. This makes a
phenomenological interpretation of the associated 2D spectra
in terms of only a few coupled states, derived from the bright
states seen in the spectrum, very tempting. Yet, this simplicity
is deceptive and leads to wrong results. The reason is that the
many dark states still play a role in the dynamics and influence
the 2D spectra. For instance, monitoring the intensity of the
diagonal peak associated with a particular band of states, in
contrast to a real few-level system, does not necessarily yield
information about the energy loss from that band; the loss of
intensity may also arise from transfer of energy from the
superradiant states to the dark states within the same band.
Disentangling intraband dynamics from interband dynamics and
defining an operational way to measure the interband energy
transfer rate is a hard problem.16

In this article we will show that using the combined
information from several polarization dependent 2D spectra
taken as a function of the waiting time, it is in fact possible to
disentangle intraband and interband energy transport and
relaxation, and to obtain the separate time scales for these types
of dynamics from experiment. We will do this by simulating
the coupled dynamics of the amide I and amide II vibrations in
model R-helices dissolved in water (see Figure 1) and calculating
the 2DIR spectra as a function of t2. Aside from the generic
interest in this type of two-band problems, the topic of
vibrational energy transport within peptide helices is one that
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has intrigued researchers for several decades already.17 The
development of 2DIR spectroscopy has recently given new
impetus to this area.7,18

II. Modeling Vibrational Energy Transport

The model for the R-helix and the nature of the amide I and
amide II vibrations that occur within each amide group are
schematically depicted in Figure 1. The results reported were
obtained for a helix of 10 amide groups, implying that 20 local
amide vibrations were taken into account. We did examine
systems of different size and found that a length of 10 amide
groups is sufficient to exclude finite-size effects. The amide I
vibration has a strong infrared response, making it the most
frequently probed vibration in polypeptides. As a second mode
we consider amide II, because its spatial and energetic proximity
to amide I give rise to quite fast relaxation between them,10

facilitated by a resonance that includes the solvent. In the helix,
the electrodynamic and mechanical couplings between local
vibrations give rise to amide I and amide II bands of collective
vibrations, as is also depicted in Figure 1. Fluctuations in the
surrounding solvent now result in transport and relaxation within
each band as well as relaxation between both bands. The excited
amide modes can also transfer their energy to multiple quanta
of low-frequency vibrations in the peptide, as seen in studies5

on organic systems. Recent quantum chemical calculations
suggest that the role of these states is not of prime importance
in our system.11 Including such states, for which little is known
in our system, would be prohibitively expensive computation-
ally, and this type of dark states are therefore neglected.

Within the model, each amide group may carry a vibrational
energy quantum in each of the two modes considered; the natural
frequencies of these local modes are on the order of 1600 cm-1

for amide I and 1500 cm-1 for amide II. The one-quantum
excitations of these two modes form the basis for describing
the vibrational energy transport. To model the nonlinear response
probed in the 2DIR spectrum, the amide I and amide II overtones
on each amide group are also considered, as well as the
combination state in which both modes carry one vibrational
quantum.

Including the coupling between the local vibrations, this leads
to the Hamiltonian for the relevant states:

Here, n and m label the amide units (so, they both run from
1 to 10 in our case), while i and j can be either 1 (for the amide
I vibration) or 2 (amide II). The operators ani

† and ani are the
usual ladder operators for harmonic oscillators. The first term
describes the energy of a single amide unit, accounting for the
natural frequency ωni of each of the oscillators as well as for
the anharmonic frequency shift Ai of the overtones.

The second term describes the bilinear interaction between
the different local oscillators, characterized by the Jni,mj. Values
for these parameters are obtained from the electrodynamic
transition charge coupling (TCC) model.19,20 Because mechanical
coupling is important between amide units that are connected
through covalent bonds, the TCC model can not be applied there.
Instead, we have created a nearest-neighbor coupling map for
the amide I and II modes from DFT calculations on a dipeptide
using the matrix reconstruction method. The procedure is an
extension to the one applied previously for the amide I band in
polypeptides.20–25 The reconstruction method also produces
values for shifts in the harmonic frequency of the oscillators
due to the peptide environment, which are included in the
parameters ωni. For the anharmonic shifts we accepted the values
deduced from experiments on NMA (16 cm-1 for amide I (ref
6) and 11 cm-1 for amide II (ref 4)).

Due to the interactions Jni,mi partially delocalized vibrational
states arise in both amide bands.26,27 In each band the spectrum
is dominated by the bright so-called A and E modes. For the A
modes, the amide oscillations on different groups occur in phase;
the A mode has a transition dipole oriented parallel to the axis
of the helix. The E modes occur where the phase relation
between the local vibrations result in transition dipoles perpen-
dicular to the helical axis. For amide I the A mode is much
brighter than the E modes, whereas the opposite is true for amide
II. As the energy difference between the A and E modes is on
the order of 10 cm-1 for amide I27 and even smaller for amide
II,28 it is in practice very hard to distinguish these modes under
the broad line shape that occurs for helices in typical environ-
ments. Thus, the infrared spectrum of the R-helix is dominated
by one bright peak associated with each one of the bands
considered, making it appear as a two-state system. It should
be realized that in addition to the fact that more than one state
underlies each spectral peak, even more dark states occur in
each band (7 for the case of a length-10 helix), all of which
affect the vibrational dynamics.

To describe (incoherent) energy transport and relaxation, the
effects of the solvent on the amide vibrations are crucial. The
configuration of water molecules in the environment of the
R-helix is fluctuating on ultrashort time scales (down to 100
fs), as seen in other peptide systems.3,18 The partial charges in
these molecules affect the vibrations through Stark shifts,29,30

which constantly change in time, due to the solvent dynamics.
As a result, the Hamiltonian in eq 1 is time dependent, of the
so-called fluctuation oscillator form.1 In our simulations we have
included fluctuations of the local amide I and amide II
frequencies as well as the solvent induced coupling Jn1,n2

between them. This is done by combining molecular dynamics

Figure 1. The R-helix consisting of 10 amide groups, numbered 1
through 10 from the N to the C terminus. In the structure formulas,
the distortion along the amide I and amide II normal mode coordinates
is indicated with arrows. To the lower left, the energy level diagram is
depicted schematically, with the ground state (0), the band of 10
collective vibrations of amide II character (II) and the band of 10
collective amide I vibrations (I). The thick arrows starting from the
ground state symbolize the excitation processes, and the double-sided
arrows symbolize the intraband (solid) and interband (dashed) relaxation
processes.
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simulations of an NMA-d7 molecule (a single amide unit) in
water with a DFT map that translates the local water configu-
ration into frequency shifts. This leads to autocorrelation and
cross-correlation functions for the local frequencies and the
coupling on each amide unit, from which trajectories for the
time-dependent Hamiltonian are derived. In this procedure, the
fluctuations must be Gaussian. From looking at three- and four-
point correlation functions, we conclude that this is indeed a
good approximation in our MD results, as was the case in NMA-
d.10 The couplings between different groups are assumed to be
constant, because, typically, their fluctuations are found to be
much smaller than fluctuations in the oscillator frequencies.
From MD simulations of trialanine, coupling fluctuations of a
few wavenumbers were found,25 and we expect these fluctua-
tions to be smaller in the more rigid helix. Furthermore, although
the fluctuating quantities within an amide group are correlated,
we do not include correlations between different groups. This
approach allows us to parametrize the time dependence of the
Hamiltonian from simulations of a single peptide group. We
also excluded possible fluctuations in the anharmonicity. The
effect of such fluctuations on the spectra of the amide I mode
is known to be small.29

Other parameters that we need in the calculation of the spectra
are the average energy gap between the two modes and the
average transition dipoles. The energy gap includes shifts from
the dipeptide map, and is 137.2 cm-1, and the average on-site
coupling between both modes is 44.4 cm-1. From the average
over the MD trajectory, the angle between the amide I and amide
II transition dipoles is 79.4°, which compares well to the 75°
found experimentally in ref 4; and the length of the amide II
dipole is 0.64 times the length of the amide I dipole (compared
to a value extracted from experiments of 0.58). Fluctuations in
the dipoles have been neglected.

The fast fluctuations nonadiabatically mix all states on a short
time scale, rendering the picture of static eigenstates, although
useful for an understanding of the spectrum, invalid for a proper
description of the vibrational dynamics. We have therefore
computed the dynamics generated by the time-dependent
Hamiltonian by numerically integrating the time-dependent
Schrödinger equation.31 From this the wave function at each
moment in time may be obtained following some initial
excitation condition. This gives information on the time
dependence of the excitation probabilities of different vibrations
in the system and the phase relations between them. In particular,
this allows one to calculate the probability that after some time
t an initial excitation still resides in the band in which it was
created initially, as well as the velocity of energy propagation
or the diffusion constant within a band. Using the numerical
integration of the Schrödinger equation, we fully include
nonadiabatic vibrational dynamics in the amide I and II bands.
The only approximation comes from neglecting the effect of
these vibrations on the environment, which leads to a high-
temperature description.

Finally, the numerical integration of the Schrödinger equation
also allows one to calculate the linear and 2D absorption spectra
through standard perturbation theory in the infrared or visible
laser fields.31,32 These calculations allow us to connect the
information about the energy transport mechanisms described
in the previous paragraph with quantities that are observable in
experiment. The most time-consuming step in the calculation
is the propagation of the two-quantum states needed in the
nonlinear optical response. To simplify this, we use the Trotter
factorization to separate the harmonic and anharmonic contribu-
tions in each time step. The anharmonic contribution can be

calculated fast, while the harmonic propagator is simply given
as the product of one-exciton propagators.33

Results and Discussion

A. Transport and Relaxation. The transport of vibrational
energy within a particular amide band and the relaxation
between both bands may be characterized by solving for the
vibrational wave function as a function of time following the
initial one-quantum excitation of one of the oscillators in one
of the bands. Figure 2a-c shows the time evolution of the
vibrational wave packet after exciting at time zero the first amide
I oscillator counted from the N terminus of the helix. Circles
show the probability that the amide I vibration on a certain site
is excited, while crosses show these probabilities for the amide
II vibrations. These figures clearly demonstrate that population
transport within the amide I band and relaxation between both
bands take place on time scales of the order of 1 ps or less.

As is observed, the transport within the amide I band occurs
most efficiently between hydrogen bonded amide groups, such
as the first one and the fourth. The reason is that the coupling
between the dipoles of such groups is large, as a result of the
alignment of their transition dipoles. However, as is seen from
Figure 2b, transport also occurs between nearest neighbors along
the backbone of the helix, albeit slower: the increase in the
population on site 2 is clearly smaller than the growth of the
population on site 4.

To describe the intraband and interband dynamics in a more
quantitative way, we have integrated the information from the
wave packets in two different ways. First, Figure 2d displays
the time evolution of the total populations in the amide I and
amide II bands of the helix as a function of time. During the
first few hundred femtoseconds, small oscillations take place
caused by population coherently transferring back and forth
between both bands. The period of the oscillations is 0.2 ps,
corresponding to a linear frequency of ω/2πc ) 165 cm-1,
which is equal to the energy gap between the amide I and amide
II band. At longer waiting times the decay of the total amide I
population is exponential with a lifetime of 2.12 ( 0.01 ps.
We take this number as the time scale for the interband
relaxation. Second, Figure 2e shows the distance d traveled in

Figure 2. (a-c) Amide I (circles) and amide II (crosses) populations
in a length 20 R-helix at various waiting times after initial excitation
of the amide I oscillator on group 1. The amide groups are indexed
from the N to the C terminus. (d) Total population in the amide I band
(solid line) and the amide II band (dashed line) after initial excitation
of this mode. (e) The average distance traveled by an amide I excitation
in an R-helix after initial excitation of this mode on the first amide
group from the N terminus. The open circles are the result of our
calculation. A ballistic fit at short times and a diffusive fit at longer
times are indicated by a dashed and a solid line, respectively.

Energy Transport and Relaxation in an R-Helix J. Phys. Chem. A, Vol. 114, No. 27, 2010 7317



the amide I band, defined using the quantum mechanical
expectation value of the position operator. In the first 700 fs,
the distance can be fitted with a straight line (d ) t/0.22 ps
-0.4). This can be interpreted as ballistic transport with a rate
of about 4 peptide units per ps, arising as a consequence of the
partial delocalization. Here, the offset -0.4 reflects the nonlinear
behavior of d with t at early times, which is a consequence of
the initial accelerated vibron motion. After approximately 700
fs, the excitation transport can be characterized as diffusive due
to the finite scattering length, with a one-dimensional diffusion
constant D (here defined by d2 ) 2Dt) of 11 peptide units
squared per picosecond. Similarly, the ballistic dynamics in the
amide II bandsmeasured after exciting the amide II oscillator
at site 1stakes place with a time constant of 0.9 ps (d ) t/0.94
ps - 0.4) for about 4 ps, after which diffusive motion sets in
with the diffusion constant of 4 peptide units squared per
picosecond. From our simulations we can characterize both the
intra- and interband dynamics. As was mentioned in the
introduction, this is, however, not straightforward in an
experiment.

B. 2DIR Spectra. Detailed information on the dynamics is
present in a 2D spectrum. This displays the third-order optical
signal collected in an experiment exploiting four infrared or
visible laser pulses with variable delays times between them.1

To probe the vibrational or electronic dynamics, the delay time
between the first and the second pulse pair is particularly
important; this is usually referred to as the waiting time. The
signal measured is complex valued, and multiple ways of
plotting it have been devised. Here, we will only use the absolute
value of the signal. In an approximate, but useful, picture, the
spectrum can be interpreted as the correlation between the state
of the system before and after the waiting time. The transition
frequency of the former state (prepared by the first pulse pair)
is denoted ω1 and is plotted on the horizontal axis of a 2D map,
as is shown in Figure 3; the frequency of the latter state, probed
by the second pulse pair, is denoted ω3 and is displayed along
the vertical axis. For the example of the R-helix, the most intense
peaks in the spectra are found on the vertical line with ω1 around
1600 cm-1. They both correspond to initial excitation of the
amide I mode. The strongest of these peaks, found on the ω1 )
ω3 diagonal, is a result of pathways where the system is still in
an amide I state after the waiting time, while the lower peak
(cross peak) contains information about the coupling to the
amide II band.

Apart from the all-parallel polarization, resulting in the spectra
shown in Figure 3, the two laser pulses arriving after the waiting
time may also be chosen with a polarization perpendicular to
that of the two pulses arriving before the waiting time. The
difference between the integrated peak intensities in the parallel
and perpendicular absolute value spectra, normalized to the
isotropic signal, is a measure of the anisotropy of the excited
vibrational state.6 In systems where not all dipoles have the same
orientation (such as the R-helix), the anisotropy will decay over

time, reflecting the transport of vibrational energy from the
originally excited states to others, with different polarization.

Thus, the evolution of the anisotropy of the amide I diagonal
peak with the waiting time should contain information about
the transport of vibrational energy through the amide I band.
Figure 4a (crosses) shows this anisotropy, revealing a decay
on a sub-picoseconds time scale. This is considerably faster than
the anisotropy decay within a single amide unit (which is plotted
as squares in the same panel); for a single unit the decay cannot
reflect transport, but solely results from fluctuation-induced
mixing of the amide I and amide II modes as time progresses.
Thus, Figure 4a is consistent with the idea that fast transport
over the helix is responsible for reducing the anisotropy. A more
quantitative analysis confirms this explanation. We first consider
the initial value of the anisotropy. In an eigenstate picture, the
initial excitation will mainly populate the intense A mode of
the helix, where all amide I vibrators move in phase.27,34 In an
isotropic solution of helices, the polarization anisotropy should
then be 0.4 at zero waiting time. Its somewhat smaller value in
our results of Figure 4a can be explained from the nature of the
amide I diagonal peak, which does not originate from a single
transition, but contains contributions from an A-E cross peak
as well.27

At longer waiting times, as a result of the fluctuations, the
initially excited state relaxes, that is, it transfers its energy to
other states within the amide I band. Thus, the average dipole
of the excitation is rotated, which leads to the observed decay
of the anisotropy. Over the entire time interval shown, the decay
is fitted very well by an exponential function, with a decay time
of 0.23 ( 0.04 ps. This time scale agrees nicely with the ballistic
transport time in the amide I band found above. The longer
diffusive time is not observed, because the memory of the

Figure 3. Absolute value rephasing 2DIR spectrum (parallel polariza-
tion) of a length 10 R-helix for waiting time (t2) zero and 1 ps. Contours
are drawn between 5 and 50% of the maximum intensity in the left
panel, at intervals of 5%.

Figure 4. (a) Polarization anisotropy of the integrated amide I diagonal
peak intensities (rephasing spectrum) with exponential fit for a length
10 helix (crosses) and for a single amide unit (circles). Also shown are
the calculation results for the amide II diagonal peak (dotted lines).
(b) Integrated intensities of the upper amide II-amide I cross peak in
a length 10 helix (non-rephasing spectrum) for parallel (crosses) and
perpendicular (circles) polarization arrangement of the laser pulses. (c)
Integrated intensity of the upper cross peak in the absolute value non-
rephasing 2DIR spectrum (parallel polarization) of a length 10 R-helix,
normalized to the total integrated intensity in the spectrum. Also shown
in panel (c) are exponential fits to the calculated points between 600
and 5000 fs, with time constants 1.5 ps (dotted red), 2 ps (dashed red),
3 ps (dotted black), and 4 ps (dashed black).
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polarization direction is already lost during the ballistic period,
where the excitation moves a few units. We found that also the
amide II diagonal peak complies with this picture. Although
the oscillations in the first 400 fs (see Figure 4) complicate the
analysis, they are followed by an exponential decay with a decay
time of 0.8 ( 0.1 ps, which again agrees well with the ballistic
transport time for this mode.

The intraband dynamics, thus, shows up in the polarization
anisotropy of the diagonal peaks. We now turn our attention to
the amide II-amide I cross peaks. We focus on the one found
in the upper left corner of the non-rephasing spectrum. The other
cross peak essentially contains the same information. Because
the cross peak results from the interaction between the amide I
and II bands, it is expected to contain information about the
interband relaxation. To see that the collective nature of the
amide modes is also important here, we will first analyze our
results with an oversimplified model. In view of the simple
structure of the spectrum, it is tempting to treat each of the bands
as a single, effective mode. The 2DIR spectrum calculated from
such a model would contain diagonal amide I and II peaks, as
well as amide I-amide II cross peaks. Although these main
features of the 2DIR spectrum are reproduced, the simple model
is not able to explain the variation in the cross peak intensity
that we observe in the full calculation. The cross peaks between
the amide I and amide II modes would be expected to increase
in intensity with waiting time as a result of the vibrational
relaxation between these two modes.10 However, as we have
seen in the polarization anisotropy, the intraband relaxation leads
to rotation of the dipole of the excitation in our full model. In
combination with the relaxation to dark states within the same
exciton band, this leads to a decrease in the cross peak intensity
in the parallel polarization in the first 600 fs (Figure 4b, crosses).
It is clear that the intraband dynamics, which is neglected in
the simple model, needs to be included properly to be able to
fully understand the time evolution of a cross peak in the 2DIR
spectrum. For the perpendicular polarization a small initial rise
is observed. In this case the rotation of the dipole increases the
peak intensity (Figure 4b, circles).

The question then arises of how the cross peak intensity may
be corrected for the effect of intraband dynamics, so that it only
reflects the interband relaxation, thus allowing for a method to
extract the corresponding time scale from experiment. Because
all contributions to the spectrum depend on the intraband
dynamics, and assuming that the dynamics is essentially the
same in different parts of the spectrum, the cross peak intensity
normalized to the total intensity in the spectrum should be
determined mainly by the interband dynamics. This quantity is
plotted as a function of waiting time in Figure 4c. After initial
oscillations, corresponding to those observed in the total
populations of Figure 2, the normalized cross peak intensity
does increase. The limited dynamic range in Figure 4 makes it
hard to find a unique fit to the intensity increase. Shown are
exponential fits with growth times between 1.5 and 4 ps; the
best fit is obtained with a time scale of 2 ps, which indeed
corresponds to the interband relaxation time found earlier.
Although the assumption that the intraband dynamics is the same
for both modes contrasts with the different values found for
the ballistic time scales, it is supported by the anisotropy data
presented in Figure 4a. Furthermore, the largest effect on the
cross peak intensity originates in the fastest intraband dynamics.
For our system, this is the dynamics in the amide I band, which
also contributes most to the total intensity in the spectrum
because of the large amide I transition dipole. In a system where
the fastest intraband relaxation is found for the mode with the

lowest oscillator strength, additional normalization procedures
might be devised. Nevertheless, our calculation demonstrates
that the normalization procedure presented here correctly
accounts for the effects of intraband dynamics in the cross peak.

In the present report we have looked at the possibility to
characterize transport in the unmodified system. An alternative
is to change selected sites by using isotope labeling or chemical
modification7 and then monitoring the transport between these
selected sites. Although this method will possibly allow the
observation of the diffusive time scale, it has the disadvantage
that the transport between a modified site and the band formed
by the other sites will be altered and this has to be accounted
for. In the approach presented above the observed transport is
intrinsic to the system.

IV. Conclusion

In this paper we demonstrated how 2D spectroscopy may be
used to disentangle the intraband and the interband relaxation
in systems with two coupled bands of collective excited states.
As a special example we have studied the coupled dynamics of
the amide I and II bands in a model R-helix dissolved in water.
We have shown that, in contrast to a real two-state system, the
waiting time dependencies of the intensities of the two diagonal
and two cross peaks that dominate the 2D spectrum of the helix
do not directly yield the intraband and interband relaxation rates.
The reason is that the relaxation to dark states influences the
intensities as well. We found that measuring the polarization
anisotropy of the diagonal peaks and normalizing the cross peaks
to the total intensity in the spectrum, allows one to account for
the dark states, that is, for the collective nature of the excitations
in the two bands.

Within our model we could distinguish ballistic and diffusive
intraband transport in both bands. The time scales for the
ballistic transport (characterized by the time it takes to move
to a nearest-neighbor amide unit) were found to be 0.2 and 0.9
ps for amide I and amide II, respectively. Diffusive motion sets
in after about 0.7 and 4 ps for the amide I and amide II bands,
respectively, with diffusion constants given by 11 and 4 units2/
ps. Finally the interband relaxation time constant was found to
be 2.1 ps. The latter is considerably slower than the 790 fs found
for NMA-d with a similar simulation method;35 this difference
results from the fact that the energy gap between the amide I
and the amide II bands is larger than the energy difference
between both vibrations in NMA-d. This is consistent with the
experimental observation that the relaxation from the amide I
mode in proteins is slower than in NMA-d.6 Although we believe
that solvent-assisted mixing with the amide II mode forms a
prime channel for the relaxation of the amide I mode, other
relaxation channels will contribute as well.36 On longer time
scales the energy will completely disappear from the amide I
and amide II bands. Including all possible accepting modes is
prohibitively expensive computationally at the moment and their
treatment is a challenge for the further development of the
method presented here.

Since in the parametrization of our model we used the
fluctuations of the vibrational constants in NMA-d7 in heavy
water, we probably overestimated the importance of the fast
water dynamics: the surrounding of the amide groups in a helix
is somewhat less dominated by water than in a single NMA-d7

molecule. In addition, our approach neglects the role of slow
conformational changes in the helix; at least for short helices
such changes have been seen.27 Finally, the real fluctuations
will also depend on the helix environment (membrane, free-
floating, or muscle fiber). Thus, in practice the dynamics may
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be different (slower) from that predicted by our model calcula-
tion. However, this does not affect our most important result,
namely that intra- and interband dynamics may be characterized
using 2D spectroscopy. We believe that this general result will
also be of use for other extended systems with bands of
collective excitations, provided that the dipoles in the system
vary in direction, so that transport is reflected in the polarization
of the excitation.
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