
 

 
American Institute of Aeronautics and Astronautics 

 

 

1

Effect of Boundary Conditions on the Axial Compression 
Buckling of Homogeneous Orthotropic Composite Cylinders 

in the Long Column Range 

Martin M. Mikulas, Jr.1  
National Institute of Aerospace, Hampton, VA 23666 

Michael P. Nemeth2 
NASA Langley Research Center, Hampton, VA 23681 

Leonard Oremont3 
Lockheed Martin Corp., Hampton, VA 23681 

 
and 

Dawn C. Jegley4 
NASA Langley Research Center, Hampton, VA 23681 

Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, 
Flügge and Donnell’s equations. Results from these methods are presented using simple 
parameters useful for fundamental design work. Buckling loads for two types of simply 
supported boundary conditions are calculated using finite element methods for comparison 
to select cases of the closed form solution. Results indicate that relying on Donnell theory can 
result in an over-prediction of buckling loads by as much as 40% in isotropic materials. 

Nomenclature 
 A11, A12, A22, A66, A16, A26 = Membrane stiffnesses of laminated-composite cylinder, lb/in. 
 B11, B12, B22, B66, B16, B26 = Membrane-bending coupling stiffnesses of laminated-composite cylinder, lb 

 Bij( ) = Differential operators defined in Eqs. (A10) 

 cx = Nondimensional buckling coefficient defined by Eqs. (2) and (3) 
 C0, C1, C2 = Coefficients defined by Eqs. (A17) 
 D11, D12, D22, D66, D16, D26 = Bending stiffnesses of laminated-composite cylinder, in-lb 
 E = Elastic modulus of isotropic material, psi 

E  = Effective modulus of quasi-isotropic laminates, psi 
 E1, E2, G12 = Lamina elastic moduli, psi 
 Ex, Ey, Gxy = Effective laminate elastic moduli, psi 
 k = Thinness parameter (see Fig. 2) 
 Kij = Stiffnesses defined by Eqs. (A14) 
 L = Cylinder length, in. (see Fig. 5) 

L  = Nondimensional buckling parameter defined by Eqs. (1) and (4) 

 Lij( ) = Differential operators defined in Eqs. (A8) 

 m = Number of axial half waves in buckle pattern (see Eqs. (A12)) 
 MPC = Multiple Point Constraint  
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 Mxx, Myy, Mxy = Bending stress resultants, lb/in. (see Eqs. (A3)) 
 n = Number of circumferential waves in buckle pattern (see Eqs. (A12))  
 N, Ncr = Applied compressive end running load and value at buckling, respectively, lb/in. 
 Nxx, Nyy, Nxy = Membrane stress resultants, lb/in. (see Eqs. (A3)) 

Nxx

(0)

, Nyy

(0)

, Nxy

(0)
 = Prebuckling membrane stress resultants, lb/in. (see Eqs. (A5)) 

crp, p   = Loading parameters (see Eq. (A7)) 

 Pcr = Critical buckling load, lb 
 R, t = Cylinder radius and wall thickness, respectively, in. (see Fig. 5) 
S1, S2 = Simply supported boundary conditions 
 u(x, y), v(x, y), w(x, y) = Axial, circumferential and radial displacement fields, in. 
u, v, w  = Displacement-field amplitudes (see Eq. (A12)) 
 x, y, z = Cylinder coordinates (see Fig. 5) 
εxx

o , εyy

o , γxy

o  = Membrane strains 

κ xx

o
, κ yy

o
, κ xy

o  = Bending strains, 1/in. 

 σxx, σyy, σxy = Stresses, psi 
 σDonnell, σFlügge = Buckling stress based on the Donnell and Flügge equations, psi 
 σEuler = Buckling stress based on the Euler column buckling formula, psi 
 θ = Fiber orientation angle, degrees 
 ν = Poisson’s ratio of isotropic materials 
 ν12 = Poisson’s ratio of composite lamina 
 νxy, νyx = Effective Poisson’s ratios of composite laminate 

I. Introduction 
ecause of the high cost per pound associated with the launch of 
lunar and other planetary vehicles, the design of the structural 

components is critical. An example of such a structure is the Altair 
Lunar Lander as shown in Fig. 1. An important component of the 
Altair Lunar Lander is the truss structure, which must be resistant to 
buckling when subjected to compression loads associated with 
launch and landing. One concept under consideration for the truss 
members is a thin-walled tubular column with a circular cross 
section. This family of structures is commonly used in compression 
applications because of the enhanced load-carrying capability 
provided by the cross-sectional curvature.  

In designing efficient truss members, both local shell-wall and 
overall column buckling modes must be considered. An analysis 
that is well suited for this effort is the classical cylinder buckling analysis that has been presented by Flügge.1 In 
contrast to the widely used equations developed by Donnell,2 Flügge’s equations are expected to yield very accurate 
bifurcation buckling predictions for relatively long cylinders that buckle into modes with a small number of 
circumferential waves. In addition, Flügge’s equations are capable of predicting accurately the transition from local 
shell-wall buckling modes to an overall Euler-column mode that may occur with changes in geometry and material 
properties. This capability is illustrated by the reproduction of Flügge’s results given in Fig. 2 for isotropic 
cylinders. Seven curves are shown in this figure for a wide range of the shell-wall thinness parameter k = t2/(12R2), 
where t and R are the cylinder thickness and radius, respectively. These curves give the nondimensional stress level 
at buckling as a function of the cylinder aspect ratio L/R, where L is the cylinder length. The symbol, n, shown in 
the figure denotes the number of circumferential waves in the buckling mode. Each of these seven curves merges 
with the nearly straight line at the far right, which corresponds to an overall Euler-column buckling mode. 

It is important to note that Euler-column buckling modes are given by one circumferential wave (n = 1) in the 
buckling mode, which corresponds to an undeformed rigid-body motion of the cylinder cross section. Usually, the 
first column mode encountered at the transition to n = 1, shown in Fig. 2, corresponds to one axial half-wave in the 
buckling mode also (m = 1). This m = 1, n = 1 buckling mode is often referred to as the Euler-column mode. Other 
elastic column buckling modes may correspond to larger values of m. 

B 

Figure 1. Altair lunar lander. 
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The results in Fig. 2 illuminate an 
issue that is particularly important in 
the design of tubular columns. 
Specifically, the curves in Fig. 2 
exhibit a substantial reduction in the 
buckling stress of isotropic cylinders, 
and increase in the severity of the 
festoons appearing in the curves, as 
the aspect ratio L/R increases beyond 
a value of approximately four. For all 
values of k in the figure, the 
maximum reduction in buckling load 
is about 40 %. This reduction in 
buckling stress with increasing aspect 
ratio is not captured by Donnell’s 
equations; that is, Donnell’s 
equations yield the classical result in 
which the buckling stress is equal to 
0.6Et/R for values of L/R greater 
than approximately one.3 The 
importance of this difference 
becomes apparent by noting that it is 
common to size tubular columns so 

that the local shell-wall buckling stress and the overall Euler-column buckling stress coincide. Thus, a design based 
on Donnell’s equations is expected to be unconservative. 

To complicate the design situation further, fiber reinforced, laminated-composite materials are commonly 
considered for weight critical designs. These advanced composite materials have high stiffness-to-density ratios, 
high strength-to-density ratios, and very low coefficients of thermal expansion, compared to isotropic materials. In 
addition, because laminated composites are composed of layers of an orthotropic material oriented at various angles, 
the potential exists to tailor a laminate optimally to meet a specific set of structural requirements. Thus, laminated 
composites offer a design space that is much wider than that for isotropic materials. However, along with the 
potential structural performance benefits of laminate tailoring comes a much more complicated analysis and design 
process. For example, laminate orthotropy and anisotropy will alter the festoon character of the buckling response 
curves that correspond to those shown in Fig. 2. This property of laminates could amplify the inadequacy of a design 
based solely on Donnell’s equations. In addition, it is well known that laminate orthotropy and anisotropy can 
exacerbate boundary condition effects and the attenuation of localized stress disturbances. These boundary effects 
must be considered in the design of the column end-fittings and in the design of validation experiments. 

In light of these design issues and complications, one objective of the present study is to develop a set of refined 
generic design results for laminated-composite tubular columns that are based on Flügge’s equations with the 
“classical” simply supported boundary conditions and that possess a wide range of applicability. These boundary 
conditions are the ones used by Flügge to obtain the closed-form solution that corresponds to the results in Fig. 2. A 
second, and very important, objective is to determine the effects of an alternate set of axially stiff boundary 
conditions on the character of the generic buckling-design curves in order to gain insight into potential design-
sensitivity issues associated with attaching end fittings and designing validation experiments. To accomplish these 
objectives, the buckling analysis developed by Flügge1 was extended to include cylinders made of laminated-
composite materials. The resulting equations used in the present study are presented in Appendix A for general 
laminated-composite cylinders. Moreover, the analytical results in this paper were obtained by solving the equations 
presented in Appendix A, specialized to homogeneous orthotropic composite materials. In particular, the nonzero 
stiffnesses used in Eqs. (A4) for this analysis are those defined in Eqs. (16a) and (16b) of Ref. 3 for a homogeneous, 
orthotropic composite material. The results were obtained from the closed form solution presented in Appendix A 
for cylinders with the “classical” simply supported boundary conditions and were verified by selected comparisons 
with corresponding finite element analyses. In contrast, the results presented subsequently for an alternate boundary 
condition were obtained exclusively from finite element analyses. In the subsequent presentation, the general 
response characteristics of compression-loaded isotropic cylinders are given first. Then, a universal, master curve 
and the corresponding parameters are presented for isotropic cylinders that enable broad assessment of the 
differences in the buckling stress predictions obtained by using Donnell’s equations and the more accurate Flügge’s 

 
Figure 2. Flügge’s results (see Ref. 1) showing local shell-wall buckling 
and overall column-buckling (n = 1) responses of isotropic cylinders, 
with the classical S2 simply supported boundary conditions, as a 
function of the length-to-radius ratio L/R and the thinness parameter k. 
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equations. A similar set of universal curves for homogeneous orthotropic cylinders are then presented for a wide 
range of laminate orthotropy, along with selected validation results obtained from finite element analyses. Results 
for this particular class of laminated-composites provide a good first approximation in the design of cylinders with 
more general wall constructions. Then, using the universal curves, finite element results are presented that indicate 
the effects of enforcing additional axial restraint on the buckling response of selected laminated-composite 
cylinders. 

II. Response Characteristics of Isotropic Cylinders 
To gain insight into the commonality of the response trends illustrated by the seven curves shown in Fig. 2, an 

effort was undertaken in the present study to identify a new set of parameters for the abscissa and ordinate that 
would yield a compact, universal plot with as few curves as possible. The results of this effort are illustrated in  
Fig. 3 for isotropic cylinders with a Poisson’s 
ratio ν = 0.3. A logarithmic plot with three 
overlapping curves is shown in the figure for 
values of the radius-to-thickness ratio R/t = 50, 
100, and 200. An additional nearly straight line 
is also shown at the far right of the plot that 
corresponds to Euler-column buckling with 
modes that consist of a single half wave along 
the cylinder length. The ordinate parameter 
used in the figure is the ratio of the critical 
applied stress predicted by Flügge’s equations 
to the corresponding stress predicted by 
Donnell’s equations for infinitely long 
cylinders; that is, σDonnell = cx Et/R, where  
cx = [3(1 – ν2)]–1/2. The predictions for σFlügge 
used in the parameter were obtained from the 
closed form solution given in Appendix A for 
simply supported cylinders with the “classical” 
boundary conditions given by Nxx = 0, v = 0,  
w = 0, and Mxx = 0. These boundary conditions 
are designated herein as S2 boundary 
conditions for convenience. The abscissa 
parameter used in the figure is the square root 
of the quantity σDonnell/σEuler, where σEuler = π2ER2/2L2, and as shown in Fig. 3, it represents a dimensionless 
weighted length-to-radius ratio. For isotropic cylinders, this ratio is given by 

 

L ≡ σDonnell

σEuler

= L
R

2
π2 3 1 − ν2

t
R

 

. (1)

 

These parameters were selected so that the festoons of all three R/t curves would align and approach a single 
universal Euler-column-buckling curve as the length of a cylinder increases. The left-hand portions of the three 
curves, for small values of the abscissa, represent the buckling response characteristic of infinitely long plates 
subjected to compression on the long edges; that is, wide column buckling behavior. In the flat region of the three 
curves, the results correspond to very short cylinders and Flügge’s equations predict the same behavior as Donnell’s 
equations. Efforts to obtain parameters that yield coalescence of the three distinct curves representing the infinitely 
long-plate buckling behavior of very short cylinders were unsuccessful. 

The logarithmic plot in Fig. 3 includes a very broad range of buckling behaviors. However, in the design of 
practical cylinders, it is rare to encounter values of the abscissa less than about 0.01. Therefore, the results of Fig. 3 
were recast into the linear plot shown in Fig. 4. It is important to reiterate that the single festoon curve shown in  
Fig. 4 is essentially a universal curve for all isotropic cylinders. Variations in the curve with changes in R/t and 
Poisson’s ratio were found to be within engineering accuracy and hence negligible.  

To provide physical insight into the buckling behavior associated with the universal, master curves in Fig. 4, 
several buckling mode shapes are shown. For the short isotropic cylinders, the mode shapes consist of nearly square 
buckles, whereas the buckling modes for the longer cylinders exhibit axial wavelengths that are quite long. It is 

 
Figure 3. Compact representation of Flügge’s results for 
isotropic cylinders with the classical S2 simply supported 
boundary conditions that shows the full range of local cylinder-
wall buckling and overall Euler-column buckling with a single 
curve (ν = 0.3). 
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important to note that this class of 
cylinders exhibits unstable bifurcations 
and, as a result, the buckling mode is not 
the deformed shape that the cylinder 
exhibits when postbuckling equilibrium is 
first achieved. Moreover, often several 
bifurcation modes correspond to buckling 
loads that are nearly equal. For the very 
long cylinders, the buckling mode is a 
column-like move with one axial half 
wave. This mode corresponds to m = 1 
and n = 1 in Eqs. (A12).  

A common design approach for 
moderately long cylindrical structures is 
to size the cylinder such that local wall 
buckling and Euler-column buckling 
coincide. This design condition would be 
represented by the coordinates (1,1) on 
the chart in Fig. 4 for buckling results 
based on Donnell’s equations. As can be 
seen from the chart, Flügge’s equations 

predict a buckling stress about 40% lower than that predicted by Donnell’s equations. The chart coordinates that 
correspond to coincident cylinder local wall and column buckling based on Flügge’s equations are approximately 
(1.3,0.6). 

III. Universal Curves for Orthotropic Cylinders 
Curves similar to those shown in Fig. 2 for isotropic cylinders 

were obtained for laminated-composite cylinders made of a graphite-
epoxy material with lamina elastic moduli E1 = 21.4 Msi and  
E2 = 1.46 Msi, a shear modulus G12 = 0.69 Msi, and a major 
Poisson’s ratio ν12 = 0.3. Only laminate constructions that are 
effectively homogeneous and orthotropic were considered because of 
their basic importance in the design of more complicated wall 
constructions. Specifically, laminate walls that consist of three 
families of plies were considered. The three families are 0-degree, 
90-degree, and ±θ angle plies where the angle θ is measured from a 
cylinder generator, as shown in Fig. 5. In addition, it is presumed that 
a laminate wall contains enough plies to be effectively homogeneous 
and exhibits no form of anisotropy. Moreover, the principal axes of 
orthotropy are taken to coincide with the x- and y- cylinder 
coordinate axes at each point of the cylinder mid-surface. A detailed discussion of these laminate constructions is 
given in Ref. 3.  

After examining the curves obtained for the orthotropic cylinders, an effort was undertaken to identify a set of 
parameters for the abscissa and ordinate that would also yield a compact, universal plot like that shown in Fig. 4 for 
isotropic cylinders. Figures 6a and 6b illustrate the results of this effort for orthotropic cylinders with various 
percentages of 0-degree, 90-degree, and ±45-degree plies. Five curves for local wall buckling are shown in Fig. 6a 
for cylinders that buckle into asymmetric modes (n ≠ 0). The lowermost black curve corresponds to a quasi-isotropic 
laminate with 25% 0-degree plies, 50% ±45-degree plies, and 25% 90-degree plies. Similarly, the green curve 
corresponds to a laminate with 50% 0-degree plies, 40% ±45-degree plies, and 10% 90-degree plies. The red curve 
corresponds to a laminate with 60% 0-degree plies, 30% ±45-degree plies, and 10% 90-degree plies. The blue curve 
is for 70% 0-degree plies, 20% ±45-degree plies, and 10% 90-degree plies. Lastly, the gold curve corresponds to a 
laminate with 90% 0-degree plies and 10% 90-degree plies, and the rightmost blue curve corresponds to Euler-
column buckling. Altogether, these laminate constructions represent a very broad range of orthotropy. The buckling 
behaviors of these laminates are discussed in detail in the text associated with Figs. 25–33 of Ref. 3. 

 
Figure 4. Master curves and buckling mode shapes for isotropic 
cylinders with the classical S2 simply supported boundary 
conditions. 

 
Figure 5. Cylinder geometry and ply 
orientation. 
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     a)                                                                                           b) 
Figure 6. Master curves showing buckling behavior of laminated-composite cylinders with the classical S2 
simply supported boundary conditions. a) Curves for asymmetric buckling modes (n ≠ 0). b) Curves for 
axisymmetric buckling modes (n = 0). 

 
Two additional curves are shown in Fig. 6b in addition to the blue Euler-column-buckling curve, for cylinders 

that buckle into axisymmetric modes (n = 0). The solid black curve is for quasi-isotropic laminates with 25%  
0-degree plies, 50% ±45-degree plies, and 25% 90-degree plies. The dashed curve shown in Fig. 6b corresponds to 
100% ±45-degree plies. The ordinate parameter used in Figs. 6a and 6b is the ratio of the critical applied stress 
predicted by Flügge’s equations to the corresponding stress predicted by Donnell’s equations for infinitely  
long cylinders. However, for the orthotropic cylinders σDonnell is that given in Eqs. (43) of Ref. 3. Specifically, 

σDonnell = cx E t/R where E  is the effective elastic modulus of the corresponding quasi-isotropic laminate and 

 
 (2)

 

 
. (3)

 

For the quasi-isotropic laminate made of the graphite-epoxy material used in the present study, E  = 8.18 Msi and  
cx = 0.609. Moreover, this ordinate parameter contains the one given previously for isotropic cylinders as a special 
case. The predictions for σFlügge used in the ordinate parameter were also obtained from the closed form solution 
given in Appendix A for simply supported cylinders with the “classical” S2 boundary conditions. The abscissa 
parameter used in Figs. 6a and 6b is the square root of the quantity σDonnell/σEuler, where σEuler = π2ExR

2/L2 and Ex is 
the effective axial modulus of the laminate; specifically, 

 
L = L

R
2cx

π2
E
Ex

t
R  

. (4)
 

This abscissa parameter for orthotropic cylinders also represents a dimensionless weighted length-to-radius ratio and 
contains the one given by Eq. (1) for isotropic cylinders as a special case. 

Most practical laminates for high performance structures correspond to cylinders that buckle into asymmetric 
modes (n ≠ 0). These high-performance laminates are characterized as having a relatively high axial stiffness with a 
good balance of circumferential and shearing stiffness. Examples of typical high-performance structural laminates 
are the laminates that correspond to the lower four curves presented in Fig. 6a. The laminate quantity that appears to 
govern the degree of buckling-stress reduction obtained by using Flügge’s equations, instead of Donnell’s equations, 
is the effective laminate shear modulus Gxy. For the five laminates shown in Fig. 6a, the amount of buckling stress 
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decreases with increasing shear modulus, as shown explicitly in Fig. 7. In this figure, the color of each circular 
symbol corresponds to the minimum point on the festoons of the corresponding colored curve in Fig. 6a. Overall, the 
quasi-isotropic laminate with 25% 0-degree plies, 50% ±45-degree plies, and 25% 90-degree plies exhibits the 

largest buckling-stress reduction.  
Both laminated cylinders that buckle into an 

axisymmetric mode (n = 0), shown in Fig. 6b, 
have a relatively large percentage of angle plies 
and, as a result, a relatively high shear modulus. 
However, these laminates also have relatively 
low axial stiffness and, as such, are typically not 
used in high performance structures. It should be 
noted that the curve for the quasi-isotropic 
laminate in Fig. 6a (n ≠ 0) is identical to the 
corresponding curve in Fig. 6b (n = 0). The 
reason for this duplicity is that more than one 
wave number minimizes Eq. (A16) at the same 
buckling-stress value. In the present study, 
numerous n = 0 cases were run, and as with the 
n ≠ 0 cases, the isotropic cylinder exhibited the 
greatest buckling-stress reduction. Another 
important finding related to Fig. 6b is that the 
axisymmetric-buckling (n = 0) curves obtained 

in the present study for the five orthotropic laminates considered are bounded by the quasi-isotropic and the  
±45-degree cases as shown on Fig. 6b. The maximum buckling-stress reduction for the ±45-degree laminate is also 
shown in Fig. 7. 

IV. Validation Results for Orthotropic Cylinders 
To add credibility to the results 

presented in Fig. 6 for orthotropic 
cylinders, finite element analyses were 
performed for isotropic cylinders and two 
laminated-composite cylinders with a 
wide range of cylinder lengths. More 
specifically, cylinders with a radius  
R = 7.8 inches and thickness t = 0.068 
inches and with “classical” S2 simply 
supported boundary conditions were 
simulated. Each finite element model 
contained approximately 4,500 shell 
elements, and a typical finite element 
model and mesh details are shown in  
Fig. 8. The modeling details are discussed 
in Appendix B and the numerical results 
are presented in Table 1. The finite 
element results in Table 1 are also shown 
in Fig. 9 as a function of the cylinder 
length. The five curves are shown in this 
figure are fits to five families of symbols. 
Three of the five symbol-connected curves shown in Fig. 9 correspond to the S2 boundary conditions. In particular, 
the black symbols correspond to results for the isotropic cylinders and the purple symbols correspond to results for 
the quasi-isotropic laminated cylinders with 25% 0-degree plies, 50% ±45-degree plies, and 25% 90-degree plies. 
The red symbols correspond to results for the laminated cylinders with 60% 0-degree plies, 30% ±45-degree plies, 
and 10% 90-degree plies. The rightmost descending branch of each curve corresponds to Euler-column buckling 
modes. 

 
Figure 7. Maximum difference between buckling stresses 
predicted by Flügge’s and Donnell’s equations as a function 
of effective laminate shear modulus for cylinders with the 
classical S2 simply supported boundary conditions. 

 

 
Figure 8. Typical finite element model and mesh details. 
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Table 1 Buckling loads Pcr (lbs) obtained from finite element analyses 
 

 
  Isotropic cylinders 

Laminated-composite cylinders 
Percent 0o plies/Percent +45o plies/Percent 90o plies 

25/50/25 60/30/10 60/30/10 

Cylinder 
length, in. 

   Boundary conditions Boundary conditions 

S2 S1 S2 S2            S1 

150 

140 

130 

125 

123.33 

120 

115 

110 

106.75 

105 

100 

95 

90 

87 

83.66 

80 

77 

73 

70 

67 

60 

55 

50 

45 

40 

35 

32.5 

30 
 

54,509 

62,401 

72,123 

77,850 

79,915 

84,281 

91,535 

99,754 

105,700 

107,990 

106,530 

106,030 

106,620 

107,570 

109,240 

111,880 

114,760 

119,780 

124,540 

130,300 

117,040 

110,250 

106,480 

106,560 

111,820 

124,470 

134,680 

148,420 
 

54,560 

62,463 

72,199 

77,935 

80,003 

84,376 

91,641 

99,875 

105,830 

109,260 

120,000 

132,390 

146,760 

151,310 

151,820 

152,820 

154,060 

156,370 

156,960 

157,510 

160,950 

162,350 

163,740 

165,290 

166,940 

167,860 

168,450 

169,230 
 

44,616 

51,076 

59,035 

63,724 

65,414 

68,989 

74,927 

81,657 

86,524 

87,825 

86,681 

86,316 

86,847 

87,657 

89,049 

91,242 

93,628 

97,761 

101,680 

106,010 

95,061 

89,620 

86,642 

86,805 

91,199 

101,630 

110,020 

121,300 
 

76,280 

85,688 

84,104 

83,955 

84,012 

84,297 

85,187 

86,737 

88,087 

88,946 

91,957 

95,894 

100,910 

100,900 

96,953 

93,091 

90,361 

87,389 

85,715 

84,570 

84,323 

86,721 

91,939 

100,890 

110,170 

110,200 

110,310 

110,160 
 

76,317 

87,051 

100,170 

107,840 

110,390 

110,370 

110,420 

110,240 

110,290 

110,290 

110,280 

110,270 

110,270 

110,370 

110,240 

110,250 

110,260 

110,270 

110,260 

110,250 

110,280 

110,280 

110,280 

110,300 

110,310 

110,350 

110,500 

110,410 
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The closed-form-solution results of Fig. 6 and 
the finite element results of Fig. 9 for the two 
laminated cylinders are shown in Fig. 10 in the 
nondimensional master-curve form. For these two 
cases with the S2 boundary conditions, the 
agreement between the corresponding results 
predicted by the finite element analyses and the 
closed-form solution are within engineering 
accuracy. 

V. Analysis of Boundary Condition Issues 
Examination of the isotropic-cylinder buckling 

modes predicted by the closed form solution based 
on Flügge’s equations with “classical” S2 boundary 
conditions reveals that the axial wave length of the 
buckle pattern becomes significantly long for values 

of L  shown in Figs. 3 and 4 where the buckling 
behavior transitions from cylinder-wall buckling to 
Euler-column buckling. This transition region 
corresponds to the rightmost festoon of the curves 
shown in these figures. For example, the buckling 
mode shown in Fig. 11a corresponds to the axial 
half-wave number m = 2 and the circumferential 
wave number n = 2, and occurs just before the 
cylinder becomes long enough to buckle into the 
Euler-column mode given by m = n = 1. As indicated 
by the enlarged inset in Fig. 11b, a non-uniform axial 
displacement is associated with this long wavelength 
mode shape. In this figure, a solid rectangle is shown 
next to the cylinder end to emphasize the curved 
boundary shape. In fact, a similar axial displacement 
can also be observed when a soft drink can is crushed 
laterally, as shown in Fig. 11c. Thus, it is apparent 
that there is strong coupling between the axial and 
lateral displacements of a cylinder for these types of 
modes. In an actual piece of flight hardware, a fitting 

 
Figure 10. Results obtained from finite element 
analyses and from Flügge’s equations for cylinders with 
the classical S2 simply supported boundary conditions. 

         
       a)                                                                                                              b) 

 
                                                                             c) 
Figure 11. End displacement associated with the classical S2 simply supported boundary conditions. a) 
Long-wavelength buckling mode incipient to overall Euler-column buckling. b) Enlarged view of nonuniform 
axial end displacements. c) Variation in axial end displacements exhibited by a laterally crushed soda can. 

 
Figure 9. Buckling loads obtained from finite element 
analyses of isotropic and laminated composite cylinders 
with a 7.8-inch radius and 0.068 -inch wall thickness. 
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may be present that provides a significant amount of axial displacement restraint. Thus, an effort was undertaken in 
the present study to assess the importance of axial restraint on the buckling response of the isotropic and orthotropic 
cylinders considered herein. 

To assess the effects of axial restraint on the buckling response, additional finite element analyses were 
conducted on the quasi-isotropic laminate with 25% 0-degree plies, 50% ±45-degree plies, and 25% 90-degree plies 
and on the laminate with 60% 0-degree plies, 30% ±45-degree plies, and 10% 90-degree plies. These finite element 
analyses are expected to possess the same level of theoretical fidelity as Flügge’s equations. The boundary 
conditions used for these analyses are also regarded as simply supported ends but fully restrain the axial 
displacement. The specific form of the boundary conditions, designated as S1 boundary conditions, is u = 0, v = 0,  
w = 0, and Mxx = 0. This particular set of boundary conditions requires that all points on the end of the cylinder 
remain coplanar during buckling. 

The finite element results for the S1 boundary conditions are also shown in Fig. 9. In particular, the gold 
symbols correspond to results for isotropic cylinders and the blue symbols corresponds to results for the laminated 
cylinders with 60% 0-degree plies, 30% ±45-degree plies, and 10% 90-degree plies. The rightmost descending 
branch of these two curves also corresponds to Euler-column buckling modes. 

Figures 12–15 illustrate the buckling modes for the range of lengths considered in the finite element analyses for 
both sets of boundary conditions. Mode shapes for isotropic cylinders with the S1 boundary conditions are shown in 
Fig. 12 and correspond to the dashed gold line in Fig. 9. These results indicate that the cylinder buckles into an 
Euler-column mode (Fig. 12a) for lengths greater than approximately 88 inches and into a short-wavelength pattern 
(Figs. 12b and 12c) for lengths less than approximately 88 inches.  

Mode shapes for isotropic cylinders with the S2 boundary conditions are shown in Fig. 13 and correspond to the 
solid black line and black symbols in Fig. 9. These results indicate that the cylinder buckles into an Euler-column 
mode (Fig. 13a) for lengths greater than approximately 105 inches and into modes with 2 to 4 axial half waves  
(Figs. 13b–d) for moderately long cylinders with lengths less than approximately 105 inches and greater than about 
30 inches. The cylinders buckle into short-wavelength mode for lengths less than approximately 30 inches. In 
contrast to the cylinders with the S1 boundary conditions, no short wavelength modes occur for lengths greater than 
approximately 30 inches for the corresponding cylinders with the S2 boundary conditions. 

 
   a) 

    
          b)                                                                                                            c) 
Figure 12. Mode shapes for isotropic cylinders with S1 boundary conditions. a) 150-inch-long cylinder. 
b) 87-inch-long cylinder. c) 40-inch-long cylinder. 

 
   a) 

 
                             b) 

                
                             c)                                                                                      d) 
Figure 13. Mode shapes for isotropic cylinders with S2 boundary conditions. a) 150-inch-long cylinder. 
b) 105-inch-long cylinder. c) 60-inch-long cylinder. d) 30-inch-long cylinder. 
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Buckling modes for the laminated-composite cylinders with 60% 0-degree plies, 30% ±45-degree plies, and 10% 
90-degree plies and with the S1 boundary conditions are shown in Fig. 14, and correspond to the blue dashed line 
shown in Fig. 9. These cylinders buckle into an Euler-column mode (Fig. 14a) for lengths greater than 
approximately 125 inches and into short-wavelength modes for the smaller lengths (Figs. 14b and 14c).  

Buckling modes for the laminated-composite cylinders with 60% 0-degree plies, 30% ±45-degree plies, and 10% 
90-degree plies and with the S2 boundary conditions are shown in Fig. 15, and correspond to the purple curve shown 
in Fig. 9. These cylinder buckles into an Euler-
column mode (Fig. 15a) for lengths greater than 
approximately 145 inches and into modes with 2 
to 4 axial half waves (Figs. 15b and 15c) for 
moderately long cylinders with lengths less than 
approximately 145 inches and greater than about 
40 inches. Cylinders with lengths less than about 
40 inches buckle into short-wavelength modes 
like that shown in Fig. 15d. 

To obtain a somewhat generic picture of the 
boundary condition effects, the results for the 
“classical” S2 boundary conditions and the axially 
restrained S1 boundary conditions are shown in 
master-curve form in Fig. 16 for the isotropic 
cylinders and in Fig. 17 for the laminated 
cylinders with walls comprised of 60% 0-degree 
plies, 30% ±45-degree plies, and 10% 90-degree 

 
  a) 

 
                    b) 

 
                                                                    c) 
Figure 14. Mode shapes for laminated cylinders with 60% 0-degree plies, 30% ±45-degree plies, 10% 
90-degree plies, and with the S1 boundary conditions. a) 150-inch-long cylinder. b) 120-inch-long cylinder. 
c) 40-inch-long cylinder. 

 
   a) 

 
        b) 

       
          c)                                                                                                              d) 
Figure 15. Mode shapes for laminated cylinder with 60% 0-degree plies, 30% ±45-degree plies, 10% 
90-degree plies, and with the S2 boundary conditions. a) 150-inch-long cylinder. b) 140-inch-long 
cylinder. c) 87-inch-long cylinder. d) 40-inch-long cylinder. 

 
Figure 16. Effects of boundary conditions on the buckling 
of isotropic cylinders (ν = 0.3). 
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plies. The dashed curves in Figs. 16 and 17 for the 
S1 boundary conditions represent a fit to the finite 
element results and not a closed form solution. The 
solid lines in the figures correspond to the results 
obtained from the closed-form solution.  

The results in Fig. 16 indicate that the additional 
axial restraint of the S1 boundary conditions 
significantly diminishes the buckling-stress 
reduction associated with using a shell analysis with 
much more robustness than Donnell’s equations 
possess. This result is somewhat intuitive in that 
one would expect the stiffer S1 boundary conditions 
to suppress the long wavelength modes associated 
with the more flexible “classical” S2 boundary 
conditions. In fact, the mode shape obtained from 
the finite element analysis of a cylinder in the 
transition region incipient to Euler-column buckling 
and with axially restrained S1 boundary conditions 

exhibits four axial half waves as opposed to two axial half waves for the corresponding cylinder with the “classical” 
S2 boundary conditions. A major observation from Fig. 16 is that the maximum buckling-stress reduction for the 
cylinders with the S2 boundary conditions is about 40%, whereas the maximum buckling-stress reduction for 
cylinders with the axially restrained S1 boundary conditions is only about 10%. In contrast, the results for cylinders 
with walls comprised of 60% 0-degree plies, 30% ±45-degree plies, and 10% 90-degree plies shown in Fig. 17 
indicate that the finite element analyses predict nearly the same buckling stresses and response trends as Donnell’s 
equations for the axially restrained S1 boundary conditions. 

VI. Concluding Remarks 
Flügge’s classic results for buckling of a compression-loaded isotropic cylinder, with the classical simply 

supported boundary conditions, as a function of the length-to-radius ratio L/R, consist of several curves for selected 
values of a cylinder-wall thinness parameter. These results show that the buckling behavior for very small values of 
L/R is essentially that of a simple wide plate, while for moderate values of L/R, shell curvature effects provide a 
stabilizing effect that changes the mode shape to essentially square waves commonly associated with local cylinder 
wall buckling. As L/R increases, the buckling behavior eventually transitions to an overall Euler-column mode. In 
the present study, new nondimensional parameters have been introduced that permit Flügge’s curves to be combined 
into a single master curve for a very practical range of cylinder geometries. In particular, a parameter for the 
abscissa has been introduced that includes the length-to-radius ratio L/R and the radius-to-thickness ratio R/t. The 
ratio of the buckling stress predicted by Flügge’s equations to the corresponding stress predicted by Donnell’s 
equations is used for the ordinate. This master curve clearly shows the range of geometric configurations where 
buckling loads predicted by Donnell’s equations, which are often used to design cylindrical shells, are 
unconservative. The master curve also indicates the geometric configurations that correspond to the onset of an 
overall Euler-column-buckling mode, and shows buckling loads that are as much as 40% lower than the 
corresponding one predicted by Donnell’s equations. 

Nondimensional parameters and master curves have also been presented for laminated-composite cylinders, with 
the classical simply supported boundary conditions, that are effectively homogeneous and orthotropic. These curves 
clearly show the effects of laminate orthotropy on the differences in the buckling loads predicted by Flügge’s and 
Donnell’s equations, and on the transition to an overall Euler-column-buckling mode. For many laminates, 
Donnell’s equations are unconservative. The difference in buckling loads predicted by the two sets of equations 
increases as the effective shear modulus increases. Of the laminates investigated, the quasi-isotropic laminates 
generally exhibit the largest differences. 

Master curves have also been presented for isotropic cylinders and the effectively homogeneous, orthotropic 
cylinders with an alternate set of axially restrained boundary conditions that have practical importance in the design 
of column end-fittings and hardware verification testing. The results indicate that use of a displacement boundary 
condition that restrains axial deformation rather than the use of the classical axial stress boundary condition, results 
in significantly different predictions of the buckling response, particularly in the regime where the transition to 
overall Euler-column buckling occurs. Specifically, the results obtained by using the axially restrained boundary 

 
Figure 17. Effects of boundary conditions on the 
buckling of laminated-composite cylinders with 60% 
0-degree, 30 % +45-degree, and 10 % 90-degree plies. 
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condition predict a much more benign reduction in buckling load with increasing length-to-radius ratio. For an 
isotropic cylinder, the maximum buckling-stress reduction for the axially restrained boundary condition is only 
about 10% as compared to the 40% reduction obtained by using the classical axial stress boundary condition. For the 
laminate-composite cylinders with axially restrained boundaries analyzed in the present study, festoon response 
curves were not obtained and the buckling loads predicted are nearly the same as the corresponding ones predicted 
by Donnell’s equations. These results clearly show that considerable care should be taken when selecting boundary 
conditions for a specific application and laminate configuration.  

Appendix A. Flügge’s Linear Bifurcation Equations for Circular Cylinders 
The membrane strains of Flügge’s linear bifurcation buckling analysis are given by 

 
εxx

o = ∂u
∂x  

(A1a)
 

 
εyy

o =
∂uy

∂y + w
R  

(A1b)
 

 
γxy

o = ∂u
∂y + ∂v

∂x  
(A1c)

 

and the bending strains are given by 

 
κ xx
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= − ∂2

w
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w
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2

 
(A2b)

 

 
κ xy
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(A2c)

 

where u(x,y), v(x,y), and w(x,y) are the axial, circumferential, and radial displacement fields for points of the 
reference surface. The stress resultants of Flügge’s cylindrical shell theory are unsymmetric and are given by 
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where σxx, σyy, and σxy are the stresses acting in the shell wall, and t is the wall thickness. The constitutive equations 
are given by 
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where the subscripted A, B, and D terms are identical to those given by Jones4 for plates. The equilibrium equations 
are given by 
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Similarly, the boundary conditions at x = 0 and x = L are given by 
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In Eqs. (A5) and (A6), the symbols Nxx

(0)

, Nyy

(0)

, and Nxy

(0)

 are the membrane prebuckling stress resultants. For 
cylinders subjected to a uniform edge compression load N, the prebuckling stress resultants are given by 
(0) (0)

xx yyN = pN, N 0,− = and 
(0)

xyN 0.=  Here, p  is a loading parameter that scales the applied load, and is increased 

monotonically from a value of zero until buckling occurs. Examination of Eqs. (A5) and (A6) reveals that the 
differential equations governing buckling and the corresponding boundary conditions are homogeneous. Thus, the 
buckling equations constitute a boundary-eigenvalue problem for which the loading parameter is the eigenvalue. 

To solve the buckling problem, Eqs. (A5) and (A6) are expressed in a form in which the loading parameter and 
the displacements  u(x, y), v(x, y), and w(x, y) are the primary unknowns. In addition, the applied end load is 
specified as N = 1, for convenience. This form is obtained by substituting the strain-displacement relations given by 
Eqs. (A1) and (A2) into the constitutive equations given by Eqs. (A4). The resulting expressions for the stress 
resultants are then substituted into the equilibrium equations and boundary conditions given by Eqs. (A5) and (A6), 
respectively. This procedure yields 
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for the three independent equilibrium equations, where the differential operators are given by 
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Similarly, the boundary conditions given by Eqs. (A6) are expressed as 

 
B 11 u + B 12 v + B 13 w = p ∂u
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A. Closed-Form Solution for Simply Supported Cylinders 
Closed-form solutions to the buckling equations can be obtained for some special cases. In the present study, 

compression loaded cylinders with "classical" simply supported ends and with laminated wall constructions that 
possess zero-valued A16, A26, D16, D26, B16, and B26 constitutive terms are of particular interest. The boundary 
conditions for this case are given by 
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The solution is obtained by trigonometric displacements functions, which satisfy all the boundary conditions; 
that is, 
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where m ∈ 1, 2, ...  and n ∈ 0, 1, 2, ... .  Substituting Eqs. (A12) into Eqs. (A7) yields the eigenvalue problem 
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Nontrivial solutions to Eq. (A13) are given by the determinant 
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This determinant is expressed as  
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where 
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 C2 = K11 + K22 + K33. (A17c) 

The critical value of the loading parameter, pcr,  is the smallest positive value that satisfies Eq. (A16) for values 

of m ∈ 1, 2, ...  and n ∈ 0, 1, 2, ... .  The buckling load is given by N cr = pcrN = pcr.  

Appendix B. Finite Element Model and Analysis 
Aluminum cylinders and two different laminated-composite cylinders were analyzed to determine their 

bifurcation buckling loads. In particular, one cylinder wall was a quasi-isotropic laminate with 25% 0-degree plies, 
50% ±45-degree plies, and 25% 90-degree plies. The other cylinder wall was a laminate with 60% 0-degree plies, 
30% ±45-degree plies, and 10% 90-degree plies. Each cylinder had a radius R = 7.8 inches and a thickness t = 0.068 
inch. A total of 28 lengths ranging from 30 to 150 inches were considered. The finite element mesh used for each 
cylinder had 54 eight-node shell elements around the circumference and as many elements as needed along the 
length needed to maintain elements with an aspect ratio of approximately 1.0 for a given cylinder length. This 
procedure was used regardless of the cylinder wall composition. To arrive at this mesh configuration, studies were 
conducted for the cylinder wall with 60% 0-degree plies, 30% ±45-degree plies, and 10% 90-degree plies to 
determine the number of circumferential elements needed to obtain solution convergence. Meshes with more than 54 
elements around the circumference were found to yield less than 1% change in the corresponding buckling loads. 
The other wall constructions were also analyzed with 54 elements around the circumference although no additional 
convergence was examined. The mesh for the 90-inch-long cylinder analyzed herein is shown in Fig. 8 and is 
representative of all meshes used to produce the results presented herein. 

Bifurcation buckling analyses were conducted for two different simply supported boundary conditions denoted 
by S1 and S2. For the S1 boundary conditions:  u = 0, v = 0, w = 0, and Mxx = 0. The S2 boundary conditions 
constitute the classical simply supported boundary condition given by Nxx = 0, v = 0, w = 0, and Mxx = 0. Results 
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were obtained for the aluminum cylinders and both types of laminated cylinders with the S2 boundary conditions. In 
contrast, only the isotropic cylinders and the laminated cylinders with 60% 0-degree plies, 30% ±45-degree plies, 
and 10% 90-degree plies were analyzed with the S1 boundary conditions. 

The SIMULIA® Abaqus™ Standard 6.8-1 FEM code5 was used for all analyses and all models were created with 
MSC.Patran™ 2010.6 For each set of boundary conditions, overall rotation of the cylinder cross-section about the 
central axis was unrestrained at one end and a constant rotation of the cross-section at the other end was enforced. 
This constant rotation of the end cross-section corresponds to the homogeneous boundary condition v = 0. In each 
case, a node was created at the center of each end cross-section that was used for load application. For the S1 
boundary conditions, a multiple point constraint (MPC) was created at each end of the cylinder with the center node 
as the independent node and the circumferential nodes as the dependent nodes. At one end of the cylinder, 
translation and axial rotation of the center node was restrained. At the other end, the translational displacements in 
the two directions normal to the cylinder axis were restrained at the center node, and a compressive force aligned 
with the cylinder axis was applied at the center node. Altogether, these restraints forced both end cross sections to 
remain rigidly circular and planar yet allowed one end to rotate freely while the other end was prevented from 
rotating about the cylinder axis. 

For the S2 boundary conditions, a single MPC was created at one end of the cylinder that restrained the three 
translational degrees of freedom at each node. For this MPC, the center node and the circumferential nodes were the 
independent and dependent nodes, respectively. Each center node translational displacements are the weighted 
average of the displacements of the nodes on that end.  

No radial and tangential displacements were permitted in the circumferential nodes. These restrictions result in 
an end cross section that may deform in a three-dimensional non-planar shape, similar to the deformation shown in 
Fig. 11c. Similar restrictions in the radial and axial displacements are applied at the other end but no restrictions are 
applied to the angular motion, thereby allowing torsion in the cylinder. Additionally, at one end, the rotations of all 
circumferential nodes were required to be equal to the rotation of the center node.  

To eliminate rigid body motion two nodes midlength were restrained from moving in the axial direction. 
Examination of results for short cylinders revealed that spurious waves appeared when using quadratic elements for 
short wavelength wall buckling of short struts because the mid-side nodes were not adequately restrained. To 
remove the spurious modes, additional MPCs were created at each end, to force the mid-side node axial 
displacement to be the average of the corner node displacements on each end in each element. A compressive force 
was applied to the center node at each end of the cylinder aligned with the cylinder axis. 
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