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Particle Approximations of the Score and Observed
Information Matrix for Parameter Estimation in State
Space Models With Linear Computational Cost

Christopher Nemeth, Paul Fearnhead and Lyudmila Mihaylova

Abstract

Poyiadjis et al. (2011) show how particle methods can be used to estimate both the score
and the observed information matrix for state space models. These methods dftrerem
a computational cost that is quadratic in the number of particles, or produce estimates whose
variance increases guadratically with the amount of data. This paper introduces an alternative
approach for estimating these terms at a computational cost that is linear in the number of parti-
cles. The method is derived using a combination of kernel density estimation, to avoid the par-
ticle degeneracy that causes the quadratically increasing variance, and Rao-Blackwellisation.
Crucially, we show the method is robust to the choice of bandwidth within the kernel density
estimation, as it has good asymptotic properties regardless of this choice. Our estimates of the
score and observed information matrix can be used within both online and batch procedures
for estimating parameters for state space models. Empirical results show improved parameter
estimates compared to existing methods at a significantly reduced computational cost. Supple-

mentary materials including code are available.
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1 Introduction

State space models have become a popular framework to model nonlinear time series problems
in engineering, econometrics and statistics (Gaepal., 2005; Durbin and Koopman, 2001). In

this paper we consider the problem of maximum likelihood estimation of the model paramgters,

for nonlinear, non-Gaussian state space models, where there is no closed form expression for the
marginal likelihood p(y,r10), for datay,-+ = {y1,Y>,..., Y7}

Using sequential Monte Carlo (SMC) methods, also known as particle filters, we propose an
efficient method to create particle approximations of the score v&dtay p(y..t16), which can be
used within a gradient ascent algorithm to estingdtg indirectly maximising the likelihood func-
tion. We show that our proposed algorithm can be appli&the, to estimate the from batches of
data, or recursively, to updatavhen new observationg are received. Previous work by Poyiadjis
et al. (2011), has provided two approaches for estimating the score vector and observed informa-
tion matrix. The first has a computational complexity that is linear in the number of particles, but
it has the drawback that the variance of the estimates increases quadratically through time. The
second method produces estimates whose variance increases linearly with time, but at the expense
of a computational cost that is quadratic in the number of particles. The increased computational
complexity of this algorithm limits its use for online applications.

We propose a new method for estimating the score vector and observed information matrix
using a novel implementation of a kernel density estimation technique (Liu and West, 2001), with
Rao-Blackwellisation to reduce the Monte Carlo error of our estimates. The result is a linear-time
algorithm which has substantially smaller Monte Carlo variance than the linear-time algorithm of
Poyiadijis et al. (2011) and notable improvements over the fixed-lag smoother (Olsson et al., 2008)
— with empirical results showing the Monte Carlo variance of the estimate of the score vector
increases only linearly with time. Furthermore, unlike standard uses of kernel density estimation,

we derive results showing that our method is robust to the choice of bandwidth. For any fixed
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bandwidth our approach can consistently estimate the parameters as both the number of time-
points and the number of particles go to infinity.
Our final algorithm has similarities with the fixed-lag smoother of Dahlin et al. (2014), in terms

of reducing the Monte Carlo error in the score and observed information estimates. However, one

of the key advantages of our approach using Rao-Blackwellisation and kernel density estimation is

that we are able to better approximate the observed information matrix, which in turn leads to faster

and more accurate parameter estimation. A recently proposed linear time algorithm by Westerborn

and Olsson (2014), supported by theoretical results (Olsson and Westerborn, 2014), could be also
be used, but is not tested here. Finally, compared to competing methods, empirical results on a
challenging eight parameter nonlinear model show that our algorithm produces more consistent

parameter estimates, with an order of magnitude improvement in the rate of convergence.

2 Inference for state space models

2.1 State space models

Consider the general state space model wkgel < t < T} represents a latent Markov process
that takes values oA € R™. The process is fully characterised by its initial dengiyx,|6) =

s(X1) and transition probability density

P(XeX11-1,6) = P(Xe|Xe—1,6) = Fo(XeIX-1), 1)

wheref € O represents a vector of model parameters. For an arbitrary segiagribe notation
z.; corresponds taz(, z,1, ..., z;) fori < j.

We assume that the procegs} is not directly observable, but partial observations can be
made via a second procep§; 1 <t < T} C Y C R". The observation§Y;} are conditionally

independent give(X;} and are defined by the probability density

P(YtlY1t-1, X114, 6) = P(Yel%, 6) = Qa(Yel%)- (2)

ACCEPTED MANUSCRIPT
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In the standard Bayesian context the latent proféss} is estimated conditional on a sequence
of observationy, 1, for T > 1. If the parameter vect@ris known then the conditional distribution

pP(XyTlY1T, 6) o< p(Xe7, Y11, 60) can be evaluated where

T T
PO Yo, 6) = o(xa) | | foxlxn) | | golyil)- (3)
t=2 t=1

For nonlinear, non-Gaussian state space models it is not possible to evaluate the posterior den-
sity p(6, x.tly17) in closed form. A popular approach for approximating these densities is to use a

sequential Monte Carlo algorithm.

2.2 Sequential Monte Carlo algorithm

SMC algorithms allow for the sequential approximation of the conditional density of the latent
state given a sequence of observations, for a fixedd, which in this section we assume are
known model parameters. For simplicity we shall focus on methods aimed at approximating the
conditional density for the current stadg, but the ideas can be extended to learning about the full
path of the process{;{. Approximations of the densitp(x|y:1, 6) can be calculated recursively

by first approximatingo(x.ly:, 8), then p(xly:.2, ) and so forth. Each conditional density can be

approximated by a set & weighted random samples, called particles, where
N N

Bldxlyss 6) = Y Ws0(dx). Viwd >0, > wd=1 @
i=1 i—1

is an approximation for the conditional distribution afig(dx) is a Dirac delta mass function
located at. The set of particlegX"}N, and their corresponding weightts:”}" | provide an em-
pirical measure that approximates the probability density fungti{egy,, #), where the accuracy
of the approximation increases lds— oo (Crisan and Doucet, 2002).

We can recursively update our approximation using the following filtering recursion,

P(X¢lY11, ) o ge(ytlxt)f fo (Xt Xe—1) P(Xe—11Y1:1-1, 0)AX1, (5)

ACCEPTED MANUSCRIPT
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where if we assume that at time- 1 we have a set of particlgX™ N, and weightgw’ JN ,

| 1’
which produce a discrete approximationgfx._1|y1+_1, 6), we can then create a Monte Carlo ap-
proximation for (5) as

N
pOxlY1e. 6) ~ cQoix) ) W, fo(xix,) (6)

i=1

wherec is a normalising constant. Particle approximations as given above can be updated recur-
sively by propagating and updating the particle set using importance sampling techniques. There
is now an extensive literature on particle filtering algorithms, see for example, Doucet et al. (2000)
and Capp et al. (2007).

In this paper the particle approximations of the latent process are created with the auxiliary
particle filter of Pitt and Shephard (1999). This filter has a general form, and simpler filters can
be derived as special cases (Fearnhead, 2007). The idea is to appra;mﬁiggg(yﬂxt) fe(xt| 1)
with £0q(xIx",, v, 0), for a set of probabilitieg” and proposal densitiegx|x",, yi, 6). We simu-
late particles at timé by first choosing a particle at time— 1, with particlexf')1 being chosen
with probability f('). We then propagate this to tinteby sampling our particle at timg X,
from q(xt|xt'_1,yt, #). The importance sampling weight assigned to our new paﬁ&lés then

WO ga(yelxe) Fa(xelX)) /0 a(x XY, , i, 6). Details are summarised in Algorithin

Algorithm 1 Auxiliary ParticleFilter
Sep 1. iterationt = 1.
Sample(x!} from the priorp(x,|6), set and normalise weightg” = g(y1|x\").
Sep 2: iterationt =2,...,T.
Assume a set of partlcletxf')l}I N, and associated weights”, N that approximate(%_1ly1+_1, 6)
and user-defined set of proposal Weig{laf%}’“ and family of proposal densitieg-|%_1, V;, 6).

(a) Sample indicetky, ko, . . ., k) from {1, ..., N} with probabilitiess".

(b) Propagate particled’ ~ q(-x", v, 6).

Wi ga4) (< 1K)

c) Weight each particle” «
(c) g Y t 90O yi.0)

and normalise the weights.
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3 Parameter estimation for state space models

3.1 Maximum likelihood estimation

The maximum likelihood approach to parameter estimation is based on solving

)
6 = arg maxlog p(y6) = arg gggxg log P(yilyr<-1, ),

where,
P(Yily11-1,6) = f(ge(th)ffa(Xt|Xt—1)p(Xt—1|y1:t—1a Q)dxt—l) dx:.

Aside from a few simple cases, it is not possible to calculate the log-likelihood in closed form.
Pointwise estimates of the log-likelihood can be obtained using SMC approximatidnze(er

and Kunsch, 2001) for a fixed valug If the parameter spad® is discrete and low dimensional,

then itis relatively straightforward to find tl#evhich maximises log(y:.1|6). For problems where

the parameter space is continuous, finding the maximum likelihood estimate (MLE) can be more
difficult. One option is to evaluate the likelihood over a grid @&lues, but this is computationally
inefficient when the model dimension is large.

The gradient based method for parameter estimation, also known as the steepest ascent al-
gorithm, maximises the log-likelihood function by evaluating the score vector (gradient of the
log-likelihood) at the current parameters and then moving them in the direction of the gradient.
For a given batch of datg ., the unknown parametércan be estimated by choosing an initial

estimatedy, and then recursively solving

ek = Hk—l + ')’kv Iog p(yl:T|6)|9=€k,1 (7)

until convergence. Hergy is a sequence of decreasing step sizes which satisfies the conditions
Yk vk = o0 andy yZ < co. One common choice ig = k™, where 05 < a < 1. The conditions on
yx are necessary to ensure convergence to a efiorewhich V log p(y:-16) = 0. A key ingredient

to good statistical properties of the resulting estimataf, guch as consistency (Crowder, 1986),

ACCEPTED MANUSCRIPT
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is that if the data are generated fr@y..1/6*), then

E[Vlog p(Yyrl0")] = f P(y1716")V log p(y.:716")dys:r = O.

That is, the expected value 8flog p(y:.716), with expectation taken with respect to the data, is 0
whend is the true parameter value.

The rate of convergence of (7) can be improved if we are able to calculate the observed in-
formation matrix, which provides a measure of the curvature of the log-likelihood. When this is

possible the Newton-Raphson method can be used and the step size payamsatgplaced with

—n{V2log p(y.:716)} .

3.2 Estimation of the score and observed information matrix

For nonlinear and non-Gaussian state space models it is impossible to derive the score and observed
information exactly. In such cases, SMC can be used to produce particle approximations in their
place (Poyiadijis et al., 2011). If we assume that it is possible to obtain a particle approximation of
the latent procesp(x.tly1-1,6), then this approximation can be used to estimate the score vector

Vlog p(y::716) using Fisher’s identity (Capgpet al., 2005)

Vlog p(y.:716) = fV log p(X1:7, Y1:716) P(Xe:7 Y17, O)dXp 7. (8)

A similar identity for the observed information matrix is given by Louis (1982)

VZ p(yl:T |9)

-V2lo +16) = Vlo |0V lo 1107 - , 9
g p(y1:716) g p(y1:716)V log p(y1:116) o(y1r16) 9)
where,
v2p(y,1|0
Y pOarlf) f ¥ log pxar, y1110)V log pOar, yirl) poarlyar, )dier  (10)
p(yl:Tle)

+ fVZ |Og p(xl:T, yl:Tle) p(xl:lel:Ta 6))dxl:T-

See Cape et al. (2005) for further details of both identities.
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If we assume that the conditional densities (1) and (2) are twice continuoufdyeditiable,

then from the joint density (3) we get
T

Viog p(xar, yarl6) = > {V10ggs(yilx) + Vlog fy(xix 1)} (11)

t=1
where we introduce the notatioig(x1|Xg) = ue(X1) to give a simpler form and similarly for the

second derivative we have
T

VZlog p(Xu.7, Ya7l0) = Z {V2 log gy(yeI %) + VZlog f@(xtlxt—l)} . (12)

t=1
In the next section we shall introduce a sequential Monte Carlo algorithm which creates approxi-

mations of these terms.

4 Particle approximations of the score vector and observed in-

formation matrix

4.1 Kernel density methods to overcome particle degeneracy

In this section we focus on applying our method to the score véctog p(y:14/6) and note that
extending these results to the observed information matrix is straightforward and not given ex-
plicitly (see Algorithm 2 for implementation details). Using a particle filter (Alg. 1) we can
samplex!’ and letx!), denote the path associated with that particle. At tinarticlei stores value

a? = Vlog p(x, y1+16), which depends on the history of the partick. The estimate fow, is

then updated recursively, where at iterattame have particles(” with associated weights(". If

we assume that particles descended from particle at timet — 1, then (11) can be given as

af) = af) + VIog gy (yix") + V1og f,(x"1X). (13)
The score vecta®; = Vlog p(y.1/6) at timet is then approximated as
N

S= > wllal)

i=1

ACCEPTED MANUSCRIPT
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Estimation of the score vector in this fashion does not require that we store the entire path of the
latent procesgX) 1N . However, thex’ s that are stored for each particle depend on the complete
path-history of the associated particle. Particle approximations of this form are known to be poor
due to inherent particle degeneracy over time (Andrieu et al., 2005). Poyiadjis et al. (2011) prove
that the asymptotic variance of the estimate of the score vector increases at least quadratically with
time. This can be attributed to the standard problem of particle degeneracy in particle filters when
approximating the conditional distribution of the complete path of the latent gtaigy:+). One
approach to reduce this degeneracy is to use kernel density methods, such as the Liu and West
(2001) algorithm, which we apply here to thf¥s.

The idea of Liu and West (2001) is to combine shrinkage ofctﬁs towards their mean,
together with adding noise. The latter is necessary for overcoming particle degeneracy, but the
former is required to avoid the increasing variance ofdﬁe. Implementing this strategy we start

by replacing:xf'fi with a draw from a Gaussian kernel, whérés drawn from a discrete distribution

with probabilitiest”, and where the mean and variance/{ are
N N

St—l = Z nglaffgl and 2?_1 = Z \’\/91(6391 - St—l)T(an - St—l)-
= =

If we let 0 < 2 < 1 be a shrinkage parameter, which is a fixed constant, and choose a density

bandwidthh > 0, we can replace’) in (13) with
20!+ (1 -)S .+ €, (14)

wheree” is a realisation of a Gaussian distributis(0, h?2¢ ). By choosingt andh such that
2% +h? = 1 (Liu and West, 2001), it is then straightforward to show that this kernel density

approximation preserves the mean and variance af{te

4.2 Rao-Blackwellisation

The storedyﬁi) values do not have anyffect on the dynamics of the state. Furthermore, we have

a stochastic update for these terms which, when we use the kernel density approach, results in

ACCEPTED MANUSCRIPT
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a linear-Gaussian update. This means that we can use the idea of Rao-Blackwellisation (Doucet
et al., 2000) to reduce the variance in our estimates of the score vector and observed information
matrix. In practice this means replacing tlnfé? values by an appropriate distribution which is
sequentially updated. Therefore we do not need to add noise to the approximation at each time
step as we do with the standard kernel density approach. Instead we can recursively update the
mean and variance of the distribution represermiﬁgand estimate the score vecty

Fort > 2, assume that at tinte- 1 eache”, is represented by a Gaussian distribution,

ag)l ~N (mfj_)l, hZVt_]_).
Then from (13) and (14) we have that
o) ~ N1, h2Vy), (15)

where,

m? = am*) + (1 - )S1 + VIog go(yex”) + Vlog f,(xP1x)),

and
Vo= Vi + 30 = Vi + ) Wl m?, - se) T, - sc).
i=1
The estimated score vector at each iteration is a weighted averagecé?:theo we can esti-

mate the score by
N . .

Sc= > wim. (16)
i=1

If we only want to estimate the score vector, then this shows that we only need to calculate the
expected value of the’s. However, if we wish to calculate the observed information matrix

then from (10), a standard particle approximation would give

N
o= ST = 3wl fala” + g0,

i=1

ACCEPTED MANUSCRIPT
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where we defing!’ = v2log p(x{), y1.l6). Taking the same approach faf as we did fora",
we define a Gaussian distribution ﬁS{P and update its mean and covariance in the same way as
was shown above far;. In practice we only need to calculate the mean, which we will denote as
n®. Using Rao-Blackwellisation, and the assumed distributionsfoands®, gives the following
estimate of the observed information matrix

N
o= ST = > W P + b2V, + ).

i=1

Note the inclusion oh?V, in this estimate. This term is important as it corrects for the fact that

shrinking the values o#; towardsS; at each iteration will reduce the variability in these values.

Without this correction the observed information would be overestimated. Details of this approach

are summarised in Algorithi®.

Algorithm 2 Rao-Blackwellised Score and Observed Informatiatrix
Initialise: setm = 0 andn{) = 0fori=1...,N, S = 0andB, = 0.
At iterationt=1,...,T, ' '

(a) Apply Algorithm 1 to obtainx"}N , {k}N, andw{"}N,

(b) Update the mean of the approximationsdpandp;

M = am{) + (1 - S + Vioggo(vix”) + Vlog fy(x1x)
) = anl) + (1 - DB + V2log gy (wix") + V2log f,(x"1x¥]
(b) Update the score vector and observed information matrix

N N
S, = Zwt(i)mgi) and l, = StStT _ Z V\éi)(mgi)mgiﬁ + ngi)) _ hzvt

i=1 i=1

whereV; = Vig + 3w (MY, - Se)™(m?, - Sy andB = RN winf).

Our newO(N) algorithm can be viewed as a generalisation of the Poyiadijis et al. (2011) al-
gorithm. Settingl = 1 in Algorithm 2 gives the Poyiadjis algorithm. However, this algorithm,
as illustrated in Section 6 and proved by Poyiadjis et al. (2011), has a quadratically increasing
variance int. As a result, Poyiadijis et al. (2011) introduce an alternative algorithm whose compu-

tational cost is quadratic in the number of particles, but which has better Monte Carlo properties.

ACCEPTED MANUSCRIPT
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Del Moral et al. (2010) and Douc et al. (2011) show that this alternative approach, under standard
mixing assumptions, produces estimates of the score with an asymptotic variance that increases

only linearly with time.

5 Theoretical justification

5.1 Monte Carlo accuracy

We have motivated the use of both the kernel density approximation and Rao-Blackwellisation as
a means to reduce the impact of particle degeneracy af(falgorithm for estimating the score
vector and observed information matrix. However, what can we say about the resulting algorithm?
It is possible to implement Algorithm 2 so as to store the whole history of the giate
rather than just the current valug, This just involves extra storage, with our particles being
X = @, ). Whilst unnecessary in practice, thinking about such an algorithm helps with
understanding the algorithms properties.
One can fix, the parameter value used when running the particle filter algorithm, and the data
y11. FOr convenience we drop the dependencé fsom notation in the following. Thenfi) values
calculated by the algorithm are just functions of the history of the state and the past estimated score

values. We can define a set of functiagngx;),

ds(X1) = V109 gs(YsXs) + V10g fo(XelXs-1),

wheret > s > 0 and functionsmg(x;+), which depend omng_;(x;1) and the estimated score

functions at previous time-steS;.s_1, through
Ms(X11) = AMs_1(X11) + (1 = A)Ss-1 + Ps(X14), (17)

with m(x;) = 0. We then have that in Algorithm 20" = m(x{)), is the value of this function

evaluated for the state history associated withithg@article at time.

ACCEPTED MANUSCRIPT
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Note that it is possible to iteratively solve the recursion (17) to get

M(xag) = Y Au(xax) + (1= 1) D A5 Syy (18)
u=1 u=1

where 0< A < 1 is the shrinkage parameter.

If we setd = 1, then Algorithm 2 reverts to the Poyiad{iXN) algorithm and (18) simplifies
to a sum of additive functionals,(x;1). The poor Monte Carlo properties of this algorithm stem
from the fact that the Monte Carlo variance of SMC estimateg,0f; 1) increase at least linearly
with s—u. And hence the Monte Carlo variance of the SMC estimafg pf ¢,(x11), increases at
least quadratically witls.

In terms of the Monte Carlo accuracy of Algorithm 2, the key is that in (18) we exponentially
down-weight the contribution af,(x;1) ass— u increases. Under quite weak assumptions, such
as the Monte Carlo variance of the estimategi; 1) being bounded by a polynomial 8+ u, we
will have that the Monte Carlo variance of estimate$'gf, 15 "¢,(X.1) will now be bounded irs.

For A < 1, we introduce the additional second term in (18), without which there would be a
substantial bias in the score estimate that would grow tviEstimating this term is less problem-
atic as the Monte Carlo variance of easf; will depend only onu, and will not increase as
increases. Empirically, the resulting Monte Carlo variance of our estimates of the score increase

only linearly with s for a wide-range of models.

5.2 Hfect on parameter inference

Now consider the value @; in the limit as the number of particles goes to infinl/— co. We
assume that standard conditions on the particle filter for the law of large numbers (Chopin, 2004)

hold. Then we have that

St - Ee [mt(xl:t)|yl:t] = fm(xl:t) D(Xl:tIY1:t, g)dxl:t-

Fort=1,...,T, where we fix the datg, T, defineS, = B, [my(X1+)ly11] to be the largeN limit

of the estimate of the score at timeThe following lemma expressé in terms of expectations

ACCEPTED MANUSCRIPT
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of the ¢4(+) functions. Proofs from this section can be found in the supplementary material.

Lemma 5.1. Fixyy1. Then Sy = By [¢1(Xe)ly1] andfor 2 <t < T

t -1 -1
St = Z A™Eg [pu(Xan)lyra] + (1 - 1) Z Z A Eg [pu(Xan)lYrs] »
u=1 u=1l s=u

where the expectations are taken with respect to the conditional distribution of X giveny;.:

Ee [¢S(X1:t)|y1:u] = f¢s(xl:t)p(xl:t|yl:u, g)dxl:t-
We now consider taking expectation 8f with respect to the data. We wrir(y1;6) to
denote the dependence on the data and the choice of parametérwhen implementing the

particle filter algorithm. A direct consequence of Lemma 1 is the following theorem.

Theorem 5.2. Let 6* be the true parameter value, and T a positive integer. Assume regularity

conditions exist so that for all t < T,

Eg [V log p(X14, Y14/67)] = O, (29)
where expectation is taken with respect to p(Xy.1, Y1.7/6%). Then

By [S_T(Yl:T; 9*)] =0,

where expectation is taken with respect to p(Y1.716%).

The theorem shows that for any<01 < 1, the expectation CBTT(yl;T; 6*) at the true parameter
¢ is zero, and hencBr(y.1;6) = O are a set of unbiased estimating equationgfddsing our
estimates of the score function within the steepest gradient ascent algorithm is thus using Monte
Carlo estimates to approximately solve this set of unbiased estimating equations.

The accuracy of the final estimate @till depend both on the amount of Monte Carlo error,
and also the accuracy of the estimator based on solving the underlying estimating equation. Note
that the statisticalficiency of the estimator obtained by solviBg(y..;6) = 0 may be dierent,
and lower, than that of solving log p(y.-716) = 0. However in practice we would expect this
to be more than compensated by the reduction in Monte Carlo error we get. We investigate this

empirically in the following sections.
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6 Comparison of approaches

In this section we shall evaluate our algorithm and compare existing approaches for estimating the
score vector. Most importantly, we will investigate how the performance of our method depends on
the choice of shrinkage parametér, For comparison, we consider a linear-Gaussian state space
model, where it is possible to analytically calculate the score vector and observed information
matrix using a Kalman filter (Kalman, 1960).

Consider a first order autoregressive model AR(1) observed with Gaussian noise:

2

o
Yil X = X ~ N(Xt,Tz)’ XilXic1 = Xe-1 ~ N(PXe-1, 0'2)’ Xy ~ N(O, 1_—(1)2) ) (20)

where we can derive the optimal proposal distribution for the particle filter
(i) 2.2

i ox” 12 + yio? i i i
X230 = N[Xt‘ - : o~ ]’ U o WO N (yilox?,, 0% + 7).

o2+12 To?2+712

We shall compare our algorithm (Alg. 2) against thN) andO(N?) algorithms of Poyiadijis
et al. (2011), and also the fixed-lag smoother of Kitagawa and Sato (2001).

The fixed-lag smoother is based on approximapfg |yi-t, 6) with p(Xy+|Y1:minit+L1}, 6), Where
L is some pre-specified lag. The posterip{xi|yrmint+L1)-8), €an then be estimated using an
O(N) algorithm. This method reduces the Monte Carlo variance at the cost of introducing a bias.
Theoretical results given by Olsson et al. (2008) show that m&reases the optimal choice bf
in terms of a bias-variance tradé&ads O(log(T)).

We perform a comparison on a data set of lenptk 20, 000 simulated from the autoregres-
sive model (20) with paramete®s = (¢,0,7)" = (0.8,0.5,1)". Our method and the Poyiadjis
O(N) have the same computational cost and are implementedNvith50,000. The Poyiadjis
O(N?) algorithm, which has a quadratic computational cost, is implementedNvith500. The
comparisons were run on a Dell Latitude laptop with a 1.6GHz processor, where each iteration of

the O(N) algorithms takes approximately 1 minute fdr= 50, 000. TheO(N?) takes 5.1 minutes
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for N = 500. This corresponds to a CPU cost that is approximately 5 times greater th@(Nthe
methods.

The results given in Figure 1 show that for all but the Poyiadjihl) algorithm the standard
deviation of the score estimate is increasing at a rafe-8f, giving a variance that is increasing
approximately linearly with time. For the Poyiad@¥N), the variance is increasing quadratically
(standard deviation is increasing linearly) in line with the established theoretical results. As for the
O(N?) algorithm, the variance increases only linearly, as expected, but at an increased computa-
tional cost compared to th@(N) algorithms. The variance could be further reduced by increasing
the number of particles, but this will lead to a further increase in the computational cost. While
the variance of th&(N?) is only linearly increasing, it is worth noting that it is larger than what is
given by our algorithm for all values of.

For estimating the score, the fixed-lag smoother performs well in terms of both bias and vari-
ance, and we note that, while not shown in Figure 1, varying the lag aboit)ldgés not dramat-
ically change the outcome, but= 10 seems to give the best result. However, while the fixed-lag
smoother appears to work well when estimating the score, it struggles to accurately estimate the
observed information, with a large bias for a range of lags (L < 100). This is because the
fixed-lag approach reduces the variability in the estimate€ lof p(x, y1/#) associated with
each particle, which means that it under-estimates the first term in Louis’s identity (9). Whilst our
approach also reduces the variability in the estimate® lofy p(x;+, y11/6) associated with each
particle, we are able to correct for this within the Rao-Blackwellisation scheme (see Section 4.2
for details). This drawback is further explored in Section 7.1.

For our algorithm, we notice that the bias and variance of both the score estimate, and observed
information matrix, vary according t@. Reducingd has the &ect of increasing the bias, but at
the same time, reducing the Monte Carlo variance of the estimates. The figures show that if we
wish to minimise both bias and variance, then setting 0.95 will produce an estimate for the

score and observed information which exhibit only linearly increasing variance, with minimal bias
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introduced as a result. In fact, the results suggest that setthg Q < 0.99 will produce the
best overall results. However, ultimately interest lies in estimating the model parameters, and in
Section 7 we will see that our algorithm produces reliable estimates of the model parameters for

all values ofa.

7 Parameter estimation

Our O(N) algorithm, as described in Section 4, can be used to estimate the score vector and ob-
served information matrix. These estimates can then be used within the steepest ascent algorithm
(7) to obtain the MLE fo#.

The steepest ascent algorithm (7) perforriiree maximum likelihood estimation using batches
of datay; ., which can be useful when dealing with small data sets. Alternatively, we could im-
plement recursive parameter estimation, where estimates of the paraépetrersipdated as new
observations are made available. Ideally this would be achieved by using the gradient of the pre-

dictive log-likelihood,

0 = 6i_1 + vV log p(Yily11-1, 6), (21)

where,

Vl1og p(yily1t-1. 6:) = Vlog p(y11l6r) — V log p(Y11-1/6c-1)-

However, getting Monte Carlo estimatesofog p(ytly1+-1, &) is difficult due to using dferent
values off at each iteration of the sequential Monte Carlo algorithm. Thus, following LeGland
and Mevel (1997) and Poyiadijis et al. (2011), we make a further approximation, and ignore the
fact thatd changes with. Instead we updat& at each iteration using the following approximation

to this gradient:
Vlog p(yily1t-1,6) = St — Si-1.
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7.1 Autoregressive model

We compare the accuracy anfli@ency of estimating the parameters of the AR(1) model (20)
using the various algorithms given in Section 6 in both #tine and online setting. Starting

with the batch case (fine), we simulated 1,000 observations from the model with parameters
0 = (¢,0,7)" = (0.9,0.7,1)" and estimated the score vector and observed information ma-
trix using ourO(N) algorithm, the fixed-lag smoother, and t8N) and O(N?) algorithms of
Poyiadjis. The estimates of the score vector and observed information matrix were used within
the Newton-Raphson algorithm (7) to estiméteThe starting parameters for the algorithm are

0o = (¢,0,7)" = (0.6,1,0.7)". The AR(1) model is linear-Gaussian, and therefore allows for a
direct comparison against the Kalman filter, where the score and observed information matrix can
be calculated analytically.

Figure 2 gives the RMS error of the parameters estimated using the Newton-Raphson algorithm
(7) averaged over 20 Monte Carlo simulations. Our algorithm, the fixed-lag smoother and the
O(N) algorithm of Poyiadijis were implemented with 50,000 particles anda{i¢?) algorithm
was implemented with 1,000 particles. For our algorithm wetset 0.95 and for the fixed-lag
smootherL = 7. In terms of computational cost, given the number of particles, our algorithm
has more than a 10 fold computational time saving compared tO(Né) algorithm. The fixed-
lag smoother was implemented with and without the observed information matrix applied in the
gradient ascent algorithm.

The RMS error of thed)(N?) algorithm given in Figure 2 is comparable to the error given by
our O(N) algorithm, however, it is important to remember that this is achieved with a significant
computational saving. Compared to the Poyiad){§) algorithm, ourO(N) algorithm and the
fixed-lag smoother (using only the score estimate) produce lower RMS error. Using a fixed-lag
smoother estimate of the observed information matrix in the Newton-Raphson algorithm leads

to higher RMS error than when only the score is used. The poor performance of the fixed-lag
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approach was discussed in Section 6 and is attributed to the error in estimating the observed infor-
mation matrix.

lllustrating the robustness afin our O(N) algorithm, Figure 3 gives estimates #®using the
offline (7) and online (21) gradient ascent algorithms for varying values(tdr the online case
we simulated 60,000 observations). We see that there is liffierehce between = 0.99 and
A = 0.95, but more importantly, for = 0.5 the parameters are converging to the MLEs, only at
a slower rate. This was also the case for much lower choicdagefg. A = 0.1), which are not
shown here, but for which the parameters converged to the MLE at an even slowly rate.

Using the recursive gradient ascent scheme (21) we can compare our method against the online
Bayesian particle learning algorithm (Carvalho et al., 2010). Particle learning uses MCMC moves
to sequentially update the parameters within an SMC algorithm. A prior distribution is selected for
each of the parameters which is updated at each time point via a set of low-dimensiioergu
statistics (see the supplementary materials for implementation details).

We generated 4000 observations from the AR(1) model and considered thféereint sets of
true parameter values, chosen to represdigr@int degrees of dependence within the underlying
state processp = 0.9, 0.99 and 0.999. We sef = 1 — ¢? so that the marginal variance of the
state is 1 and fixed = 1. We maintain the same initial parametégdor the gradient scheme as
was used for the batch analysis.

Figure 4 shows the RMS error of o@{N) algorithm applied to estimate the paramet@rs
against the particle learning filter over 100 data sets. The results show that the particle learning
filter produces a lower RMS error than our algorithm for the first few thousand observations, but
that it degenerates over very long time-series, particularly in the case of strong depemdence (
0.99 and 0.999). This is due to degeneracy in thident statistics that occurs as a result of
their dependence on the complete latent process, and the fact that the Monte Carlo approximation
to p(x.7ly1:7,60) degrades a3 increases (Andrieu et al., 2005). This degeneracy is particularly

pronounced for large, as this corresponds to cases where the underlying MCMC moves used to
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update the parameters mix poorly.

Over longer data sets, applying gradient ascent withcftw) algorithm, outperforms particle
learning. Asp approaches 1, the long term state dependence is increased, as is the distance between
the true parameter values and the fixed starting values used to initiate the gradient scheme. Our
method appears to take longer to converge in this setting, but compared to particle learning, our
method appears to be more robust to the choice, @nd for this reason, maximum likelihood
methods are preferred over patrticle learning when estimating parameters from long time series.
See Chopin et al. (2011) for a further discussion on the implementation challenges of particle

learning.

7.2 Nonlinear seasonal Poisson model

In this section we demonstrate our methodology on a nonlinear state space model, where we es-
timate the parameters from a real data set and show that these estimates are in agreement with
previous studies.

We consider a time series of monthly counts of poliomyelitis in the United States from January
1970 to December 1983. This time series was introduced by Zeger (1988) and has since been
analysed by Chan and Ledolter (1995), who used a Monte Carlo EM algorithm, and Davis and
Rodriguez-Yam (2005) and Langrock (2011) who both estimated the parameters using an approx-
imate likelihood approach. The proposed model accounts for the observed seasonality of polio
outbreaks and also contains a trend component which is the main interest in determining whether

or not there is a decreasing trend:

YilX = %,z ~ N[O, X exp@)],  XilXi1 = X1 ~ N($Xi-1, 07) (22)
log(z) = p1 + L+ COSE+ sin@+ cos@+ sinE
94) = pa* pagaag T HSCOS\ 1 | T HaSIN T | F Hs CO T | + HeSIN| 75 )

whereN;[a, b] denotes the number of events in time intenal.

The model parametets= (u1, uo, i3, fa, s, is, §, 02) T are estimated using the gradient ascent
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algorithm, where the score vector is estimated using our proposed method (Alg. 2) wi@k05
and Q7. We compare our method against the fixed-lag smoother and the Pogéd)iandO(N?)
algorithms. Each method was implemented Witk 1,000 particles, except the Poyiadi¥N?)
algorithm, which was implemented wit = 33~ /1,000 . The fixed-lag smoother was run with
lagL = 5 and 20.

Parameter estimates for the seasonal Poisson model are given in Table 1, where the batch
implementation of the gradient ascent algorithm was executed, fil@iterations. Given the
short data set (¥168), we do not consider recursive parameter estimation.

We give the results from using our method with= 0.95 andA = 0.7, and note that almost
identical parameter estimates were obtainedifar [0.5,0.99]. We can see that for our method,
the parameter estimates are consistent with the results presented by Davis and Rodriguez-Yam
(2005) and Langrock (2011). To understand the performance of the methods we re-ran each of
them 20 times to see the Monte Carlo variability in the parameter estimates. For our method, the
fixed-lag smoother and th@(N?) method, we obtained almost identical estimates for each run.
However theO(N) method of Poyiadjis et al. showed increased variation in the estimates (for
example the range of the estimatesgwas [-4.76, -4.53]). The fixed-lag smoothers performed
equally well forL = 5 and 20 with little diference between the two implementations. Most of the
parameters are estimated well using the fixed-lag smoother, but the bias of the score estimates does
lead to poor estimation qf; andu,. All of the algorithms, except the PoyiadjiZ(N) andO(N?)
algorithms converged after approximately 500 iterations (figures available in the supplementary
material). This is due to the Monte Carlo variation in the score estimates which directly impacts
the parameter estimates. In the case of@i?) algorithm, this variation could be reduced by
increasing the number of particles, but at a significantly increased computational cost compared to

our method.
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8 Discussion

In this paper we have presented a novel sequential Monte Carlo method for estimating the score
vector and observed information matrix for nonlinear, non-Gaussian state space models. Previous
approaches have produced estimates with quadratically increasing variance at a computational
cost that is linear in the number of particles, or achieved linearly increasing variance at a quadratic
computational cost.

The algorithm we have developed combines techniques from kernel density estimation and
Rao-Blackwellisation to yield estimates of both the score vector and the observed information
matrix which display only linearly increasing variance, which is achieved at a linear computa-
tional cost. Importantly, we have shown that this approximate score vector, at the true parameter
value, has expectation zero when taken with respect to the data. Thus, the resulting gradient as-
cent scheme uses Monte Carlo methods to approximately find the solution to a set of unbiased
estimating equations.

The estimates of the score and observed information given b@@\y algorithm can be ap-
plied to the gradient ascent and Newton-Raphson algorithms to obtain maximum likelihood esti-
mates of the model parameters. This can be achieved eftliae®r online, where the parameters
are estimated from a batch of observations, or recursively from observations received sequentially.
Furthermore, we have shown that in terms of parameter estimation, our algorithm is relatively in-
sensitive the the choice af. However we do note that setting90 < 2 < 0.99 produces low
variance estimates of the score with minimal bias, which also results in faster parameter conver-
gence.

For a significant reduction in computational time we can achieve improved parameter estima-
tion over competing methods in terms of minimising root mean squared error. We also compared
our algorithm to the particle learning filter for online estimation. The particle learning filter per-

forms well initially but degenerates over time, whereas our algorithm is more accurate over longer
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time series. Our method also appears to be robust to the choice of model parameters compared
to the particle learning filter which struggles to estimate the parameters when the states are highly

dependent.

Supplementary Materials

Appendices: Proofs for Lemma 1 and Theorem 1. Also, a derivation of the particle learning

updates and a plot for the nonseasonal Poisson model example. (pdf)

R code: R code for the examples in Section 7. (Rcode.zip, zip file)
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Figure 1: Absolute bias (left column) and standard deviation (right column) of score estimates for
7 (top row) and observed information matrix for thecomponent (bottom row) from the autore-

gressive model using od@(N) algorithm withAa = 0.99 (-« — -+ —), 1 = 0.95 (

), 1 =0.9

(- x=%x=),A=08-¢0--¢0-),4=07(-o—-Ar—), Fixed-lag smoothet = 10 (v--v--v-
), and the Poyiadji®(N) algorithm ¢ - - - =) andO(N?) with N = 500 (- - ® — - ® —).
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Figure 2: Root mean squared error of parameter estingatiest panel) andr (right panel) aver-
aged over 20 Monte Carlo simulations from @(N) algorithm withA = 0.95 (—), Poyiadijis
O(N) (- v —-v —), PoyiadjisO(N?) (- - © — - — ), Fixed-lag smoother{ ), Fixed-lag
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eraged over 100 Monte Carlo simulations from our algorithm wita 0.95 and¢ = 0.9 (—),
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Table 1: Results of batch parameter estimation for competing models using the gradient ascent
algorithm (7) initialised atp = (0.4,-3,0.3,-0.3,0.65,-0.2,0.4,0.4). Results given by Davis
and Rodriguez-Yam (2005) are quoted as D&R.

Algorithm Maximum likelihoodestimates
H1 M2 M3 M4 Hs Mg ¢ O
Ouralg.4=0.95| 0.26 -3.89 0.16 -0.48 0.41 -0.01 0.65 0.28
Ouralg.4=0.70| 0.26 -3.98 0.16 -0.49 0.41 -0.02 0.61 0.30
Fixed-lag (L.=5) | 0.32 -4.42 0.18 -0.47 0.42 0.00 0.66 0.27
Fixed-lag (.=20) | 0.32 -4.43 0.18 -0.47 0.42 0.00 0.66 0.27
PoyiadjisO(N) | 0.12 -4.66 0.18 -0.51 0.41 -0.01 0.27 1.00
PoyiadjisO(N?) | 0.21 -3.53 0.14 -0.49 0.43 -0.05 0.66 0.28
D&R 0.24 -3.81 0.16 -0.48 0.41 -0.01 0.63 0.29
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