1,703 research outputs found

    Power spectra of solar brightness variations at different inclinations

    Get PDF
    Magnetic features on the surfaces of cool stars cause variations of their brightness. Such variations have been extensively studied for the Sun. Recent planet-hunting space telescopes allowed measuring brightness variations in hundred thousands of other stars. The new data posed the question of how typical is the Sun as a variable star. Putting solar variability into the stellar context suffers, however, from the bias of solar observations being made from its near-equatorial plane, whereas stars are observed at all possible inclinations. We model solar brightness variations at timescales from days to years as they would be observed at different inclinations. In particular, we consider the effect of the inclination on the power spectrum of solar brightness variations. The variations are calculated in several passbands routinely used for stellar measurements. We employ the Surface Flux Transport Model (SFTM) to simulate the time-dependent spatial distribution of magnetic features on both near- and far-sides of the Sun. This distribution is then used to calculate solar brightness variations following the SATIRE (Spectral And Total Irradiance REconstruction) approach. We have quantified the effect of the inclination on solar brightness variability at timescales down to a day. Thus, our results allow making solar brightness records directly comparable to those obtained by the planet-hunting space telescopes. Furthermore, we decompose solar brightness variations into the components originating from the solar rotation and from the evolution of magnetic features

    Platelet CD36 Signaling Through ERK5 Promotes Caspase-Dependent Procoagulant Activity and Fibrin Deposition In Vivo

    Get PDF
    Dyslipidemia is a risk factor for clinically significant thrombotic events. In this condition, scavenger receptor CD36 potentiates platelet reactivity through recognition of circulating oxidized lipids. CD36 promotes thrombosis by activating redox-sensitive signaling molecules, such as the MAPK extracellular signal-regulated kinase 5 (ERK5). However, the events downstream of platelet ERK5 are not clear. In this study, we report that oxidized low-density lipoprotein (oxLDL) promotes exposure of procoagulant phosphatidylserine (PSer) on platelet surfaces. Studies using pharmacologic inhibitors indicate that oxLDL-CD36 interaction–induced PSer exposure requires apoptotic caspases in addition to the downstream CD36-signaling molecules Src kinases, hydrogen peroxide, and ERK5. Caspases promote PSer exposure and, subsequently, recruitment of the prothrombinase complex, resulting in the generation of fibrin from the activation of thrombin. Caspase activity was observed when platelets were stimulated with oxLDL. This was prevented by inhibiting CD36 and ERK5. Furthermore, oxLDL potentiates convulxin/glycoprotein VI–mediated fibrin formation by platelets, which was prevented when CD36, ERK5, and caspases were inhibited. Using 2 in vivo arterial thrombosis models in apoE-null hyperlipidemic mice demonstrated enhanced arterial fibrin accumulation upon vessel injury. Importantly, absence of ERK5 in platelets or mice lacking CD36 displayed decreased fibrin accumulation in high-fat diet–fed conditions comparable to that seen in chow diet–fed animals. These findings suggest that platelet signaling through CD36 and ERK5 induces a procoagulant phenotype in the hyperlipidemic environment by enhancing caspase-mediated PSer exposure

    Single cell RNA sequencing analysis of mouse cochlear supporting cell transcriptomes with activated ERBB2 receptor indicates a cell-specific response that promotes CD44 activation

    Get PDF
    Hearing loss caused by the death of cochlear hair cells (HCs) might be restored through regeneration from supporting cells (SCs) via dedifferentiation and proliferation, as observed in birds. In a previous report, ERBB2 activation in a subset of cochlear SCs promoted widespread down-regulation of SOX2 in neighboring cells, proliferation, and the differentiation of HC-like cells. Here we analyze single cell transcriptomes from neonatal mouse cochlear SCs with activated ERBB2, with the goal of identifying potential secreted effectors. ERBB2 induction in vivo generated a new population of cells with de novo expression of a gene network. Called small integrin-binding ligand n-linked glycoproteins (SIBLINGs), these ligands and their regulators can alter NOTCH signaling and promote cell survival, proliferation, and differentiation in other systems. We validated mRNA expression of network members, and then extended our analysis to older stages. ERBB2 signaling in young adult SCs also promoted protein expression of gene network members. Furthermore, we found proliferating cochlear cell aggregates in the organ of Corti. Our results suggest that ectopic activation of ERBB2 signaling in cochlear SCs can alter the microenvironment, promoting proliferation and cell rearrangements. Together these results suggest a novel mechanism for inducing stem cell-like activity in the adult mammalian cochlea

    Nebuliser therapy in the intensive care unit

    Get PDF
    The relationship between identity, lived experience, sexual practices and the language through which these are conveyed has been widely debated in sexuality literature. For example, ‘coming out’ has famously been conceptualised as a ‘speech act’ (Sedgwick 1990) and as a collective narrative (Plummer 1995), while a growing concern for individuals’ diverse identifications in relations to their sexual and gender practices has produced interesting research focusing on linguistic practices among LGBT-identified individuals (Leap 1995; Kulick 2000; Cameron and Kulick 2006; Farqhar 2000). While an explicit focus on language remains marginal to literature on sexualities (Kulick 2000), issue of language use and translation are seldom explicitly addressed in the growing literature on intersectionality. Yet intersectional perspectives ‘reject the separability of analytical and identity categories’ (McCall 2005:1771), and therefore have an implicit stake in the ‘vernacular’ language of the researched, in the ‘scientific’ language of the researcher and in the relationship of continuity between the two. Drawing on literature within gay and lesbian/queer studies and cross-cultural studies, this chapter revisits debates on sexuality, language and intersectionality. I argue for the importance of giving careful consideration to the language we choose to use as researchers to collectively define the people whose experiences we try to capture. I also propose that language itself can be investigated as a productive way to foreground how individual and collective identifications are discursively constructed, and to unpack the diversity of lived experience. I address intersectional complexity as a methodological issue, where methodology is understood not only as the methods and practicalities of doing research, but more broadly as ‘a coherent set of ideas about the philosophy, methods and data that underlie the research process and the production of knowledge’ (McCall 2005:1774). My points are illustrated with examples drawn from my ethnographic study on ‘lesbian’ identity in urban Russia, interspersed with insights from existing literature. In particular, I aim to show that an explicit focus on language can be a productive way to explore the intersections between the global, the national and the local in cross-cultural research on sexuality, while also addressing issues of positionality and accountability to the communities researched

    Comparative Electronic Structures of the Chiral Helimagnets Cr1/3NbS2 and Cr1/3TaS2

    Full text link
    Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Here, we carry out a comparative study of the electronic structures of Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2 and connect this result to bonding and orbital overlap in these materials. We also unambiguously distinguish exchange splitting from surface termination effects by studying the dependence of their photoemission spectra on polarization, temperature, and beam size. We find strong evidence that hybridization between intercalant and host lattice electronic states mediates the magnetic exchange interactions in these materials, suggesting that band engineering is a route toward tuning their spin textures. Overall, these results underscore how the modular nature of intercalated transition metal dichalcogenides translates variation in composition and electronic structure to complex magnetism.Comment: 46 pages, 18 figures, 5 table

    Fluid shear stress modulation of hepatocyte like cell function

    Get PDF
    Freshly isolated human adult hepatocytes are considered to be the gold standard tool for in vitro studies. However, primary hepatocyte scarcity, cell cycle arrest and the rapid loss of cell phenotype limit their widespread deployment. Human embryonic stem cells and induced pluripotent stem cells provide renewable sources of hepatocyte-like cells (HLCs). Despite the use of various differentiation methodologies, HLCs like primary human hepatocytes exhibit unstable phenotype in culture. It has been shown that the functional capacity can be improved by adding back elements of human physiology, such as cell co-culture or through the use of natural and/or synthetic surfaces. In this study, the effect of fluid shear stress on HLC performance was investigated. We studied two important liver functions, cytochrome P450 drug metabolism and serum protein secretion, in static cultures and those exposed to fluid shear stress. Our study demonstrates that fluid shear stress improved Cyp1A2 activity by approximately fivefold. This was paralleled by an approximate ninefold increase in sensitivity to a drug, primarily metabolised by Cyp2D6. In addition to metabolic capacity, fluid shear stress also improved hepatocyte phenotype with an approximate fourfold reduction in the secretion of a foetal marker, alpha-fetoprotein. We believe these studies highlight the importance of introducing physiologic cues in cell-based models to improve somatic cell phenotype

    Evaluating the effects of increasing physical activity to optimize rehabilitation outcomes in hospitalized older adults (MOVE Trial): Study protocol for a randomized controlled trial

    Get PDF
    Background: Older adults who have received inpatient rehabilitation often have significant mobility disability at discharge. Physical activity levels in rehabilitation are also low. It is hypothesized that providing increased physical activity to older people receiving hospital-based rehabilitation will lead to better mobility outcomes at discharge. Methods/Design: A single blind, parallel-group, multisite randomized controlled trial with blinded assessment of outcome and intention-to-treat analysis. The cost effectiveness of the intervention will also be examined. Older people (age >60 years) undergoing inpatient rehabilitation to improve mobility will be recruited from geriatric rehabilitation units at two Australian hospitals. A computer-generated blocked stratified randomization sequence will be used to assign 198 participants in a 1:1 ratio to either an 'enhanced physical activity' (intervention) group or a 'usual care plus' (control) group for the duration of their inpatient stay. Participants will receive usual care and either spend time each week performing additional physical activities such as standing or walking (intervention group) or performing an equal amount of social activities that have minimal impact on mobility such as card and board games (control group). Self-selected gait speed will be measured using a 6-meter walk test at discharge (primary outcome) and 6 months follow-up (secondary outcome). The study is powered to detect a 0.1 m/sec increase in self-selected gait speed in the intervention group at discharge. Additional measures of mobility (Timed Up and Go, De Morton Mobility Index), function (Functional Independence Measure) and quality of life will be obtained as secondary outcomes at discharge and tertiary outcomes at 6 months follow-up. The trial commenced recruitment on 28 January 2014. Discussion: This study will evaluate the efficacy and cost effectiveness of increasing physical activity in older people during inpatient rehabilitation. These results will assist in the development of evidenced-based rehabilitation programs for this population. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12613000884707(Date of registration 08 August 2013); ClinicalTrials.gov Identifier NCT01910740(Date of registration 22 July 2013)

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    • …
    corecore