160 research outputs found
Création automatique de classes de signatures manuscrites pour l'authentification en ligne
International audienceNous nous intéressons dans ce papier à l'optimisation d'un système d'authentification par signature manuscrite. Celui-ci est basé sur une approche Coarse To Fine et utilise l'algorithme Dynamic Time Warping ainsi qu'un seuil de décision global pour accepter ou rejeter un signataire. L'optimisation proposée réside dans l'utilisation d'un algorithme de classification non supervisée afin de déterminer automatiquement des classes de signatures. Pour chacune des classes, un seuil de décision spécifique est établi. Dans ces travaux, nous nous sommes plus particulièrement attaché à étudier l'impact de la classification sur les performance. Les résultats expérimentaux sur la base SVC montrent que l'on peut améliorer les performances en diminuant le taux d'erreur égale de 14,4%. Cependant la sensibilité de la classification est très grande et la notion de classe unique pour un signataire semble trop restrictive
Urate Oxidase Purification by Salting-in Crystallization : Towards an Alternative to Chromatography
Background: Rasburicase (FasturtecH or ElitekH, Sanofi-Aventis), the recombinant form of urate oxidase from Aspergillus flavus, is a therapeutic enzyme used to prevent or decrease the high levels of uric acid in blood that can occur as a result of chemotherapy. It is produced by Sanofi-Aventis and currently purified via several standard steps of chromatography. This work explores the feasibility of replacing one or more chromatography steps in the downstream process by a crystallization step. It compares the efficacy of two crystallization techniques that have proven successful on pure urate oxidase, testing them on impure urate oxidase solutions
Active Galactic Nuclei as High Energy Engines
Active Galactic Nuclei are considered as possible sites of cosmic ray
acceleration and some of them have been observed as high energy gamma ray
emitters (Blazars). There naturally comes an appealing idea that the
acceleration of the highest energy cosmic rays in the AGNs has a signature in
the form of gamma ray emission and high energy neutrino emission through the
collisions of very high energy protons with soft photons. Moreover it is often
said that electrons cannot reach enough energy through Fermi acceleration to
account for the highest energy photons observed with ground Cerenkov
telescopes. In this paper, we discussed these points and show that the fast
variability of the flares recently observed rules out the assumption of a Fermi
acceleration of protons. We show that Fermi acceleration of electrons is enough
to account for the gamma spectra, their shape, cut-off and their variability.
Moreover the spectral break is nicely explained by invoking an gamma-ray
photosphere. Nevertheless we give estimates of the high energy cosmic ray
generation in AGNs and of the resultant neutrino flux, that turns out to be
very sensitive to the spectral index of the proton distribution.Comment: 17 pages, 1 figure, accepted for publication in Astrophysics
Particle
Novel robotic assistive technologies: choosing appropriate training for healthcare professionals
One of the key challenges for the training of healthcare professionals (HCPs) is to maintain a good understanding and knowledge of new assistive technologies (ATs) that are currently on the market [1]. Indeed, at present, available training on ATs is limited and does not meet the practice-related needs of HCPs. It is in this context that the ADAPT European project aims to develop a new AT training programme for healthcare professionals, which will also introduce them to the project’s new AT developments - a smart powered wheelchair and a virtual reality wheelchair-driving simulator. The program consists of six multimodal units; five delivered via e-learning and one through a blended method of e-learning and face-to-face sessions. The development of the content is guided by findings from an earlier literature review and an online survey of AT training needs for HCP’s, both undertaken by the ADAPT cross-national research team, comprised of UK and French experts. The level of technical difficulty increases with successive units in order to train all HCPs to use innovative ATs more widely in their practice. A Learning Management System enables the dissemination of the e-learning AT program. Preliminary results from participant unit-specific evaluations available at this stage are overall positive and encouraging
Recommended from our members
Suprathermal electron evolution in a Parker spiral magnetic field
Suprathermal electrons (>70 eV) form a small fraction of the total solar wind electron density but serve as valuable tracers of heliospheric magnetic field topology. Their usefulness as tracers of magnetic loops with both feet rooted on the Sun, however, most likely fades as the loops expand beyond some distance owing to scattering. As a first step toward quantifying that distance, we construct an observationally constrained model for the evolution of the suprathermal electron pitch-angle distributions on open field lines. We begin with a near-Sun isotropic distribution moving antisunward along a Parker spiral magnetic field while conserving magnetic moment, resulting in a field-aligned strahl within a few solar radii. Past this point, the distribution undergoes little evolution with heliocentric distance. We then add constant (with heliocentric distance, energy, and pitch angle) ad-hoc pitch-angle scattering. Close to the Sun, pitch-angle focusing still dominates, again resulting in a narrow strahl. Farther from the Sun, however, pitch-angle scattering dominates because focusing is effectively weakened by the increasing angle between the magnetic field direction and intensity gradient, a result of the spiral field. We determine the amount of scattering required to match Ulysses observations of strahl width in the fast solar wind, providing an important tool for inferring the large-scale properties and topologies of field lines in the interplanetary medium. Although the pitch-angle scattering term is independent of energy, time-of-flight effects in the spiral geometry result in an energy dependence of the strahl width that is in the observed sense although weaker in magnitude
Angular versus radial correlation effects on momentum distributions of light two-electron ions
We investigate different correlation mechanisms for two-electron systems and
compare their respective effects on various electron distributions. The
simplicity of the wave functions used allows for the derivation of closed-form
analytical expressions for all electron distributions. Among other features, it
is shown that angular and radial correlation mechanisms have opposite effects
on Compton profiles at small momenta.Comment: 22 pages, 5 figures, 3 tabl
The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event
We investigate multi-spacecraft observations of the January 17, 2010 solar
energetic particle event. Energetic electrons and protons have been observed
over a remarkable large longitudinal range at the two STEREO spacecraft and
SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring
active region, which was on the backside of the Sun as seen from Earth, was
separated by more than 100 degrees in longitude from the magnetic footpoints of
each of the three spacecraft. The event is characterized by strongly delayed
energetic particle onsets with respect to the flare and only small or no
anisotropies in the intensity measurements at all three locations. The presence
of a coronal shock is evidenced by the observation of a type II radio burst
from the Earth and STEREO B. In order to describe the observations in terms of
particle transport in the interplanetary medium, including perpendicular
diffusion, a 1D model describing the propagation along a magnetic field line
(model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et
al., 2010) including perpendicular diffusion in the interplanetary medium have
been applied, respectively. While both models are capable of reproducing the
observations, model 1 requires injection functions at the Sun of several hours.
Model 2, which includes lateral transport in the solar wind, reveals high
values for the ratio of perpendicular to parallel diffusion. Because we do not
find evidence for unusual long injection functions at the Sun we favor a
scenario with strong perpendicular transport in the interplanetary medium as
explanation for the observations.Comment: The final publication is available at http://www.springerlink.co
Disease Rescue and Increased Lifespan in a Model of Cardiomyopathy and Muscular Dystrophy by Combined AAV Treatments
The BIO14.6 hamster is an excellent animal model for inherited cardiomyopathy, because of its lethal and well-documented course, due to a spontaneous deletion of delta-sarcoglycan gene promoter and first exon. The muscle disease is progressive and average lifespan is 11 months, because heart slowly dilates towards heart failure.Based on the ability of adeno-associated viral (AAV) vectors to transduce heart together with skeletal muscle following systemic administration, we delivered human delta-sarcoglycan cDNA into male BIO14.6 hamsters by testing different ages of injection, routes of administration and AAV serotypes. Body-wide restoration of delta-SG expression was associated with functional reconstitution of the sarcoglycan complex and with significant lowering of centralized nuclei and fibrosis in skeletal muscle. Motor ability and cardiac functions were completely rescued. However, BIO14.6 hamsters having less than 70% of fibers recovering sarcoglycan developed cardiomyopathy, even if the total rescued protein was normal. When we used serotype 2/8 in combination with serotype 2/1, lifespan was extended up to 22 months with sustained heart function improvement.Our data support multiple systemic administrations of AAV as a general therapeutic strategy for clinical trials in cardiomyopathies and muscle disorders
The GCP molecular marker toolkit, an instrument for use in breeding food security crops
Crop genetic resources carry variation useful for overcoming the challenges of modern agriculture. Molecular markers can facilitate the selection of agronomically important traits. The pervasiveness of genomics research has led to an overwhelming number of publications and databases, which are, nevertheless, scattered and hence often difficult for plant breeders to access, particularly those in developing countries. This situation separates them from developed countries, which have better endowed programs for developing varieties. To close this growing knowledge gap, we conducted an intensive literature review and consulted with more than 150 crop experts on the use of molecular markers in the breeding program of 19 food security crops. The result was a list of effectively used and highly reproducible sequence tagged site (STS), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), and sequence characterized amplified region (SCAR) markers. However, only 12 food crops had molecular markers suitable for improvement. That is, marker-assisted selection is not yet used for Musa spp., coconut, lentils, millets, pigeonpea, sweet potato, and yam. For the other 12 crops, 214 molecular markers were found to be effectively used in association with 74 different traits. Results were compiled as the GCP Molecular Marker Toolkit, a free online tool that aims to promote the adoption of molecular approaches in breeding activities
Understanding coronal heating and solar wind acceleration: Case for in situ near‐Sun measurements
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94903/1/rog1641.pd
- …