229 research outputs found
Hydrodynamic parameters of air-bubble stimulated underwater spark discharges
Considerable amount of research work has been focused on investigation and optimization of strong acoustic waves generated by spark discharges in water. There are several methods to achieve and to stimulate underwater spark breakdowns, including free-discharges, wire-guided and gas-bubble stimulated discharges. In the present work, air bubbles are injected into water in order to achieve spark discharges in relatively long inter-electrode gaps. This paper reports on hydrodynamic and acoustic characteristics of spark discharges stimulated by air bubbles and presents the functional relationships between the hydrodynamic and electrical parameters of such discharges, including breakdown voltage, spark plasma resistance and energy available in the discharge. A hydrodynamic analytical model has been developed and used to calculate the acoustic efficiency of the underwater spark discharges
Impulsive breakdown in water : optimisation of energy delivery for high acoustic output
The high voltage impulsive breakdown process in water is complex, with the nature of the impulsive breakdown depending upon the magnitude, polarity and rise time of the HV impulses, the water conductivity, and the electrode topology. In the case of μs and sub-μs high voltage impulses of sufficient magnitude, the breakdown develops through the formation of plasma streamers in the water. When the first streamer crosses the entire inter-electrode gap, the energy released in the breakdown channel transforms this channel into a gas/vapor cavity, which pulsates and radiates acoustic impulse(s). Optimisation of the hydrodynamic (period of cavity oscillation) and acoustic (peak magnitude of the acoustic impulse(s)) parameters is required for practical applications of these underwater spark discharges. The present paper analyses the functional behavior of the period of cavity oscillation and the peak magnitude of the acoustic impulse for spark discharges generated by self-triggered underwater discharges (free discharges), spark discharges triggered by air bubbles injected into the inter-electrode gap, and wire-guided discharges. The advantages and limitations of these methods of generation of underwater acoustic impulses by spark discharges are discussed
A Bayesian method for evaluating and discovering disease loci associations
Background: A genome-wide association study (GWAS) typically involves examining representative SNPs in individuals from some population. A GWAS data set can concern a million SNPs and may soon concern billions. Researchers investigate the association of each SNP individually with a disease, and it is becoming increasingly commonplace to also analyze multi-SNP associations. Techniques for handling so many hypotheses include the Bonferroni correction and recently developed Bayesian methods. These methods can encounter problems. Most importantly, they are not applicable to a complex multi-locus hypothesis which has several competing hypotheses rather than only a null hypothesis. A method that computes the posterior probability of complex hypotheses is a pressing need. Methodology/Findings: We introduce the Bayesian network posterior probability (BNPP) method which addresses the difficulties. The method represents the relationship between a disease and SNPs using a directed acyclic graph (DAG) model, and computes the likelihood of such models using a Bayesian network scoring criterion. The posterior probability of a hypothesis is computed based on the likelihoods of all competing hypotheses. The BNPP can not only be used to evaluate a hypothesis that has previously been discovered or suspected, but also to discover new disease loci associations. The results of experiments using simulated and real data sets are presented. Our results concerning simulated data sets indicate that the BNPP exhibits both better evaluation and discovery performance than does a p-value based method. For the real data sets, previous findings in the literature are confirmed and additional findings are found. Conclusions/Significance: We conclude that the BNPP resolves a pressing problem by providing a way to compute the posterior probability of complex multi-locus hypotheses. A researcher can use the BNPP to determine the expected utility of investigating a hypothesis further. Furthermore, we conclude that the BNPP is a promising method for discovering disease loci associations. © 2011 Jiang et al
Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms
We reconsider the well-studied Selfish Routing game with affine latency
functions. The Price of Anarchy for this class of games takes maximum value
4/3; this maximum is attained already for a simple network of two parallel
links, known as Pigou's network. We improve upon the value 4/3 by means of
Coordination Mechanisms.
We increase the latency functions of the edges in the network, i.e., if
is the latency function of an edge , we replace it by
with for all . Then an
adversary fixes a demand rate as input. The engineered Price of Anarchy of the
mechanism is defined as the worst-case ratio of the Nash social cost in the
modified network over the optimal social cost in the original network.
Formally, if \CM(r) denotes the cost of the worst Nash flow in the modified
network for rate and \Copt(r) denotes the cost of the optimal flow in the
original network for the same rate then [\ePoA = \max_{r \ge 0}
\frac{\CM(r)}{\Copt(r)}.]
We first exhibit a simple coordination mechanism that achieves for any
network of parallel links an engineered Price of Anarchy strictly less than
4/3. For the case of two parallel links our basic mechanism gives 5/4 = 1.25.
Then, for the case of two parallel links, we describe an optimal mechanism; its
engineered Price of Anarchy lies between 1.191 and 1.192.Comment: 17 pages, 2 figures, preliminary version appeared at ESA 201
A New Equation of State Formulation for Argon Covering the Fluid Region for Temperatures From the Melting Line to 2300 K at Pressures up to 50 000 MPa
A new equation of state for argon has been developed in view to extend the
range of validity of the equation of state previously proposed by Tegeler et
al. (1999) and to obtain a better physical description of the experimental
thermodynamic data for the whole fluid region (single-phase and coexistence
states). As proposed by Tegeler et al., this equation is also based on a
functional form of the residual part of the reduced Helmholtz free energy.
However in this work, the fundamental equation for the Helmholtz free energy
has been derived from the measured quantities CV(rho,T) and P(rho,T). The
empirical description of the isochoric heat capacity CV is based on an original
empirical description containing explicitly the metastable states. The new
formulation is valid for the whole fluid region from the melting line to 2300 K
and for pressures up to 50 000 MPa. It also predicts existence of a maximum of
the isochoric heat capacity CV along isochors as experimentally observed in
several other fluids
Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr
Pulse breakdown of overvolted gaps filled with CO2
Strong demand for low environmental impact fluids in high voltage power and pulsed power systems drives research in the field of breakdown and recovery properties of common gases such as air, nitrogen, carbon dioxide and their mixtures. Although the dielectric characteristics of these gases have been studied for many decades, their impulsive breakdown properties in overvolted gaps and in strongly non-uniform fields are not fully understood. This work is aimed at the study of the breakdown properties of CO2 in divergent electric field under impulsive stress. Breakdown voltage, Vbr, and time to breakdown, tbr, have been measured in an overvolted gap stressed with sub-microsecond positive high voltage impulses with a nominal rate of voltage rise of (1.2-1.4) kV/ns. The gas pressure was in the range from atmospheric pressure up to 5-bar (gauge). The reduced breakdown field, E/N, where N is the gas number density, and E is the field at the tip of the needle electrode have been obtained using an electrostatic model. The scaling relationships i.e. the functional relationships between E/N and Ntbr and Nd, have been obtained and compared with data from the literature for lower values of E/N
Exploring the link between MORF4L1 and risk of breast cancer.
INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
- …
