1,498 research outputs found

    Sediment transport along the Cap de Creus Canyon flank during a mild, wet winter

    Get PDF
    Cap de Creus Canyon (CCC) is known as a preferential conduit for particulate matter leaving the Gulf of Lion continental shelf towards the slope and the basin, particularly in winter when storms and dense shelf water cascading coalesce to enhance the seaward export of shelf waters. During the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) cruise in March 2011, deployments of recording instruments within the canyon and vertical profiling of the water column properties were conducted to study with high spatial-temporal resolution the impact of such processes on particulate matter fluxes. In the context of the mild and wet 2010-2011 winter, no remarkable dense shelf water formation was observed. On the other hand, the experimental setup allowed for the study of the impact of E-SE storms on the hydrographical structure and the particulate matter fluxes in the CCC. The most remarkable feature in terms of sediment transport was a period of dominant E-SE winds from 12 to 16 March, including two moderate storms (maximum significant wave heights = 4.1-4.6 m). During this period, a plume of freshened, relatively cold and turbid water flowed at high speeds along the southern flank of the CCC in an approximate depth range of 150-350 m. The density of this water mass was lighter than the ambient water in the canyon, indicating that it did not cascade off-shelf and that it merely downwelled into the canyon forced by the strong cyclonic circulation induced over the shelf during the storms and by the subsequent accumulation of seawater along the coast. Suspended sediment load in this turbid intrusion recorded along the southern canyon flank oscillated between 10 and 50 mg L−1, and maximum currents speeds reached values up to 90 cm s−1. A rough estimation of 105 tons of sediment was transported through the canyon along its southern wall during a 3-day-long period of storm-induced downwelling. Following the veering of the wind direction (from SE to NW) on 16 March, downwelling ceased, currents inside the canyon reversed from down- to up-canyon, and the turbid shelf plume was evacuated from the canyon, most probably flowing along the southern canyon flank and being entrained by the general SW circulation after leaving the canyon confinement. This study highlights that remarkable sediment transport occurs in the CCC, and particularly along its southern flank, even during mild and wet winters, in absence of cascading and under limited external forcing. The sediment transport associated with eastern storms like the ones described in this paper tends to enter the canyon by its downstream flank, partially affecting the canyon head region. Sediment transport during these events is not constrained near the seafloor but distributed in a depth range of 200-300 m above the bottom. Our paper broadens the understanding of the complex set of atmosphere-driven sediment transport processes acting in this highly dynamic area of the northwestern Mediterranean Sea

    RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements

    Get PDF
    The CD11a/CD18 (leukocyte functionassociated antigen 1 [LFA-1]) integrin mediates critical leukocyte adhesive interactions during immune and inflammatory responses. The CD11a promoter directs CD11a/CD18 integrin expression, and its activity in lymphoid cells depends on a functional RUNX1/AML-1–binding site (AML-110) within the MS7 sequence. We now report that MS7 contains a C/EBPbinding site (C/EBP-100), which overlaps with AML-110 and is bound by C/EBP factors in myeloid cells. C/EBP and RUNX/ AML factors compete for binding to their respective cognate elements and bind to the CD11a promoter MS7 sequence in a cell lineage- and differentiation-dependent manner. In myeloid cells MS7 is primarily recognized by C/EBP factors in proliferating cells whereas RUNX/AMLfactors (especially RUNX3/AML-2) bind to MS7 in differentiated cells. RUNX3/AML-2 binding to the CD11a promoter correlates with increased RUNX3/AML-2 protein levels and enhanced CD11a/CD18 cell surface expression. The relevance of the AML-110 element is underscored by the ability of AML-1/ETO to inhibit CD11a promoter activity, thus explaining the low CD11a/CD18 expression in t(8;21)–containing myeloid leukemia cells. Therefore, the expression of the CD11a/CD18 integrin in myeloid cells is determined through the differential occupancy of the CD11a proximal promoter by transcription factors implicated in the pathogenesis of myeloid leukemia

    Cross-cultural adaptation and psychometric properties of the Spanish Quality in Psychiatric Care Forensic Inpatient Staff (QPC-FIPS) instrument

    Full text link
    Quality in Psychiatric Care-Forensic Inpatient Staff (QPC-FIPS) is an instrument of Swedish origin validated to measure the perception of the quality of mental health care provided by forensic psychiatry professionals. The aim of this study was to cross-culturally adapt the QPC-FIPS instrument and to evaluate the psychometric properties of the Spanish version of the instrument. A psychometric study was carried out. For validity, content validity, convergent validity and construct validity were included. For reliability, the analysis of internal consistency and temporal stability was included. The sample consisted of 153 mental health professionals from four Forensic Psychiatry units. The adapted Spanish version of the QPC-FIPS scale was configured with the same number of items and dimensions as the original. The psychometric properties, in terms of temporal stability and internal consistency, were adequate and the factor structure, such as the homogeneity of the dimensions of the Spanish version of the QPC-FIPS, was equivalent to the original Swedish version. We found that the QPC_FIPS-Spanish is a valid, reliable and easy-to-apply instrument for assessing the self-perception of professionals regarding the care they provide

    Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis

    Get PDF
    Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n=11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs

    Sediment transport along the Cap de Creus Canyon flank during a mild, wet winter

    Get PDF
    Cap de Creus Canyon (CCC) is known as a preferential conduit for particulate matter leaving the Gulf of Lion continental shelf towards the slope and the basin, particularly in winter when storms and dense shelf water cascading coalesce to enhance the seaward export of shelf waters. During the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) cruise in March 2011, deployments of recording instruments within the canyon and vertical profiling of the water column properties were conducted to study with high spatial-temporal resolution the impact of such processes on particulate matter fluxes. In the context of the mild and wet 2010–2011 winter, no remarkable dense shelf water formation was observed. On the other hand, the experimental setup allowed for the study of the impact of E-SE storms on the hydrographical structure and the particulate matter fluxes in the CCC. The most remarkable feature in terms of sediment transport was a period of dominant E-SE winds from 12 to 16 March, including two moderate storms (maximum significant wave heights = 4.1–4.6 m). During this period, a plume of freshened, relatively cold and turbid water flowed at high speeds along the southern flank of the CCC in an approximate depth range of 150–350 m. The density of this water mass was lighter than the ambient water in the canyon, indicating that it did not cascade off-shelf and that it merely downwelled into the canyon forced by the strong cyclonic circulation induced over the shelf during the storms and by the subsequent accumulation of seawater along the coast. Suspended sediment load in this turbid intrusion recorded along the southern canyon flank oscillated between 10 and 50 mg L−1, and maximum currents speeds reached values up to 90 cm s−1. A rough estimation of 105 tons of sediment was transported through the canyon along its southern wall during a 3-day-long period of storm-induced downwelling. Following the veering of the wind direction (from SE to NW) on 16 March, downwelling ceased, currents inside the canyon reversed from down- to up-canyon, and the turbid shelf plume was evacuated from the canyon, most probably flowing along the southern canyon flank and being entrained by the general SW circulation after leaving the canyon confinement. This study highlights that remarkable sediment transport occurs in the CCC, and particularly along its southern flank, even during mild and wet winters, in absence of cascading and under limited external forcing. The sediment transport associated with eastern storms like the ones described in this paper tends to enter the canyon by its downstream flank, partially affecting the canyon head region. Sediment transport during these events is not constrained near the seafloor but distributed in a depth range of 200–300 m above the bottom. Our paper broadens the understanding of the complex set of atmosphere-driven sediment transport processes acting in this highly dynamic area of the northwestern Mediterranean Sea

    Oceanographic processes and products around the Iberian margin: a new multidisciplinary approach

    Get PDF
    Our understanding of the role of bottom currents and associated oceanographic processes (e.g, overflows, barotropic tidal currents) including intermittent processes (e.g, vertical eddies, deep sea storms, horizontal vortices, internal waves and tsunamis) is rapidly evolving. Many deep-water processes remain poorly understood due to limited direct observations, but may generate significant depositional and erosional features on both short-and long-term time scales. This paper describes these oceanographic processes and examines their potential role in the sedimentary features around the Iberian margin. The paper explores the implications of the processes studied, given their secondary role relative to other factors such as mass-transport and turbiditic processes. An integrated interpretation of these oceanographic processes requires an understanding of contourites, sea-floor features, their spatial and temporal evolution, and the near-bottom flows that form them. Given their complex, three-dimensional and temporally-variable nature, integration of these processes into sedimentary, oceanographic and climatological frameworks will require a multidisciplinary approach that includes Geology, Physical Oceanography, Paleoceanography and Benthic Biology. This approach will synthesize oceanographic data, seafloor morphology, sediments and seismic images to improve our knowledge of permanent and intermittent processes around Iberia, and evaluate their conceptual and regional role in the sedimentary evolution of the margin. © 2015, Instituto Geologico y Minero de Espana. All rights reservedEl conocimiento del papel de las corrientes de fondo y los procesos oceanográficos asociados (overflows, corrientes de marea barotrópicas, etc), incluyendo procesos intermitentes (eddies, tormentas profundas, ondas internas, tsunamis, etc), está evolucionando rápidamente. Muchos de estos procesos son poco conocidos, en parte debido a que las observaciones directas son limitadas, si bien pueden generar importantes rasgos deposicionales y/o erosivos a escalas temporales de corto o largo periodo. Este artículo describe dichos procesos oceanográficos y examina su influencia en la presencia de rasgos sedimentarios alrededor del margen Ibérico. El trabajo discute las implicaciones de dichos procesos y el papel secundario que juegan en relación a otros factores tales como los procesos de transporte gravitacionales en masa y los turbidíticos. Para un mejor conocimiento de la sedimentación marina profunda, y en concreto de los sistemas contorníticos, se requiere de una interpretación de estos procesos oceanográficos, cuál es su evolución espacial y temporal, cómo afectan a las corrientes de fondo y cómo se ven afectados por la topografía submarina. Sin embargo, dada su complejidad y su variable naturaleza tridimensional y temporal, es necesario que estos procesos se integren en un marco sedimentológico, oceanográfico y climatológico con un enfoque multidisciplinar que incluyan la Geología, la Oceanografía Física, la Paleoceanografía y la Biología bentónica. Esta integración requiere de una mayor compilación de datos oceanográficos, de un mejor conocimiento de la morfología del fondo marino, y de una mejor caracterización de los sedimentos en ambientes profundos. Todo ello permitirá mejorar nuestro conocimiento de los procesos permanentes e intermitentes alrededor de Iberia y evaluar su verdadero efecto en la evolución sedimentaria delos márgenes continentales que le rodeanPostprint0,000

    Control of Metabolic Homeostasis by Stress Signaling Is Mediated by the Lipocalin NLaz

    Get PDF
    Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS) activity. Stress and inflammatory signaling pathways—such as Jun-N-terminal Kinase (JNK) signaling—repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz), a homologue of vertebrate Apolipoprotein D (ApoD) and Retinol Binding Protein 4 (RBP4). Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan—phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−

    Get PDF
    A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL

    Precision measurement of CPCP violation in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays

    Get PDF
    The time-dependent CPCP asymmetry in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays is measured using pppp collision data, corresponding to an integrated luminosity of 3.03.0fb1^{-1}, collected with the LHCb detector at centre-of-mass energies of 77 and 88TeV. In a sample of 96 000 Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays, the CPCP-violating phase ϕs\phi_s is measured, as well as the decay widths ΓL\Gamma_{L} and ΓH\Gamma_{H} of the light and heavy mass eigenstates of the Bs0Bˉs0B_s^0-\bar{B}_s^0 system. The values obtained are ϕs=0.058±0.049±0.006\phi_s = -0.058 \pm 0.049 \pm 0.006 rad, Γs(ΓL+ΓH)/2=0.6603±0.0027±0.0015\Gamma_s \equiv (\Gamma_{L}+\Gamma_{H})/2 = 0.6603 \pm 0.0027 \pm 0.0015ps1^{-1}, andΔΓsΓLΓH=0.0805±0.0091±0.0032\Delta\Gamma_s \equiv \Gamma_{L} - \Gamma_{H} = 0.0805 \pm 0.0091 \pm 0.0032ps1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0J/ψπ+πB_s^{0} \to J/\psi \pi^+\pi^- decays gives ϕs=0.010±0.039\phi_s = -0.010 \pm 0.039 rad. All measurements are in agreement with the Standard Model predictions. For the first time the phase ϕs\phi_s is measured independently for each polarisation state of the K+KK^+K^- system and shows no evidence for polarisation dependence.Comment: 6 figure
    corecore