57 research outputs found

    Характеристики температурного режиму приповерхневих шарів гірських порід за даними досліджень на геофізичній станції "Лисовичі" (Передкарпаття)

    Get PDF
    В роботі за даними спеціальних польових геотермічних досліджень (так званого вертикального геотермічного зондування) на станції “Лисовичі” поблизу м. Моршина в Передкарпатті, проведених геотермічною апаратурою з кварцовими термочастотними датчиками, проаналізовано сезонні особливості температурного режиму верхніх шарів гірських порід та ґрунтів.В работе по данным специальных полевых геотермических исследований (так называемого вертикального геотермического зондирования) на станции “Лисовичи” вблизи г. Моршина в Предкарпатье, проведенных геотермической аппаратурой с кварцевыми термочастотными датчиками, проанализированы сезонные особенности температурного режима верхних слоев горных пород и грунтов.In the article by data of the special fields geothermal researches (so-called vertical geothermal sounding) in the station “Lysovychy” near-by Morshyn in Precarpathians carried out by a geothermal apparatus with quartzs termofrequency sensors the seasonal peculiarities of temperature regime of rocks near surface layers and ground are analysed

    Analysing the effect of land use and vegetation cover on soil infiltration in three contrasting environments in Northeast Spain

    Get PDF
    Este estudio presenta el análisis conjunto de la información obtenida a partir de 195 ensayos de infiltración en el campo, que fueron realizados mediante dispositivos de doble anillo. Los experimentos se realizaron en 20 situaciones contrastadas de usos del suelo, los cuales se encuentran distribuidos en tres contextos geográficos (costa NE de Cataluña, monte bajo del sector central del valle del Ebro y montaña media de la vertiente Sur del Pirineo central). El objetivo de esta investigación es determinar los factores más importantes que explican la variabilidad de la infiltración: uso del suelo, tipo de cubierta vegetal, características del suelo y del substrato rocoso, humedad del suelo y altitud. El análisis de los datos se realizó mediante la comparación de las variables a partir de distintos métodos estadísticos: test de correlación lineal bivariada, ANOVA y comparaciones múltiples de Bonferroni. Los resultados muestran que la variabilidad de la infiltración está principalmente asociada al tipo de uso del suelo, siendo el factor más determinante. El tipo de cubierta vegetal se mostró como el segundo factor en importancia, mientras la humedad del suelo no presentó correlación con la infiltración. La interpretación de estos resultados sugiere que las características de las áreas de estudio son más determinantes que las variaciones temporales del estado hídrico del suelo, aunque la humedad pueda tener un grado de influencia mayor o menor en cada uso del suelo. La validez de los resultados obtenidos en este estudio está avalada porque se ha analizado un amplio espectro de escenarios de uso del suelo/cubierta vegetal, incluso teniendo en cuenta que se han comparado zonas con distintas características geográficas y geológicas. This study presents a joint analysis of the information from 195 field infiltration experiments, using double ring devices. The experiments were carried out in 20 contrasting types of land use, distributed across three geographic contexts (coast of NE Catalonia, low mountains in the central Ebro Valley and mid-height mountains from the southern range of the Central Pyrenees). The objective of this research was to determine the most important factors explaining infiltration variability: land use, type of vegetation cover, soil and bedrock characteristics, soil moisture and altitude. Data analysis was performed by comparing variables using statistical methods: bivariate lineal correlation, ANOVA and Bonferroni multiple comparison tests. Results show that infiltration variability is the most important factor and mainly linked to land use, followed by vegetation type. In contrast, soil moisture did not show any relation with infiltration. The interpretation of these results suggests that the characteristics of the study areas are more decisive than temporal variations of soil water content, although humidity can influence land use to a greater or lesser degree. The validity of the results obtained in this study is supported by the wide range of land use and land cover analysed, located in areas with different geographical and geological characteristics

    EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water

    Get PDF
    As a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of open-access data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km(2), min = 0.04 km(2), max = 817 km(2)) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO)

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Spanish Government (Ministry of Economy and Competitiveness, MINECO) and FEDER Projects: CGL2014 52135-C3-3-R, ESP2017-89463-C3-3-R, CGL2014-59946-R, CGL2015-65569-R, CGL2015-64284-C2-2-R, CGL2015-64284-C2-1-R, CGL2016-78075-P, GL2008-02879/BTE, LEDDRA 243857, RECARE-FP7, CGL2017-83866-C3-1-R, and PCIN-2017-061/AEI. Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Ana Lucia acknowledge the "Brigitte-Schlieben-Lange-Programm". The “Geoenvironmental Processes and Global Change” (E02_17R) was financed by the Aragón Government and the European Social Fund. José Andrés López-Tarazón acknowledges the Secretariat for Universities and Research of the Department of the Economy and Knowledge of the Autonomous Government of Catalonia for supporting the Consolidated Research Group 2014 SGR 645 (RIUS- Fluvial Dynamics Research Group). Artemi Cerdà thank the funding of the OCDE TAD/CRP JA00088807. José Martínez-Fernandez acknowledges the project Unidad de Excelencia CLU-2018-04 co-funded by FEDER and Castilla y León Government. Ane Zabaleta is supported by the Hydro-Environmental Processes consolidated research group (IT1029-16, Basque Government). This paper has the benefit of the Lab and Field Data Pool created within the framework of the COST action CONNECTEUR (ES1306)

    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations

    PyCatch: Component based hydrological catchment modelling

    No full text
    Dynamic numerical models are powerful tools for representing and studying environmental processes through time. Usually they are constructed with environmental modelling languages, which are high-level programming languages that operate at the level of thinking of the scientists. In this paper we present PyCatch, a set of components for process-based dynamic hydrological modelling at the catchment scale, built within the PCRaster Python framework. PCRaster Python is a programming tool based on Python, an easy-to-learn programming language, to which components of the PCRaster software have been added. In its current version, PyCatch simulates the processes of interception, evapotranspiration, surface storage, infiltration, subsurface and overland flow. The model represents those hydrological processes as a series of interconnected stores, and it is structured in such a way that the exchange of water fluxes between the stores is easily performed. The modular structure of PyCatch makes it easy to replace or adapt components (such as a snow melt component or a soil erosion and sediment transport component) according to the aim of the study

    Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region : a review

    No full text
    Farmland abandonment is a major problem in parts of Europe, particularly in mountain areas and semiarid environments. In such places, farmland abandonment represents a significant land use change from cropping to a complex of plant successions. The present study assesses the hydromorphological effects of land abandonment in Europe, and the consequences thereof with respect to water resource availability and soil erosion. The evolution of abandoned fields depends on (i) the time of abandonment; (ii) climatic conditions in the abandoned area; (iii) particular characteristics of the fields; (iv) the land management regimen following abandonment; and, (v) the role played by government policy. Throughout most of Europe, vegetation on abandoned farmland has evolved into dense forest or shrub. The expansion of vegetation explains, in part, the perceived decline in water resources, reductions in soil loss and sediment delivery, and the progressive improvement of soil characteristics. Such evolution has resulted in changing stream morphology, featuring narrowing and incision, and a decline in sedimentation level in Mediterranean reservoirs. The abandonment of bench terrace fields coincided with an increase in the occurrence of small landslides in the steps between terraces, as well as changes in the spatial organization of saturated areas. Plant colonization is slower in semiarid areas, increasing the development of soil crusts that reduce infiltration and increase overland flow. Land policies with detailed capability are necessary to remediate the consequences of farmland abandonment in various European environments

    Erosión y desertificación.-Sediment transport during the snowmelt period in a Mediterranean high mountain catchment

    No full text
    ABSTRACT Transport of suspended sediment and solutes during the snowmelt period (May−June, 2004) in the Izas catchment (Central Pyrenees) was studied to obtain a sediment balance and to assess the annual importance of sediment transport. The results showed that most sediment was exported in the form of solutes (75.6% of the total); 24.4% was exported as suspended sediment and no bedload was recorded. Sediment transport during the snowmelt period represented 42.7% of the annual sediment yield
    corecore