1,078 research outputs found
Multiwavelength study of the high-latitude cloud L1642: chain of star formation
L1642 is one of the two high galactic latitude (|b| > 30deg) clouds confirmed
to have active star formation. We examine the properties of this cloud,
especially the large-scale structure, dust properties, and compact sources in
different stages of star formation. We present high-resolution far-infrared and
submm observations with the Herschel and AKARI satellites and mm observations
with the AzTEC/ASTE telescope, which we combined with archive data from near-
and mid-infrared (2MASS, WISE) to mm observations (Planck). The Herschel
observations, combined with other data, show a sequence of objects from a cold
clump to young stellar objects at different evolutionary stages. Source B-3
(2MASS J04351455-1414468) appears to be a YSO forming inside the L1642 cloud,
instead of a foreground brown dwarf, as previously classified. Herschel data
reveal striation in the diffuse dust emission around L1642. The western region
shows striation towards NE and has a steeper column density gradient on its
southern side. The densest central region has a bow-shock like structure
showing compression from the west and a filamentary tail extending towards
east. The differences suggest that these may be spatially distinct structures,
aligned only in projection. We derive values of the dust emission cross-section
per H nucleon for different regions of the cloud. Modified black-body fits to
the spectral energy distribution of Herschel and Planck data give emissivity
spectral index beta values 1.8-2.0 for the different regions. The compact
sources have lower beta values and show an anticorrelation between T and beta.
Markov chain Monte Carlo calculations demonstrate the strong anticorrelation
between beta and T errors and the importance of mm Planck data in constraining
the estimates. L1642 reveals a more complex structure and sequence of star
formation than previously known.Comment: 22 pages, 18 figures, accepted to Astronomy & Astrophysics; abstract
shortened and figures reduced for astrop
ACTUALIDADES: La penicilina utilizada de manera exclusiva en el tratamiento de la neurosífilis
Multitemporal generalization of the Tangherlini solution
The n-time generalization of the Tangherlini solution [1] is considered. The
equations of geodesics for the metric are integrated. For it is shown
that the naked singularity is absent only for two sets of parameters,
corresponding to the trivial extensions of the Tangherlini solution. The motion
of a relativistic particle in the multitemporal background is considered. This
motion is governed by the gravitational mass tensor. Some generalizations of
the solution, including the multitemporal analogue of the Myers-Perry charged
black hole solution, are obtained.Comment: 14 pages. RGA-CSVR-005/9
Remarks on Shannon's Statistical Inference and the Second Law in Quantum Statistical Mechanics
We comment on a formulation of quantum statistical mechanics, which
incorporates the statistical inference of Shannon.
Our basic idea is to distinguish the dynamical entropy of von Neumann, , in terms of the density matrix ,
and the statistical amount of uncertainty of Shannon, , with in the representation where the total
energy and particle numbers are diagonal. These quantities satisfy the
inequality . We propose to interprete Shannon's statistical inference
as specifying the {\em initial conditions} of the system in terms of . A
definition of macroscopic observables which are characterized by intrinsic time
scales is given, and a quantum mechanical condition on the system, which
ensures equilibrium, is discussed on the basis of time averaging.
An interesting analogy of the change of entroy with the running coupling in
renormalization group is noted. A salient feature of our approach is that the
distinction between statistical aspects and dynamical aspects of quantum
statistical mechanics is very transparent.Comment: 16 pages. Minor refinement in the statements in the previous version.
This version has been published in Journal of Phys. Soc. Jpn. 71 (2002) 6
Regulatory control and the costs and benefits of biochemical noise
Experiments in recent years have vividly demonstrated that gene expression
can be highly stochastic. How protein concentration fluctuations affect the
growth rate of a population of cells, is, however, a wide open question. We
present a mathematical model that makes it possible to quantify the effect of
protein concentration fluctuations on the growth rate of a population of
genetically identical cells. The model predicts that the population's growth
rate depends on how the growth rate of a single cell varies with protein
concentration, the variance of the protein concentration fluctuations, and the
correlation time of these fluctuations. The model also predicts that when the
average concentration of a protein is close to the value that maximizes the
growth rate, fluctuations in its concentration always reduce the growth rate.
However, when the average protein concentration deviates sufficiently from the
optimal level, fluctuations can enhance the growth rate of the population, even
when the growth rate of a cell depends linearly on the protein concentration.
The model also shows that the ensemble or population average of a quantity,
such as the average protein expression level or its variance, is in general not
equal to its time average as obtained from tracing a single cell and its
descendants. We apply our model to perform a cost-benefit analysis of gene
regulatory control. Our analysis predicts that the optimal expression level of
a gene regulatory protein is determined by the trade-off between the cost of
synthesizing the regulatory protein and the benefit of minimizing the
fluctuations in the expression of its target gene. We discuss possible
experiments that could test our predictions.Comment: Revised manuscript;35 pages, 4 figures, REVTeX4; to appear in PLoS
Computational Biolog
Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation
The subpulse modulation of pulsar radio emission goes to prove that the
plasma flow in the open field line tube breaks into isolated narrow streams. I
propose a model which attributes formation of streams to the process of the
electric current adjustment in the magnetosphere. A mismatch between the
magnetospheric current distribution and the current injected by the polar cap
accelerator gives rise to reverse plasma flows in the magnetosphere. The
reverse flow shields the electric field in the polar gap and thus shuts up the
plasma production process. I assume that a circulating system of streams is
formed such that the upward streams are produced in narrow gaps separated by
downward streams. The electric drift is small in this model because the
potential drop in narrow gaps is small. The gaps have to drift because by the
time a downward stream reaches the star surface and shields the electric field,
the corresponding gap has to shift. The transverse size of the streams is
determined by the condition that the potential drop in the gaps is sufficient
for the pair production. This yields the radius of the stream roughly 10% of
the polar cap radius, which makes it possible to fit in the observed
morphological features such as the "carousel" with 10-20 subbeams and the
system of the core - two nested cone beams.Comment: 8 pages, 1 figur
A <i>Herschel</i> and BIMA study of the sequential star formation near the W 48A H II region
We present the results of Herschel HOBYS (Herschel imaging survey of OB Young Stellar objects) photometric mapping combined with Berkeley Illinois Maryland Association (BIMA) observations and additional archival data, and perform an in-depth study of the evolutionary phases of the star-forming clumps in W 48A and their surroundings. Age estimates for the compact sources were derived from bolometric luminosities and envelope masses, which were obtained from the dust continuum emission, and agree within an order of magnitude with age estimates from molecular line and radio data. The clumps in W 48A are linearly aligned by age (east-old to west-young): we find a ultra-compact (UC) H II region, a young stellar object (YSO) with class II methanol maser emission, a YSO with a massive outflow and finally the NH2D prestellar cores from Pillai et al. This remarkable positioning reflects the (star) formation history of the region. We find that it is unlikely that the star formation in the W 48A molecular cloud was triggered by the UC H II region and discuss the Aquila supershell expansion as a major influence on the evolution of W 48A. We conclude that the combination of Herschel continuum data with interferometric molecular line and radio continuum data is important to derive trustworthy age estimates and interpret the origin of large-scale structures through kinematic information
The theory of pulsar winds and nebulae
We review current theoretical ideas on pulsar winds and their surrounding
nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the
striped wind, together with models of magnetic dissipation are discussed. It is
shown that the observational signature of this dissipation is likely to be
point-like, rather than extended, and that pulsed emission may be produced. The
possible pulse shapes and polarisation properties are described. Particle
acceleration at the termination shock of the wind is discussed, and it is
argued that two distinct mechanisms must be operating, with the first-order
Fermi mechanism producing the high-energy electrons (above 1 TeV) and either
magnetic annihilation or resonant absorption of ion cyclotron waves responsible
for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of
the nebula are discussed and compared with observation.Comment: 33 pages, to appear in Springer Lecture Notes on "Neutron stars and
pulsars, 40 years after the discovery", ed W.Becke
Long-term spectral and timing properties of the soft gamma-ray repeater SGR 1833-0832 and detection of extended X-ray emission around the radio pulsar PSR B1830-08
SGR 1833-0832 was discovered on 2010 March 19 thanks to the Swift detection
of a short hard X-ray burst and follow-up X-ray observations. Since then, it
was repeatedly observed with Swift, Rossi X-ray Timing Explorer, and
XMM-Newton. Using these data, which span about 225 days, we studied the
long-term spectral and timing characteristics of SGR 1833-0832. We found
evidence for diffuse emission surrounding SGR 1833-0832, which is most likely a
halo produced by the scattering of the point source X-ray radiation by dust
along the line of sight, and we show that the source X-ray spectrum is well
described by an absorbed blackbody, with temperature kT=1.2 keV and absorbing
column nH=(10.4+/-0.2)E22 cm^-2, while different or more complex models are
disfavoured. The source persistent X-ray emission remained fairly constant at
about 3.7E-12 erg/cm^2/s for the first 20 days after the onset of the bursting
episode, then it faded by a factor 40 in the subsequent 140 days, following a
power-law trend with index alpha=-0.5. We obtained a phase-coherent timing
solution with the longest baseline (225 days) to date for this source which,
besides period P=7.5654084(4) s and period derivative dP/dt=3.5(3)E-12 s/s,
includes higher order period derivatives. We also report on our search of the
counterpart to the SGR at radio frequencies using the Australia Telescope
Compact Array and the Parkes radio telescope. No evidence for radio emission
was found, down to flux densities of 0.9 mJy (at 1.5 GHz) and 0.09 mJy (at 1.4
GHz) for the continuum and pulsed emissions, respectively, consistently with
other observations at different epochs.Comment: 12 pages, 7 colour figures and 3 tables, accepted for publication in
MNRAS. Figure 6 in reduced quality and abstract abridged for astro-ph
submissio
- …
