Experiments in recent years have vividly demonstrated that gene expression
can be highly stochastic. How protein concentration fluctuations affect the
growth rate of a population of cells, is, however, a wide open question. We
present a mathematical model that makes it possible to quantify the effect of
protein concentration fluctuations on the growth rate of a population of
genetically identical cells. The model predicts that the population's growth
rate depends on how the growth rate of a single cell varies with protein
concentration, the variance of the protein concentration fluctuations, and the
correlation time of these fluctuations. The model also predicts that when the
average concentration of a protein is close to the value that maximizes the
growth rate, fluctuations in its concentration always reduce the growth rate.
However, when the average protein concentration deviates sufficiently from the
optimal level, fluctuations can enhance the growth rate of the population, even
when the growth rate of a cell depends linearly on the protein concentration.
The model also shows that the ensemble or population average of a quantity,
such as the average protein expression level or its variance, is in general not
equal to its time average as obtained from tracing a single cell and its
descendants. We apply our model to perform a cost-benefit analysis of gene
regulatory control. Our analysis predicts that the optimal expression level of
a gene regulatory protein is determined by the trade-off between the cost of
synthesizing the regulatory protein and the benefit of minimizing the
fluctuations in the expression of its target gene. We discuss possible
experiments that could test our predictions.Comment: Revised manuscript;35 pages, 4 figures, REVTeX4; to appear in PLoS
Computational Biolog