136 research outputs found

    Bioengineered lungs generated from human iPSCs‐derived epithelial cells on native extracellular matrix

    Full text link
    The development of an alternative source for donor lungs would change the paradigm of lung transplantation. Recent studies have demonstrated the potential feasibility of using decellularized lungs as scaffolds for lung tissue regeneration and subsequent implantation. However, finding a reliable cell source and the ability to scale up for recellularization of the lung scaffold still remain significant challenges. To explore the possibility of regeneration of human lung tissue from stem cells in vitro, populations of lung progenitor cells were generated from human iPSCs. To explore the feasibility of producing engineered lungs from stem cells, we repopulated decellularized human lung and rat lungs with iPSC‐derived epithelial progenitor cells. The iPSCs‐derived epithelial progenitor cells lined the decellularized human lung and expressed most of the epithelial markers when were cultured in a lung bioreactor system. In decellularized rat lungs, these human‐derived cells attach and proliferate in a manner similar to what was observed in the decellularized human lung. Our results suggest that repopulation of lung matrix with iPSC‐derived lung epithelial cells may be a viable strategy for human lung regeneration and represents an important early step toward translation of this technology.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/1/term2589.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/2/term2589_am.pd

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    The Effect of Iron Oxide Magnetic Nanoparticles on Smooth Muscle Cells

    Get PDF
    Recently, magnetic nanoparticles of iron oxide (Fe3O4, γ-Fe2O3) have shown an increasing number of applications in the field of biomedicine, but some questions have been raised about the potential impact of these nanoparticles on the environment and human health. In this work, the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) with the same crystal structure, magnetic properties, and size distribution was designed, prepared, and characterized by transmission electronic microscopy, powder X-ray diffraction, zeta potential analyzer, vibrating sample magnetometer, and Fourier transform Infrared spectroscopy. Then, we have investigated the effect of the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) on smooth muscle cells (SMCs). Cellular uptake of nanoparticles by SMC displays the dose, the incubation time and surface property dependent patterns. Through the thin section TEM images, we observe that DMSA-Fe2O3is incorporated into the lysosome of SMCs. The magnetic nanoparticles have no inflammation impact, but decrease the viability of SMCs. The other questions about metabolism and other impacts will be the next subject of further studies

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Impact of technology-based interventions for children and young people with type 1 diabetes on key diabetes self-management behaviours and prerequisites: A systematic review

    Get PDF
    Background The role of technology in the self-management of type 1 diabetes mellitus (T1DM) among children and young people is not well understood. Interventions should aim to improve key diabetes self-management behaviours (self-management of blood glucose, insulin administration, physical activity and dietary behaviours) and prerequisites (psychological outcomes and HbA1c) highlighted in the UK guidelines of the National Institute for Health and Care Excellence (NICE) for management of T1DM. The purpose was to identify evidence to assess the effectiveness of technological tools in promoting aspects of these guidelines amongst children and young people. Methods A systematic review of English language articles was conducted using the following databases: Web of Science, PubMed, Scopus, NUSearch, SAGE Journals, SpringerLink, Google Scholar, Science Direct, Sport Discus, Embase, Psychinfo and Cochrane Trials. Search terms included paediatric, type one diabetes, technology, intervention and various synonyms. Included studies examined interventions which supplemented usual care with a health care strategy primarily delivered through a technology-based medium (e.g. mobile phone, website, activity monitor) with the aim of engaging children and young people with T1DM directly in their diabetes healthcare. Studies did not need to include a comparator condition and could be randomised, non-randomised or cohort studies but not single-case studies. Results Of 30 included studies (21 RCTs), the majority measured self-monitoring of blood glucose monitoring (SMBG) frequency, clinical indicators of diabetes self-management (e.g. HbA1c) and/or psychological or cognitive outcomes. The most positive findings were associated with technology-based health interventions targeting SMBG as a behavioural outcome, with some benefits found for clinical and/or psychological diabetes self-management outcomes. Technological interventions were well accepted by children and young people. For the majority of included outcomes, clinical relevance was deemed to be little or none. Conclusions More research is required to assess which elements of interventions are most likely to produce beneficial behavioural outcomes. To produce clinically relevant outcomes, interventions may need to be delivered for at least 1 year and should consider targeting individuals with poorly managed diabetes. It is not possible to determine the impact of technology-based interventions on insulin administration, dietary habits and/or physical activity behaviour due to lack of evidence

    Foliar epidermis morphology in Quercus (subgenus Quercus, section Quercus) in Iran

    Get PDF
    The foliar morphology of trichomes, epicuticular waxes and stomata in Quercus cedrorum, Q. infectoria subsp. boissieri, Q. komarovii, Q. longipes, Q. macranthera, Q. petraea subsp. iberica and Q. robur subsp. pedunculiflora were studied by scanning electron microscopy. The trichomes are mainly present on abaxial leaf surface in most species, but rarely they appear on adaxial surface. Five trichome types are identified as simple uniseriate, bulbous, solitary, fasciculate and stellate. The stomata of all studied species are of the anomocytic type, raised on the epidermis. The stomata rim may or may not be covered with epicuticular. The epicuticular waxes are mostly of the crystalloid type but smooth layer wax is observed in Q. robur subsp. pedunculiflora. Statistical analysis revealed foliar micromorphological features as been diagnostic characters in Quercus

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
    corecore