2,122 research outputs found
Cellular automaton rules conserving the number of active sites
This paper shows how to determine all the unidimensional two-state cellular
automaton rules of a given number of inputs which conserve the number of active
sites. These rules have to satisfy a necessary and sufficient condition. If the
active sites are viewed as cells occupied by identical particles, these
cellular automaton rules represent evolution operators of systems of identical
interacting particles whose total number is conserved. Some of these rules,
which allow motion in both directions, mimic ensembles of one-dimensional
pseudo-random walkers. Numerical evidence indicates that the corresponding
stochastic processes might be non-Gaussian.Comment: 14 pages, 5 figure
Detecting control flow in Smarphones: Combining static and dynamic analyses
International audienceSecurity in embedded systems such as smartphones requires protection of confidential data and applications. Many of security mechanisms use dynamic taint analysis techniques for tracking information flow in software. But these techniques cannot detect control flows that use conditionals to implicitly transfer information from objects to other objects. In particular, malicious applications can bypass Android system and get privacy sensitive information through control flows. We propose an enhancement of dynamic taint analysis that propagates taint along control dependencies by using the static analysis in embedded system such as Google Android operating system. By using this new approach, it becomes possible to protect sensitive information and detect most types of software exploits without reporting too many false positives
Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk
It is well recognised that data mining and statistical analysis pose a
serious treat to privacy. This is true for financial, medical, criminal and
marketing research. Numerous techniques have been proposed to protect privacy,
including restriction and data modification. Recently proposed privacy models
such as differential privacy and k-anonymity received a lot of attention and
for the latter there are now several improvements of the original scheme, each
removing some security shortcomings of the previous one. However, the challenge
lies in evaluating and comparing privacy provided by various techniques. In
this paper we propose a novel entropy based security measure that can be
applied to any generalisation, restriction or data modification technique. We
use our measure to empirically evaluate and compare a few popular methods,
namely query restriction, sampling and noise addition.Comment: 20 pages, 4 figure
Ensuring Secure Non-interference of Programs by Game Semantics
Non-interference is a security property which states that improper information leakages due to direct and indirect flows have not occurred through executing programs. In this paper we investigate a game semantics based formulation ofnon-interference that allows to perform a security analysis of closed and open procedural programs. We show that such formulation is amenable to automated verification techniques. The practicality of this method is illustrated by several examples, which also emphasize its advantage compared to known operational methods for reasoning about open programs.<br/
An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs
Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty.
Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed.
Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven
The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models
The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system
Very static enforcement of dynamic policies
Security policies are naturally dynamic. Reflecting this, there has been a growing interest in studying information-flow properties which change during program execution, including concepts such as declassification, revocation, and role-change.
A static verification of a dynamic information flow policy, from a semantic perspective, should only need to concern itself with two things: 1) the dependencies between data in a program, and 2) whether those dependencies are consistent with the intended flow policies as they change over time. In this paper we provide a formal ground for this intuition. We present a straightforward extension to the principal flow-sensitive type system introduced by Hunt and Sands (POPL’06, ESOP’11) to infer both end-to-end dependencies and dependencies at intermediate points in a program. This allows typings to be applied to verification of both static and dynamic policies. Our extension preserves the principal type system’s distinguishing feature, that type inference is independent of the policy to be enforced: a single, generic dependency analysis (typing) can be used to verify many different dynamic policies of a given program, thus achieving a clean separation between (1) and (2).
We also make contributions to the foundations of dynamic information flow. Arguably, the most compelling semantic definitions for dynamic security conditions in the literature are phrased in the so-called knowledge-based style. We contribute a new definition of knowledge-based progress insensitive security for dynamic policies. We show that the new definition avoids anomalies of previous definitions and enjoys a simple and useful characterisation as a two-run style property
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
Serious Fungal Diseases in the Republic of Usbekistan
We have undertaken the first and preliminary estimation of severe and chronic mycotic diseases in the Republic of Uzbekistan, using a model proposed by LIFE (Leading International Fungal Education). Calculation was carried out based on data from 2014. Published results describing mycoses in Uzbekistan were identified. In the absence of published or official data, information about the frequency of mycoses from scientific literature elsewhere in groups at risk of development of fungal infections were taken into account. We also utilized methodology used in analogous estimations of mycoses in the Russian Federation. We estimate that of the 30.8 million population, 536,978 people (1.8% of the population) were affected by severe and chronic mycotic diseases. In 2014, there were 12,351 cases of acute invasive fungal diseases and 524,627 cases of chronic fungal diseases, including 1,941 cases of chronic pulmonary aspergillosis. The most frequent problems were recurrent vulvovaginal candidiasis (513,600 cases), trichophytosis of the scalp (6,414), and relapsed oral candidiasis (4,950). Results of the investigation indicate a significant prevalence of mycoses in the Republic of Uzbekistan
North American carbon dioxide sources and sinks: magnitude, attribution, and uncertainty
North America is both a source and sink of atmospheric carbon dioxide (CO2). Continental sources - such as fossil-fuel combustion in the US and deforestation in Mexico - and sinks - including most ecosystems, and particularly secondary forests - add and remove CO2 from the atmosphere, respectively. Photosynthesis converts CO2 into carbon as biomass, which is stored in vegetation, soils, and wood products. However, ecosystem sinks compensate for only similar to 35% of the continent's fossil-fuel-based CO2 emissions; North America therefore represents a net CO2 source. Estimating the magnitude of ecosystem sinks, even though the calculation is confounded by uncertainty as a result of individual inventory- and model-based alternatives, has improved through the use of a combined approach. Front Ecol Environ 2012; 10(10): 512-519, doi:10.1890/12006
- …
