
Van Delft, B., Hunt, S. & Sands, D. (2015). Very static enforcement of dynamic policies. Lecture

Notes in Computer Science, 9036, pp. 32-52. doi: 10.1007/978-3-662-46666-7_3

City Research Online

Original citation: Van Delft, B., Hunt, S. & Sands, D. (2015). Very static enforcement of dynamic

policies. Lecture Notes in Computer Science, 9036, pp. 32-52. doi: 10.1007/978-3-662-46666-7_3

Permanent City Research Online URL: http://openaccess.city.ac.uk/11648/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42628754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Very Static Enforcement of Dynamic Policies

Bart van Delft1, Sebastian Hunt2, and David Sands1

1 Chalmers University of Technology, Sweden
2 City University London

Abstract. Security policies are naturally dynamic. Reflecting this, there has been

a growing interest in studying information-flow properties which change during

program execution, including concepts such as declassification, revocation, and

role-change.

A static verification of a dynamic information flow policy, from a semantic per-

spective, should only need to concern itself with two things: 1) the dependencies

between data in a program, and 2) whether those dependencies are consistent

with the intended flow policies as they change over time. In this paper we provide

a formal ground for this intuition. We present a straightforward extension to the

principal flow-sensitive type system introduced by Hunt and Sands (POPL ’06,

ESOP ’11) to infer both end-to-end dependencies and dependencies at intermedi-

ate points in a program. This allows typings to be applied to verification of both

static and dynamic policies. Our extension preserves the principal type system’s

distinguishing feature, that type inference is independent of the policy to be en-

forced: a single, generic dependency analysis (typing) can be used to verify many

different dynamic policies of a given program, thus achieving a clean separation

between (1) and (2).

We also make contributions to the foundations of dynamic information flow. Ar-

guably, the most compelling semantic definitions for dynamic security conditions

in the literature are phrased in the so-called knowledge-based style. We contribute

a new definition of knowledge-based progress insensitive security for dynamic

policies. We show that the new definition avoids anomalies of previous defini-

tions and enjoys a simple and useful characterisation as a two-run style property.

1 Introduction

Information flow policies are security policies which aim to provide end-to-end

security guarantees of the form “information must not flow from this source to this des-

tination”. Early work on information flow concentrated on static, multi-level policies,

organising the various data sources and sinks of a system into a fixed hierarchy. The

policy determined by such a hierarchy (a partial order) is simply that information must

not flow from a to b unless a ⊑ b.

1.1 Dynamic policies

Since the pioneering work of Denning and Denning [DD77], a wide variety of infor-

mation-flow policies and corresponding enforcement mechanisms have been proposed.

Much of the recent work on information-flow properties goes beyond the static, multi-

level security policies of earlier work, considering instead more sophisticated, dynamic

forms of policy which permit different flows at different points during the excecution of

a program. Indeed, this shift of focus better reflects real-world requirements for security

policies which are naturally dynamic.

// x → a

out x on a;

// x 6→ a

out 2 on a;

Fig. 1

For example, consider a request for sensitive employee infor-

mation made to an employer by a regulatory authority. In order

to satisfy this request it may be necessary to temporarily allow

the sensitive information to flow to a specific user in the Human

Resources department. In simplified form, the essence of this ex-

ample is captured in Figure 1.

Here x contains the sensitive information, channel a represents the HR user, and the

policy is expressed by the annotations x → a (x may flow to a) and x 6→ a (x must not

flow to a). It is intuitively clear that this program complies with the policy.

Consider two slightly more subtle examples, in each of which revocation of a per-

mitted flow depends on run-time data:

1 /*Program A*/ /*Program B*/

2 // x, y → a // x → a

3 out x on a; out x on a;

4 if (y > 0) { if (x > 0) {

5 out 1 on a; out 1 on a;

6 // x 6→ a // x 6→ a

7 } }

8 out 2 on a; out 2 on a;

9 out 3 on a; out 3 on a;

In program A, the revocation of

x → a is controlled by the value of

y, whereas in program B it is con-

trolled by the value of x itself. Note

that the policy for A explicitly al-

lows y → a so the conditional output

(which reveals information about y)

appears to be permissible. In pro-

gram B the conditional output re-

veals information about x itself, but

this happens before the revocation. So should program B be regarded as compliant?

We argue that it should not, as follows. Consider “the third output” of program B as

observed on channel a. Depending on the initial value of x, the observed value may be

either 2 (line 8) or 3 (line 9). Thus this observation reveals information about x and, in

the cases where revocation occurs, the observation happens after the revocation.

Unsurprisingly, increasing the sophistication of policies also increases the challenge

of formulating good semantic definitions, which is to say, definitions which both match

our intuitions about what the policies mean and can form the basis of formal reasoning

about correctness.

At first sight it might seem that increasing semantic sophistication should also re-

quire increasingly intricate enforcement mechanisms. However, all such mechanisms

must somehow solve the same two distinct problems:

1. Determine what data dependencies exist between the various data sources and sinks

manipulated by the program.

2. Determine whether those dependencies are consistent with the flows permitted by

the policy.

Ideally, the first of these problems would be solved independently of the second, since

dependencies are a property of the code, not the policy. This would allow reuse at two

levels: a) reuse of the same dependency analysis mechanisms and proof techniques for

different types of policy; b) reuse of the dependency properties for a given program

across verification of multiple alternative policies (whether of the same type or not).

In practice, enforcement mechanisms are typically not presented in a way which

cleanly separates the two concerns. Not only does this hamper the reuse of analysis

mechanisms and proof techniques, it also makes it harder to identify the essential dif-

ferences between different approaches.

Central Contribution We take a well-understood dependency type system for a sim-

ple while-language, originally designed to support enforcement of static policies, and

extend it in a straightforward way to a language with output channels (§ 5). We demon-

strate the advantages of a clean separation between dependency analysis and policy

enforcement, by establishing a generic soundness result (§ 6) for the type system which

characterises the meaning of types as dependency properties. We then show how the

dependency information derived by the type system can be used to verify compliance

with dynamic policies. Note that this means that the core analysis for enforcement can

be done even before the policy is known: we dub this very static enforcement. More sig-

nificantly, it opens the way to reuse dependency analyses across verification of multiple

types of information flow policy (for example, it might be possible to use the depen-

dency analyses from advanced slicing tools such as JOANA [JOA] and Indus [Ind]).

Foundations of Dynamic Flow Policies Although it was not our original aim and

focus, we also make some contributions of a more foundational nature, and our paper

opens with these (§2–§4). The semantic definition of security which we use is based on

work of Askarov and Chong [AC12], and we begin with their abstract formulation of

dynamic policies (§2). In defining security for dynamic policies, they made a convincing

case for using a family of attackers of various strengths, following an observation that

the intuitively strongest attacker (who never forgets anything that has been observed)

actually places weaker security demands on the system than we would want. On the

other hand they observe that the family of all attackers contains pathological attacker

behaviours which one certainly does not wish to consider. Due to this they do not give a

characterisation of the set of all reasonable attackers against which one should protect.

We make the following two foundational contributions:

Foundational Contribution 1 We focus (§3.3) on the pragmatic case of progress in-

sensitive security (where slow information leakage is allowed through observation of

computational progress [AHSS08]). We argue for a new definition of progress insensi-

tive security (Def 11), which unconditionally grants all attackers knowledge of compu-

tational progress. With this modification to the definition from [AC12], the problematic

examples of pathological attackers are eliminated, and we have a more complete defini-

tion of security. Consequently, we are able to prove security in the central contribution

of the paper for all attackers.

Foundational Contribution 2 The definitions of security are based on characterising

attacker knowledge and how it changes over time relative to the changing policy. As

argued previously e.g., [BS09], this style of definition forms a much more intuitive basis

for a semantics of dynamic policies than using two-run characterisations. However, two-

run formulations have the advantage of being easier to use in proofs. We show (§4) that

our new knowledge-based progress-insensitive security definition enjoys a simple two-

run characterisation. We make good use of this in our proof of correctness of our central

contribution.

2 The Dynamic Policy Model

In this section we define an abstract model of computation and a model of dynamic

policies which maps computation histories to equivalence relations on stores.

2.1 Computation and Observation Model

Computation Model The computation model is given by a labelled transition system

over configurations. We write 〈c, σ〉 α−−→〈c′, σ′〉 to mean that configuration 〈c, σ〉 eval-

uates in one step to configuration 〈c′, σ′〉 with label α. Here c is a command and σ ∈ Σ

is a store. In examples and when we instantiate this model the store will be a mapping

from program variables to values.

The label α records any output that happens during that step, and we have a distin-

guished label value ǫ to denote a silent step which produces no output. Every non-silent

label α has an associated channel channel(α) ∈ Chan and a value value(α). Channels

are ranged over by a and values by v. We abbreviate a sequence of evaluation steps

〈c0, σ0〉 α1−−→〈c1, σ1〉 α2−−→ . . . αn−−−→〈cn, σn〉

as 〈c0, σ0〉−→n〈cn, σn〉. We write 〈c0, σ0〉−→∗〈c′, σ′〉 if 〈c0, σ0〉−→n〈c′, σ′〉 for some

n≥ 0. We write the projection of a single step 〈c, σ〉 α−−→〈c′, σ′〉 to some channel a

as 〈c, σ〉 β−−→a〈c
′, σ′〉 where β= v if channel(α) = a and value(α) = v, and β= ǫ

otherwise, that is, when α is silent or an output on a channel different from a.

We abbreviate a sequence of evaluation steps

〈c0, σ0〉
β1−−→a〈c1, σ1〉

β2−−→a . . .
βn−−→a〈cn, σn〉

as 〈c0, σ0〉
t−→n

a〈cn, σn〉 where t is the trace of values produced on channel a with every

silent ǫ filtered out. We write 〈c0, σ0〉
t−→a〈c

′, σ′〉 if 〈c0, σ0〉
t−→n

a〈c
′, σ′〉 for some n≥ 0,

and we omit the final configuration in contexts where it is not relevant, e.g. 〈c, σ〉 t−→a.

We use |t| to denote the length of trace t.

Attacker’s Observation Model We follow the standard assumption that the command

c is known to the attacker. We assume a passive attacker which aims to extract informa-

tion about an input store σ by observing outputs. As in [AC12], the attacker is able only

to observe a single channel. A generalisation to multi-channel attackers (which would

also allow colluding attackers to be modelled) is left for future work.

2.2 Dynamic Policies

A flow policy specifies a limit on how much information an attacker may learn. A very

general way to specify such a limit is as an equivalence relation on input stores.

Example 1. Consider a store with variables x and y. A simple policy might state that

the attacker should only be able to learn the value of x. It follows that all stores which

agree on the value of x should look the same to the attacker. This is expressed as the

equivalence relation σ≡ ρ iff σ(x)= ρ(x).
A more complicated policy might allow the attacker to learn the value of some

arbitrary expression e on the initial store, e.g. x= y. This is expressed as the equivalence

relation σ≡ ρ iff σ(e)= ρ(e).

Definition 1 (Policy). A policy P maps each channel to an equivalence relation ≡ on

stores. We write Pa for the equivalence relation that P defines for channel a.

As defined, policies are static. A dynamic policy changes while the program is run-

ning and may dictate a different P for each point in the execution. Here we assume that

the policy changes synchronously with the execution of the program. That is, the active

policy can be deterministically derived from the execution history so far.

Definition 2 (Execution History). An execution history H of length n is a transition

sequence 〈c0, σ0〉 α1−−→〈c1, σ1〉 α2−−→ . . . αn−−−→〈cn, σn〉.

Definition 3 (Dynamic Policy). A dynamic policy D maps every execution history H
to a policy D(H). We write Da(H) for the equivalence relation that is defined by D(H)
for channel a, that is to say, Da(H) = Pa where P = D(H).

Most synchronous dynamic policy languages in the literature determine the current

policy based solely on the store σn in the final configuration of the execution history

[AC12,BvDS13]. Definition 3 allows in principle for more flexible notions of dynamic

policies, as they can incorporate the full execution history to determine the policy at

each stage of an execution (similar to the notion of conditional noninterference used by

[GM84,Zha12]). However, our enforcement does assume that the dynamic policy can be

statically approximated per program point, which arguably is only feasible for policies

in the style of [AC12,BvDS13]. Such approximations can typically be improved by

allowing the program to branch on policy-related queries.

Since programs are deterministic, an execution history of length n is uniquely de-

termined by its initial configuration 〈c0, σ0〉. We use this fact to simplify our definitions

and proofs:

Definition 4 (Execution Point). An execution point is a triple (c0, σ0, n) identifying

the point in execution reached after n evaluation steps starting from configuration

〈c0, σ0〉. Such an execution point is considered well-defined iff there exists 〈cn, σn〉
such that 〈c0, σ0〉−→n〈cn, σn〉.

Lemma 1. Each well-defined execution point (c0, σ0, n) uniquely determines an exe-

cution history H(c0, σ0, n) of length n starting in configuration 〈c0, σ0〉.

In the rest of the paper we rely on this fact to justify a convenient abuse of notation,

writing D(c0, σ0, n) to mean D(H(c0, σ0, n)).

3 Knowledge-Based Security Conditions

Recent works on dynamic policies, including [AC12,BDLG11,BNR08,BS10], make

use of so-called knowledge-based security definitions, building on the notion of gradual

release introduced in [AS07]. This form of definition seems well-suited to provide intu-

itive semantics for dynamic policies. We focus in particular on the attacker-parametric

model from Askarov and Chong in [AC12].

Suppose that the input state to a program is σ. In the knowledge-based approach,

an attacker’s knowledge of σ is modelled as a knowledge set K, which may be any set

of states such that σ ∈ K. Note that the larger the knowledge set, the less certain is

the attacker of the actual value of σ, so a smaller K means more precise knowledge.

(Sometimes, as we see below, it can be more intuitive to focus on the complement K,

which is the set of a-priori possible states which the attacker is able to exclude, since

this set, which we will call the exclusion knowledge, grows as the attacker learns more).

Now suppose that the currently active policy is ≡. The essential idea in any know-

ledge-based semantics is to view the equivalence classes of ≡ as placing upper bounds

on the attacker’s knowledge. In the simplest setting, if the actual input state is σ and the

attacker’s knowledge set is K, we require:

K ⊇ {σ′ | σ′ ≡ σ}

Or, in terms of what the attacker is able to exclude:

K ⊆ {ρ | ρ 6≡ σ} (1)

How then do we determine the attacker’s knowledge? Suppose an attacker knows

the program c and observes channel a. Ignoring covert channels (timing, power, etc)

an obvious approach is to say that the attacker’s knowledge is simply a function of the

trace t observed so far:

k(t) = {ρ|〈c, ρ〉 t−→a} (2)

We define the exclusion knowledge as the complement of this: ek(t) = k(t). Note

that, as a program executes and more outputs are observed, the attacker’s exclusion

knowledge can only increase; if 〈c, σ〉 t·v−−→a then ek(t) ⊆ ek(t · v), since, if ρ can

already be excluded by observation of t (because c cannot produce t when started in

ρ), then it will still be excluded when t · v is observed (if c cannot produce t it cannot

produce any extension of t either).

But this simple model is problematic for dynamic policies. Suppose that the policies

in effect when t and t · v are observed are, respectively ≡1 and ≡2. Then it seems that

we must require both ek(t) ⊆ {ρ | ρ 6≡1 σ} and ek(t · v) ⊆ {ρ | ρ 6≡2 σ}. As observed

above, it will always be the case that ek(t) ⊆ ek(t · v), so we are forced to require

ek(t) ⊆ {ρ | ρ 6≡2 σ}. In other words, the observations that we can permit at any given

moment are constrained not only by the policy currently in effect but also by all policies

which will be in effect in the future. This makes it impossible to have dynamic policies

which revoke previously permitted flows (or, at least, pointless; since all revocations

would apply retrospectively, the earlier “permissions” could never be exercised).

Askarov and Chong’s solution has two key components, outlined in the following

two sections.

3.1 Change in Knowledge

Firstly, recognising that policy changes should not apply retrospectively, we can relax

(1) to constrain only how an attacker’s knowledge should be allowed to increase, rather

than its absolute value. The increase in attacker knowledge going from t to t · v is given

by the set difference ek(t · v)− ek(t). So, instead of (1), we require:

ek(t · v)− ek(t) ⊆ {ρ | ρ 6≡ σ} (3)

where ≡ is the policy in effect immediately before the output v. (Some minor set-

theoretic rearrangement gives the equivalent

k(t · v) ⊇ k(t) ∩ {σ′ | σ′ ≡ σ}

which is the form of the original presentation in [AC12].)

3.2 Forgetful attackers

Focussing on change in knowledge addresses the problem of retrospective revocation

but it creates a new issue. Consider the following example.

Example 2. The program in Figure 2 produces the same output many times, but only

the first output is permitted by the policy. Assume that the value of x is 5. Before the

first output, the exclusion knowledge of an observer on channel a is the empty set. After

the first output the observer’s exclusion knowledge is increased to include those stores

σ where σ(x) 6= 5. This is allowed by the policy at that point.

By the time the second output occurs, the policy prohibits any further flows from x.

However, since the attacker’s exclusion knowledge already provides complete knowl-

edge of x, the second output does not actually change the attacker’s exclusion knowl-

edge at all, so (3) is satisfied (since ek(t · v) = ek(t)). Thus a policy semantics based

on (3) would accept this program even though it continues to leak the value of x long

after the flow has been revoked.

// x → a

out x on a;

// x 6→ a

while (true)

out x on a;

Fig. 2

Askarov and Chong address this by revisiting the as-

sumption that an attacker’s knowledge is necessarily deter-

mined by the simple function of traces (2) above. Consider

an attacker which forgets the value of the first output in ex-

ample 2. For this attacker, the second output would come as

a revalation, revealing the value of x all over again, in vi-

olation of the policy. Askarov and Chong thus arrive at the

intriguing observation that security against a more powerful

attacker, one who remembers everything that happens, does not imply security against

a less resourceful attacker, who might forget parts of the observations made.

Forgetful attackers are modelled as deterministic automata.

Definition 5 (Forgetful Attacker ⊲ § III.A [AC12]). A forgetful attacker is a tuple

A=(SA, s0, δA) where SA is the set of attacker states; s0 ∈ SA is the initial state;

and δA : SA × Val → SA the (deterministic) transition function describing how the

attacker’s state changes due to the values that the attacker observes.

We write A(t) for the attacker’s state after observing trace t:

A(ǫ) = s0

A(t · v) = δA(A(t), v)

A forgetful attacker’s knowledge after trace t is defined as the set of all initial stores

that produce a trace which would result in the same attacker state A(t):

Definition 6 (Forgetful Attacker Knowledge ⊲ § III.A [AC12]).

k(A, c, a, t) = {ρ | 〈c, ρ〉 t′−−→a ∧A(t′) = A(t)}

(Note that, in preparation for the formal definition of the security condition, program c

and channel a now appear as explicit parameters.)

The proposed security condition is still essentially as given by (3), but now relative

to a specific choice of attacker. Stated in the notation and style of the current paper, the

formal definition is as follows.

Definition 7 (Knowledge-Based Security ⊲ Def. 1 [AC12]). Command c is secure for

policy D against an attacker A on channel a for initial store σ if for all traces t and

values v such that 〈c, σ〉 t−→n
a〈c

′, σ′〉 v−−→1
a we have

ek(A, c, a, t · v)− ek(A, c, a, t) ⊆ {ρ | ρ 6≡ σ}

where ≡ = Da(c, σ, n).

Having relativised security to the power of an attacker’s memory, it is natural to con-

sider the strong notion of security that would be obtained by requiring Def. 7 to hold for

all choices of A. However, as shown in [AC12], this exposes a problem with the model:

there are attackers for which even well-behaved programs are insecure according to

Def. 7.

Example 3. Consider again the first example from the Introduction (Section 1.1). Here,

for simplicity, we assume that the variable x is boolean, taking value 0 or 1.

// x → a

out x on a;

// x 6→ a

out 2 on a;

q0start

q1

q2

0

1

2

2

It is intuitively clear that this program complies with the policy. However, as ob-

served in [AC12], if we instantiate Def. 7 with the forgetful attacker displayed, the

attacker’s exclusion knowledge increases with the second output when x=0.

After observing the value 0, the attacker’s state is A(0)= q0. Since A(ǫ)= q0, the

exclusion knowledge is still the empty set. After the second observation, only stores

where x=0 could have led to state q2, so the exclusion knowledge increases at a point

where the policy does not allow it.

This example poses a question which (so far as we are aware) remains unanswered:

if we base a dynamic policy semantics on Def.7, for which set of attackers should we

require it to hold?

In the next section we define a progress-insensitive variant of Def.7. For this variant

it seems that security against all attackers is a reasonable requirement and in Section 6

we show that progress-insensitive security against all attackers is indeed enforced by

our type system.

3.3 Progress Insensitive Security

Since [VSI96], work on the formalisation and enforcement of information-flow poli-

cies has generally distinguished between two flavours of security: termination-sensitive

and termination-insensitive. Termination-sensitive properties guarantee that protected

information is neither revealed by its influence on input-output behaviour nor by its

influence on termination behaviour. Termination-insensitive properties allow the latter

flows and thus provide weaker guarantees. For systems with incremental output (as

opposed to batch-processing systems) it is more appropriate to distinguish between

progress-sensitive and progress-insensitive security. Progress-insensitive security ig-

nores progress-flows, where a flow is regarded as a progress-flow if the information that

it reveals can be inferred solely by observing how many outputs the system produces.

Two examples of programs with progress-flows are as follows:

Example 4. Programs containing progress-flows:

// Program A // Program B

out 1 on a; out 1 on a;

while (x == 8) skip; if (x != 8) out 2 on a;

out 2 on a;

Let σ and ρ differ only on the value of x: σ(x) = 4 and ρ(x) = 8. Note that, if started in

σ, both programs produce a trace of length 2 (namely, the trace 1 · 2) whereas, if started

in ρ, the maximum trace length is 1. Thus, for both programs, observing just the length

of the trace produced can reveal information about x. Note that, since termination is not

an observable event in the semantics, A and B are actually observably equivalent; we

give the two variants to emphasise that progress-flows may occur even in the absence

of loops.

In practice, most enforcement mechanisms only enforce progress-insensitive secu-

rity. This is a pragmatic choice since (a) it is hard to enforce progress-sensitive secu-

rity without being overly restrictive (typically, all programs which loop on protected

data will be rejected), and (b) programs which leak solely via progress-flows, leak

slowly [AHSS08].

Recall that Knowledge-Based Security (Def. 7) places a bound on the increase in

an attacker’s knowledge which is allowed to arise from observation of the next output

event. Askarov and Chong show how this can be weakened in a natural way to pro-

vide a progress-insensitive property, by artificially strengthening the supposed previous

knowledge to already include progress knowledge. Their definition of progress knowl-

edge is as follows:

Definition 8 (AC Progress Knowledge ⊲ § III.A [AC12]).

k+(A, c, a, t) = {ρ | 〈c, ρ〉 t′·v−−−→a ∧A(t′) = A(t)}

Substituting this (actually, its complement) in the “previous knowledge” position in

Def. 7 provides Askarov and Chong’s notion of progress-insensitive security:

Definition 9 (AC Progress-Insensitive (ACPI) Security ⊲ Def. 2 [AC12]). Command

c is AC Progress-Insensitive secure for policy D against an attacker A on channel a for

initial store σ if for all traces t and values v such that 〈c, σ〉 t−→n
a〈c

′, σ′〉 v−−→1
a we have

ek(A, c, a, t · v)− ek+(A, c, a, t) ⊆ {ρ | ρ 6≡ σ}

where ≡ = Da(c, σ, n).

Now consider again programs A and B above. These are examples of programs

where the only flows are progress-flows. In general, we say that a program is quasi-

constant if there is some fixed (possibly infinite) trace t such that every trace produced

by the program is a prefix of t, regardless of the choice of initial store. Thus, for a quasi-

constant program, the only possible observable variation in behaviour is trace length, so

all flows are progress-flows. Since PI security is intended explicitly to allow progress-

flows, we should expect all quasi-constant programs to satisfy PI security, regardless of

the choice of policy and for all possible attackers. But, for Def. 9, this fails to hold, as

shown by the following counterexample.

Example 5. Consider the program and attacker below. The attacker is a very simple

bounded-memory attacker which remembers just the last output seen and nothing else

(not even whether it has seen any previous outputs).

// x 6→ a

out 1 on a;

out 1 on a;

while (x) skip;

out 1 on a;

out 2 on a;

q0start

q1

q2

1

2

1

2

2

1

Clearly, the program is quasi-constant. However, it is not ACPI secure for the given

attacker. To see this, suppose that x = 0 and consider the trace t = 1 · 1 · 1. The attacker

has no knowledge at this point (ek(t) is the empty set) since it does not know whether

it has seen one, two or three 1’s. It is easily verified that ek+(t) is also the empty set

for this attacker (intuitively, giving this attacker progress knowledge in the form k+

doesn’t help it, since it still does not know which side of the loop has been reached).

But ek(t · 2) is not the empty set, since in state q2 the attacker is able to exclude all

stores for which x = 1, thus ACPI security is violated.

What has gone wrong here? The attacker itself seems reasonable. We argue that the real

problem lies in the definition of k+(A, c, a, t). As defined, this is the knowledge that A

would have in state A(t) if given just the additional information that c can produce at

least one more output. But this takes no account of any previous progress knowledge

which might have been forgotten by A. (Indeed, the above attacker forgets nearly all

such previous progress knowledge.) As a consequence, the resulting definition of PI

security mistakenly treats some increases in knowledge as significant, even though they

arise purely because the attacker has forgotten previously available progress knowledge.

Our solution will be to re-define progress knowledge to include what the attacker

would know if it had been keeping count. To this end, for any attacker A = (S, s0, δ)
we define a counting variant Aω = (Sω, sω0 , δ

ω), such that Sω ⊆ S ×N , sω0 = (s0, 0)
and δω((s, n), v) = (δ(s, v), n+1). In general, Aω will be at least as strong an attacker

as A:

Lemma 2. For all A, c, a, t:

1. k(Aω, c, a, t) ⊆ k(A, c, a, t)
2. ek(A, c, a, t) ⊆ ek(Aω, c, a, t)

Proof. It is is easily seen that Aω(t) = (q, n) ⇒ A(t) = q. Thus Aω(t′) = Aω(t) ⇒
A(t′) = A(t), which establishes part 1. Part 2 is just the contrapositive of part 1.

Our alternative definition of progress knowledge is then:

Definition 10 (Full Progress Knowledge).

k#(A, c, a, t) = {ρ | 〈c, ρ〉 t′·v−−−→a ∧Aω(t′) = Aω(t)}

Our corresponding PI security property is:

Definition 11 (Progress-Insensitive (PI) Security). Command c is progress-insensitive

secure for policy D against an attacker A on channel a for initial store σ if for all traces

t and values v such that 〈c, σ〉 t−→n
a〈c

′, σ′〉 v−−→1
a we have

ek(A, c, a, t · v)− ek#(A, c, a, t) ⊆ {ρ | ρ 6≡ σ}

where ≡ = Da(c, σ, n).

This definition behaves as expected for quasi-constant programs:

Lemma 3. Let c be a quasi-constant program. Then c is PI secure for all policies D

against all attackers A on all channels a for all initial stores σ.

Proof. It suffices to note that, from the definitions, if t · v is a possible trace for c and c

is quasi-constant, ek#(A, c, a, t) = ek(Aω, c, a, t · v). The result follows by Lemma 2.

As a final remark in this section, we note that there is a class of attackers for which

ACPI and PI security coincide. Say that A is counting if it always remembers at least

how many outputs it has observed. Formally:

Definition 12 (Counting Attacker). A is counting if A(t) = A(t′) ⇒ |t| = |t′|.

Now say that attackers A and A′ are isomorphic (written A ∼= A′) if A(t1) = A(t2) ⇔
A′(t1) = A′(t2) and note that none of the attacker-parametric security conditions dis-

tinguish between isomorphic attackers (in particular, knowledge sets are always equal

for isomorphic attackers). It is easily verified that A ∼= Aω for all counting attackers. It

is then immediate from the definitions that ACPI security and PI security coincide for

counting attackers.

4 Progress-Insensitive Security as a Two-Run Property

Our aim in this section is to derive a security property which guarantees (in fact, is

equivalent to) PI security for all attackers, and in a form which facilitates the soundness

proof of our type system. For this we seek a property in “two run” form.

First we reduce the problem by establishing that it suffices to consider just the count-

ing attackers.

Lemma 4. Let c be a command. Then, for any given policy, channel and initial store, c

is PI secure against all attackers iff c is PI secure against all counting attackers.

Proof. Left to right is immediate. Right to left, it suffices to show that

ek(A, c, a, t · v)− ek#(A, c, a, t) ⊆ ek(Aω, c, a, t · v)− ek#(Aω, c, a, t)

Since Aω ∼= (Aω)ω , we have ek#(Aω, c, a, t) = ek#(A, c, a, t). It remains to show

that ek(A, c, a, t · v) ⊆ ek(Aω, c, a, t · v), which holds by Lemma 2.

Our approach is now essentially to unwind Def. 11. Our starting point for the un-

winding is:

ek(A, c, a, t · v)− ek#(A, c, a, t) ⊆ {ρ | ρ 6≡ σ}

where ≡ is the policy in effect at the moment the output v is produced. Simple set-

theoretic rearrangement gives the equivalent:

{σ′ | σ′ ≡ σ} ∩ k#(A, c, a, t) ⊆ k(A, c, a, t · v)

Expanding the definitions, we arrive at:

ρ ≡ σ ∧ 〈c, ρ〉 t′·v′

−−−→a ∧Aω(t′) = Aω(t) ⇒ ∃s.〈c, ρ〉 s−→a ∧A(s) = A(t · v)

By Lemma 4, we can assume without loss of generality that A is counting, so we can

replace Aω(t′) = Aω(t) by A(t′) = A(t) on the lhs. Since A is counting, we know that

|t| = |t′| and |s| = |t · v|, hence |s| = |t′ · v′|. Now, since c is deterministic and both

s and t′ · v′ start from the same ρ, it follows that s = t′ · v′. Thus we can simplify the

unwinding to:

ρ ≡ σ ∧ 〈c, ρ〉 t′·v′

−−−→a ∧A(t′) = A(t) ⇒ A(t′ · v′) = A(t · v)

Now, suppose that this holds for A and that v′ 6= v. Let q be the attacker state A(t′) =
A(t) and let r be the attacker state A(t′ · v′) = A(t · v). Since |t| 6= |t · v| and A is

counting, we know that q 6= r. Then we can construct an attacker A′ from A which

leaves q intact but splits r into two distinct states rv and rv′ . But then security will

fail to hold for A′, since A′(t′ · v′) = rv 6= rv′ = A′(t · v). So, since we require

security to hold for all A, we may strengthen the rhs to A(t′ · v′) = A(t · v) ∧ v = v′.

Then, given A(t′) = A(t), since A is a deterministic automaton, it follows that v =
v′ ⇒ A(t′ · v′) = A(t · v), hence the rhs simplifies to just v = v′ and the unwinding

reduces to:

ρ ≡ σ ∧ 〈c, ρ〉 t′·v′

−−−→a ∧A(t′) = A(t) ⇒ v′ = v

Finally, since A now only occurs on the lhs, we see that there is a distinguished counting

attacker for which the unwinding is harder to satisfy than all others, namely the attacker

A#, for which A#(t
′) = A#(t) iff |t′| = |t|. Thus the property will hold for all A iff it

holds for A# and so we arrive at our two-run property:

Definition 13 (Two-Run PI Security). Command c is two-run PI secure for policy D

on channel a for initial store σ if whenever 〈c, σ〉 t−→n
a〈cn, σn〉

v−−→1
a and ρ ≡ σ and

〈c, ρ〉 t′·v′

−−−→a and |t′| = |t|, then v′ = v, where ≡ = Da(c, σ, n).

Theorem 1. Let c be a command. For any given policy, channel and initial store, c is

PI secure against all attackers iff c is two-run PI secure.

Proof. This follows from the unwinding of the PI security definition, as shown above.

5 A Dependency Type System

Within the literature on enforcement of information flow policies, some work is

distinguished by the appearance of explicit dependency analyses. In the current paper

we take as our starting point the flow-sensitive type systems of [HS11,HS06], due to

the relative simplicity of presentation. Other papers proposing similar analyses include

[CHH02], [AB04], [AR80] and [BBL94]. Some of the similarities and differences be-

tween these approaches are discussed in [HS06].

The original work of [HS06] defines a family of type systems, parameterised by

choice of a multi-level security lattice, and establishes the existence of principal typ-

ings within this family. The later work of [HS11] defines a single system which pro-

duces only principal types. In what follows we refer to the particular flow-sensitive type

system defined in [HS11] as FST.

Values v ::= n Expressions e ::= v | x
Commands c ::= skip | c1; c2 | x := e | if e c1 c2 | while e c | out e on a @ p

〈skip; c, σ〉 ǫ−→〈c, σ〉
〈c1, σ〉 α−−→〈c′1, σ

′〉

〈c1; c2, σ〉 α−−→〈c′1; c2, σ
′〉

σ(e) = v

〈x := e, σ〉 ǫ−→〈skip, σ′〉

σ(e) = v

〈out e on a @ p, σ〉 (a,v,p)−−−−−→〈skip, σ′〉
〈while e c, σ〉 ǫ−→〈if e (c; while e c) skip, σ〉

σ(e) 6= 0

〈if e c1 c2, σ〉 ǫ−→〈c1, σ〉

σ(e) = 0

〈if e c1 c2, σ〉 ǫ−→〈c2, σ〉

Fig. 6: Language and semantics.

The typings derived by FST take the form of an environment Γ mapping each pro-

gram variable x to a set Γ (x) which has a direct reading as (a conservative approxima-

tion to) the set of dependencies for x. All other types derivable using the flow-sensitive

type systems of [HS06] can be recovered from the principal type derived by FST. Be-

cause principal types are simply dependency sets, they are not specific to any particular

security hierarchy or policy. This is the basis of the clean separation we are able to

achieve between analysis and policy verification in what follows.

x := z + 1;

z := x;

if (z > 0)

y := 1;

x := 0;

Fig. 5

Consider the simple program shown in Figure 5. The type in-

ferred for this program is Γ , where Γ (x) = {}, Γ (y) = {y, z},

Γ (z) = {z}. From this typing we can verify, for example, any

static policy using a security lattice in which level(z) ⊑ level(y).

FST is defined only for a simple language which does not in-

clude output statements. This makes it unsuitable for direct appli-

cation to verification of dynamic policies, so in the current paper

we describe a straightforward extenion of FST to a language with output statements.

We then show how the inferred types can be used to enforce policies such as those in

[AC12] and [BvDS13], which appear very different from the simple static, multi-level

policies originally targeted.

5.1 Language

We instantiate the abstract computation model of Section 2.1 with a simple while-

language with output channels, shown in Figure 6. We let x ∈ PVar range over program

variables, a ∈ Chan range over channels (as before) and p ∈ PPoint range over pro-

gram points. Here non-silent output labels have the form (a, v, p), channel(a, v, p) = a,

and value(a, v, p) = v.

The language is similar to the one considered in [AC12], except for the absence of

input channels. Outputs have to be annotated with a program point p to bridge between

the dependency analysis and the policy analysis, described in Section 6.

5.2 Generic typing

Traditional type systems for information flow assume that all sensitive inputs to the

system (here: program variables) are associated with a security level. Expressions in

the command to be typed might combine information with different security levels. To

ensure that all expressions can be typed, the security levels are therefore required to

form at least a join-semilattice, or in some cases a full lattice. The type system then

ensures no information of a (combined) level l1 can be written to a program variable

with level l2 unless l1 ⊑ l2.

The system FST from Hunt and Sands [HS11] differs from these type systems in two

ways. Firstly, it does not require intermediate assignments to respect the security lattice

ordering. As an observer is assumed to only see the final state of the program, only the

final value of a variable must not depend on any information which is forbidden by the

lattice ordering. For example, suppose level(y) ⊑ level(z) ⊑ level(x) but level(x) 6⊑
level(z) and consider the first two assignments in the example from Fig. 5.

x = z + 1; z = x;

A traditional type system would label this command as insecure because of the assign-

ment z = x and the fact that level(x) 6⊑ level(z), even though the value of z after

this assignment does not depend on the initial value of x at all. FST however is flow-

sensitive and allows the security label on x to vary through the code.

Secondly, and more significantly, by using the powerset of program variables as

security lattice, FST provides a principal typing from which all other possible typings

can be inferred.

Thus the typing by FST is generic: a command needs to be typed only once and can

then be verified against any static information-flow policy. Since the ordering among

labels is not relevant while deriving the typing, FST is also able to verify policies which

are not presented in the shape of a security lattice, but any relational ‘may-flow’ predi-

cate between security labels can be verified.

5.3 Generic typing for dynamic policies

We now present an extended version of FST which includes an additional typing rule

for outputs. All the original typing rules of FST remain unchanged.

Intuitively, an output on a channel is like the final assignment to a variable in the

original FST, that is, its value can be observed. Since types are sets of dependencies, we

could simply type an output channel as the union of all dependencies resulting from all

output statements for that channel. This would be sound but unduly imprecise: the only

flows permitted would be those permitted by the policy at all times, in effect requiring

us to conservatively approximate each dynamic policy by a static one. But we can do

better than this.

The flow-sensitivity of FST means that a type derivation infers types at intermediate

program points which will, in general, be different from the top-level type inferred for

the program. These intermediate types are not relevant for variables, since their inter-

mediate values are not observable. But the outputs on channels at intermediate points

are observable, and so intermediate channel types are relevant. Therefore, for each

channel we record in Γ distinct dependency sets for each program point at which an

output statement on that channel occurs. Of course, this is still a static approximation of

runtime behaviour. While our simple examples of dynamic policies explicitly associate

policy changes to program points, for real-world use more expressive dynamic policy

languages may be needed. In Section 2.2 we formally define the semantics of a dynamic

policy as an arbitrary function of a program’s execution history, which provides a high

degree of generality. However, in order to apply a typing to the verification of such

a policy, it is first necessary to conservatively approximate the flows permitted by the

policy at each program point of interest (Definition 16).

Let X be the dependency set for the channel-a output statement at program point p.

The meaning3 of X is as follows:

Let σ be a store such that execution starting in σ arrives at p, producing the

i’th output on a. Let ρ be any store which agrees with σ on all variables in X

and also eventually produces an i’th output on a (not necessarily at the same

program point). Then these two outputs will be equal.

Two key aspects of our use of program points should be highlighted:

1. While the intended semantics of X as outlined above does not require correspond-

ing outputs on different runs to be produced at the same program point, the X that

is inferred by the type system does guarantee this stronger property. Essentially

this is because (in common with all similar analyses) the type system uses control-

flow dependency as a conservative proxy for the semantic dependency property of

interest.

2. Our choice of program point to distinguish between different ouputs on the same

channel is not arbitrary; it is essentially forced by the structure of the original type

system. As noted, program point annotations simply allow us to record in the final

typing exactly those intermediate dependency sets which are already inferred by

the underlying flow-sensitive system. While it would be possible in principle to

make even finer distinctions (for example, aiming for path-sensitivity rather than

just flow-sensitivity) this would require fundamental changes to the type system.

The resulting type system is shown in Figure 7. We now proceed informally to

motivate its rules. Definitions and proofs of formal soundness are presented in Section 6.

The type system derives judgements of the form ⊢{c}Γ , where Γ : Var → 2Var is

an environment mapping variables to a set of dependencies. The variables we consider

are Var = PVar ∪ CPoint ∪ {pc} ∪ Chan with CPoint = Chan × PPoint . We

consider the relevance of each kind of variable in turn.

– As program variables PVar form the inputs to the command, these are the depen-

dencies of interest in the typing of a command. For program variables themselves,

Γ (x) are the dependencies for which a different initial value might result in a dif-

ferent final value of x.

– Pairs of channels and program points (a, p) ∈ CPoint are denoted as ap. The

dependencies Γ (ap) are those program variables for which a difference in initial

value might cause a difference in the value of any observation that can result from

an output statement for channel a with annotation p.

– Whenever the program counter pc∈Γ (x) this indicates that this command poten-

tially changes the value of program variable x. Similar, if pc∈Γ (a) then c might

produce an output on channel a and if pc∈Γ (ap) then c might produce an output

3 This is progress-insensitive dependency (see Section 3). A progress-sensitive version can be

defined in a similar way.

TS-SKIP ⊢ {skip} Γid TS-ASSIGN ⊢ {x := e} Γid [x 7→ fv(e) ∪ {pc}]

TS-SEQ
⊢ {c1}Γ1 ⊢ {c2}Γ2

⊢ {c1 ; c2} Γ2;Γ1

TS-IFELSE

⊢ {ci}Γi ⊢ Γ
′

i = Γi;Γid [pc 7→ {pc} ∪ fv(e)] i = 1, 2

⊢ {if e c1 c2} (Γ ′

1 ∪ Γ
′

2)[pc 7→ {pc}]

TS-WHILE

⊢ {c}Γc Γf = (Γc;Γid [pc 7→ {pc} ∪ fv(e)])∗

⊢ {while e c} Γf [pc 7→ {pc}]

TS-OUTPUT

⊢ {out e on a @ p}Γid [ap 7→ fv(e) ∪ {pc, a, ap}; a 7→ {pc, a}]

Fig. 7: Type System.

on a caused by a statement annotated with p. We use the program counter to catch

implicit flows that may manifest in these ways.

– We use Chan to capture the latent flows described in example program B in the

introduction. The dependencies Γ (a) are those program variables for which a dif-

ference in initial value might result in a different number of outputs produced on

channel a by this command. This approach to address latent flows was first intro-

duced in [AC12] as channel context bounds.

We first explain the notation used in the unchanged rules from FST before turning our

attention to the new TS-OUTPUT rule. All concepts have been previously introduced

in [HS11].

The function fv(e) returns the free variables in expression e. The identity environ-

ment Γid maps each variable to the singleton set of itself, that is Γid(x)={x} for all

x∈Var . Sequential composition of environments is defined as:

Γ2;Γ1(x) =
⋃

y∈Γ2(x)

Γ1(y)

Intuitively, Γ2;Γ1 is as Γ2 but substituting the dependency relations already established

in Γ1. We overload the union operator for environments: (Γ1∪Γ2)(x) = Γ1(x)∪Γ2(x).
We write Γ ∗ for the fixed-point of Γ , used in TS-WHILE:

Γ ∗ =
⋃

n≥0

Γn where Γ 0 = Γid and Γn+1 = Γn;Γ

It is only in the typing TS-OUTPUT of the output command that the additional chan-

nel and program point dependencies are mentioned; this underlines our statement that

extending FST to target dynamic policies is straightforward.

We explain the changes to Γid in TS-OUTPUT in turn. For ap, clearly the value of

the output and thus the observation is affected by the program variables occuring in the

expression e. We also include the program counter pc to catch implicit flows; if we have

a command of the form if e (out 1 on a @ p) (out 2 on a @ q) the output at ap is

affected by the branching decision, which is caught in TS-IFELSE.

We include the channel context bounds a for the channel on which this output occurs

to capture the latent flows of earlier conditional outputs, as demonstrated in the intro-

duction. Observe that by the definition of sequential composition of environments, we

only add those dependencies for conditional outputs that happened before this output,

since it cannot leak information about the absence of future observations.

Finally, we include the dependencies of output point ap itself. By doing so the de-

pendency set of ap becomes cumulative: with every sequential composition (including

those used in Γ ∗) the dependency set of ap only grows, as opposed to the dependencies

of program variables. This makes us sum the dependencies of all outputs on channel a

annotated with the same program point, as we argued earlier.

The mapping for channel context bounds a is motivated in a similar manner. The

pc is included since the variables affecting whether this output occurs on channel a

are the same as those that affect whether this statement is reached. Note that we are

over-approximating here, as the type system adds the dependencies of e in

if e (out 1 on a @ p1) (out 2 on a @ p2)

to context bounds a, even though the number of outputs is always one.

Like for ap, we make a depend on itself, thus accumulating all the dependencies

that affect the number of outputs on channel a.

As the TS-OUTPUT rule does not introduce more complex operations than already

present, the type system has the same complexity as FST. That is, the type system can

be used to construct a generic type in O(nv3) where n is the size of the program and v

the number of variables in Var.

6 Semantic Soundness and Policy Compliance

We present a soundness condition for the type system, and show that the type sys-

tem is sound. We then describe how the derived generic typings can be used to check

compliance with a dynamic policy that is approximated per program point. We begin

by showing how an equivalence relation on stores can be created from a typing:

Definition 14. We write =Γ (x) for the equivalence relation corresponding to the typing

Γ of variable x ∈ Var , defined as σ=Γ (x) ρ iff σ(y)= ρ(y) for all y ∈ Γ (x).

As we are using Γ (ap) as the approximation of dependencies for an observation, the

soundness of the PI type system is similar to the PI security for dynamic policies, except

that we take the equivalence relation as defined by Γ (ap) rather than the policy Da.

Definition 15 (PI Type System Soundness). We say that the typing ⊢{c}Γ is sound

iff for all σ, ρ, if 〈c, σ〉 t−→a〈cσ, σ
′〉 (a,v,p)−−−−−→ and 〈c, ρ〉 t′−−→a〈cρ, ρ

′〉 v′

−−→a and |t| = |t′|
then σ=Γ (ap) ρ ⇒ v= v′.

Theorem 2. All typings derived by the type system are sound.

The proof for Theorem 2 can be found in Appendix A of [DHS15].

To link the typing and the actual dynamic policy, we rely on an analysis that is able

to approximate the dynamic policy per program point. A sound approximation should

return a policy that is at least as restrictive as the actual policy for any observation on

that program point.

Definition 16 (Dynamic Policy Approximation). A dynamic policy approximation

A : CPoint → 2Σ×Σ is a mapping from channel and program point pairs to an

equivalence relation on stores. The approximation A on command c, written c : A,

is sound for dynamic policy D iff, for all σ if 〈c, σ〉−→n〈c′, σ′〉 (a,v,p)−−−−−→ then A(ap) is

coarser than Da(c, σ, n).

We now arrive at the main theorem in this section. Given a typing ⊢{c}Γ , we can

now easily verify for command c its compliance with any soundly approximated dy-

namic policy, by simply checking that the typing’s policy is at least as restrictive as the

approximated dynamic policy for every program point.

Theorem 3 (PI Dynamic Policy Compliance). Let c :A be a sound approximation of

dynamic policy D. If ⊢{c}Γ and =Γ (ap) is coarser than A(ap) for all program points

ap, then c is two-run PI secure for D on all channels and for all initial stores.

Proof. Given a store σ such that 〈c, σ〉 t−→n
a〈cσ, σ

′〉 (a,v,p)−−−−−→ and a store ρ such that

〈c, ρ〉 t′−−→a〈cρ, ρ
′〉 v′

−−→a and |t| = |t′| and σDa(c, σ, n)ρ, we need to show that v= v′.

Since c :A is a sound approximation of D, we have that σA(ap)ρ and as =Γ (ap) is

coarser than A(ap) we also have σ=Γ (ap) ρ. Which by Theorem 2 gives us that v= v′.

Corollary 1. If the conditions of Theorem 3 are met, then c is PI secure for D for all

attackers. This is immediate by Theorem 1.

7 Related Work

In this section we consider the related work on security for dynamic policies and on

generic enforcement mechanisms for information-flow control. We already discuss the

knowledge-based definitions by Askarov and Chong [AC12] in detail in Section 3.

The generality of expressing dynamic policies per execution point can be identified

already in the early work by Goguen and Meseguer [GM82]. They introduce the notion

of conditional noninterference as a relation that should hold per step in the system, pro-

vided that some condition on the execution history holds. Conditional noninterference

has been recently revisited by Zhang [Zha12] who uses unwinding relations to present

a collection of properties that can be verified by existing proof assistants.

Broberg and Sands [BS09] developed another knowledge-based definition of secu-

rity for dynamic policies which only dealt with the attacker with perfect recall. The

approach was specialised to the specific dynamic policy mechanism Paralocks [BS10]

which uses part of the program state to vary the ordering between security labels.

Balliu et al. [BDLG11] introduce a temporal epistemic logic to express informa-

tion flow policies. Like our dynamic policies, the epistemic formulas are to be satisfied

per execution point. Dynamic policies can be individually checked by the ENCOVER

tool [BDLG12].

The way in which we define dynamic policies matches exactly the set of syn-

chronous dynamic policies: those policies that deterministically determine the active

policy based on an execution point. Conversely, an asynchronously changing policy

cannot be deterministically determined from an execution point, but is influenced by an

environment external to the running program.

There is relatively little work on the enforcement of asynchronous dynamic poli-

cies. Swamy et al. [SHTZ06] present the language RX where policies are define in a

role-based fashion, where membership and delegation of roles can change dynamically.

Hicks et al. [HTHZ05] present an extension to the DLM model, allowing the acts-for

hierarchy among principals to change while the program is running.

Both approaches however need a mechanism to synchronise the policy changes with

the program in order to enforce information-flow properties. RX uses transactions which

can rollback when a change in policy violates some of the flows in it, whereas the

work by Hicks et al. inserts automatically derived coercions that force run-time checks

whenever the policy changes.

A benefit of our enforcement approach is that commands need to be analysed only

once to be verified against multiple information-flow policies. This generality can also

be found in the work by Stefan et al. [SRMM11] presenting LIO, a Haskell library

for information-flow enforcement which is also parametric in the security policy. The

main differences between our approach and theirs is that LIO’s enforcement is dynamic

rather than static, while the enforced policies are static rather than dynamic.

8 Conclusions

We extended the flow-sensitive type system from [HS06] to provide for each output

channel individual dependency sets per point in the program and demonstrated that this

is sufficient to support dynamic information flow policies. We proved the type system

sound with respect to a straightforward two-run property which we showed sufficient

to imply knowledge-based security conditions.

As our approach allows for the core of the analysis to be performed even before the

policy is known, this enables us to reuse the results of the dependency analysis across

the verification of multiple types of policies. An interesting direction for future research

could be on the possibility to use the dependency analyses performed by advanced

slicing tools such as JOANA [JOA] and Indus [Ind].

Acknowledgements This work is partly funded by the Swedish agencies SSF and VR.

References

[AB04] T. Amtoft and A. Banerjee. Information Flow Analysis in Logical Form. In 11th

Static Analysis Symposium, volume 3148 of LNCS, pages 100–115. Springer, 2004.

[AC12] A. Askarov and C. Chong. Learning is change in knowledge: Knowledge-based

security for dynamic policies. In Computer Security Foundations Symposium, pages

308–322. IEEE, 2012.

[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-Insensitive Noninter-

ference Leaks More Than Just a Bit. In The 13th European Symposium on Research

in Computer Security, number 5283 in LNCS, pages 333–348. Springer, 2008.

[AR80] G. R. Andrews and R. P. Reitman. An axiomatic approach to information flow in

programs. ACM TOPLAS, 2(1):56–75, January 1980.

[AS07] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption

and key release policies. In Proc. IEEE Symp. on Security and Privacy, pages 207–

221, May 2007.

[BBL94] J.-P. Banâtre, C. Bryce, and D. Le Métayer. Compile-time detection of information

flow in sequential programs. In Proc. European Symp. on Research in Computer

Security, volume 875 of LNCS, pages 55–73. Springer-Verlag, 1994.

[BDLG11] M. Balliu, M. Dam, and G. Le Guernic. Epistemic temporal logic for information

flow security. In Programming Languages and Analysis for Security, PLAS ’11,

pages 6:1–6:12. ACM, 2011.

[BDLG12] M. Balliu, M. Dam, and G. Le Guernic. Encover: Symbolic exploration for informa-

tion flow security. In Computer Security Foundations Symposium (CSF), 2012 IEEE

25th, pages 30–44. IEEE, 2012.

[BNR08] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification policies

and modular static enforcement. In Proc. IEEE Symp. on Security and Privacy, pages

339–353. IEEE Computer Society, 2008.

[BS09] N. Broberg and David S. Flow-Sensitive Semantics for Dynamic Information Flow

Policies. In Programming Languages and Analysis for Security, 2009.

[BS10] N. Broberg and D. Sands. Paralocks – role-based information flow control and be-

yond. In Symposium on Principles of Programming Languages. ACM, 2010.

[BvDS13] N. Broberg, B. van Delft, and D. Sands. Paragon for Practical Programming with

Information-Flow Control. In Programming Languages and Systems, volume 8301

of LNCS, pages 217–232. 2013.

[CHH02] D. Clark, C. Hankin, and S. Hunt. Information flow for Algol-like languages. Journal

of Computer Languages, 28(1):3–28, April 2002.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information

flow. Comm. of the ACM, 20(7):504–513, July 1977.

[DHS15] B. van Delft, S. Hunt, and D. Sands. Very Static Enforcement of Dynamic Policies.

Technical Report 1501.02633, arXiv, 2015.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE

Symp. on Security and Privacy, pages 11–20, April 1982.

[GM84] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE

Symp. on Security and Privacy, pages 75–86, April 1984.

[HS06] S. Hunt and D. Sands. On Flow-sensitive Security Types. In Symposium on Principles

of Programming Languages, pages 79–90. ACM, 2006.

[HS11] S. Hunt and D. Sands. From Exponential to Polynomial-time Security Typing via

Principal Types. In Programming Languages and Systems. ESOP, number 6602 in

LNCS. Springer Verlag, 2011.

[HTHZ05] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of information-

flow policies. In Foundations of Computer Security Workshop, pages 7–18, 2005.

[Ind] Indus homepage. http://indus.projects.cis.ksu.edu/. Accessed: 2015-01-09.

[JOA] JOANA homepage. http://pp.ipd.kit.edu/projects/joana/. Accessed: 2015-01-09.

[SHTZ06] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing Policy Updates in

Security-Typed Languages. In Proceedings of the 19th IEEE Workshop on Computer

Security Foundations, 2006.

[SRMM11] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information

flow control in Haskell. In Proceedings of the 4th ACM symposium on Haskell, 2011.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.

J. Computer Security, 4(3):167–187, 1996.

[Zha12] C. Zhang. Conditional Information Flow Policies and Unwinding Relations. In Trust-

worthy Global Computing, volume 7173 of LNCS, pages 227–241. Springer, 2012.

