
Ensuring Secure Non-interference of Programs
by Game Semantics

Aleksandar S. Dimovski

IT University of Copenhagen, 2300 Copenhagen S, Denmark
adim@itu.dk

Abstract. Non-interference is a security property which states that im-
proper information leakages due to direct and indirect flows have not oc-
curred through executing programs. In this paper we investigate a game
semantics based formulation of non-interference that allows to perform
a security analysis of closed and open procedural programs. We show
that such formulation is amenable to automated verification techniques.
The practicality of this method is illustrated by several examples, which
also emphasize its advantage compared to known operational methods
for reasoning about open programs.

1 Introduction

We address the problem of ensuring secure information flow of programs, which
contain two kinds of global variables labeled as: “high security” (secert) and “low-
security” (public). Our aim is to prove that a program will not leak sensitive
information about its high-security inputs to an external observer (attacker)
who can see its low-security outputs. Thus we need to ensure that low-security
outputs in all computations of the program do not depend on sensitive high-
security inputs. This is also known as non-interference property [15], because
it states that secret data may not interfere with public data. We can show
that the non-interference property holds for a program if no difference in low-
security outputs can be observed between any two computations (executions) of
the program that differ only on their high-security inputs.

In this paper we propose a game semantics based approach to verify the
non-interference property of closed and open programs. Game semantics [1] is
a kind of denotational semantics which provides syntax-independent fully ab-
stract (sound and complete) models for a variety of programming languages.
This means that the obtained models are sound and complete with respect to
observational equivalence of programs, and thus they represent the most accu-
rate models we can find for a programming language. Compared to operational
semantics several features of game (denotational) semantics make it very promis-
ing for automatic verification of security properties. First, it provides models for
any open program fragments, i.e. programs with undefined identifiers such as
calls to library functions. This allows us to reason about open programs, which
is very difficult to do by using the known operational semantics based tech-
niques. Second, the interpretation of programs is compositional, i.e. it is defined

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by induction on the program structure, which means that the game semantics
model of a larger program is obtained from the models of its constituting sub-
programs, using a notion of composition. This is essential for achieving modular
analysis, which is necessity for scalability when the method is applied to larger
programs. Third, game semantics takes into account only extensional properties
(what the program computes) of programs. Thus, programs are modeled by how
they observationally interact with their environment, and the details of local-
state manipulation are hidden, which results in small models with a maximum
level of abstraction. This feature of game semantics is very important for effi-
cient establishing of non-interference, since the non-interference also abstracts
away from implementation details of a program and focusses on its visible input-
output behaviour. Finally, game semantics models have been given certain kinds
of concrete automata and process-theoretic representations, and in this way they
provide direct support for automatic verification (by model checking) and pro-
gram analysis of several interesting programming language fragments [9, 6]. Here
we present another application of algorithmic game semantics for automatically
verifying security properties of programs.

In this work we provide characterizations of non-interference based on the
idea of self-composition [2], and on the observation that game semantics is con-
sistent and computationally adequate w.r.t. the operational semantics. In this
way the problem of verifying non-interference is reduced to the verification of
safety properties of programs. This will enable the use of existing game semantics
based verification tools for checking non-interference. If the property does not
hold, the tool reports a counter-example trace witnessing insecure computations
of the given program.

1.1 Related work

The most common ways in which secret information can be leaked to an exter-
nal observer are direct and indirect leakages, which are described by the non-
interference property. There are also other ways to leak secret information within
programs using mechanisms, known as covert channels [15], whose primary task
is not information transfer. Timing and termination leaks are examples of such
covert channels. Here a program can leak sensitive information through its tim-
ing (resp., termination) behaviour, where an external attacker can observe the
total running time (resp., termination) of programs.

The first attempts to verify security properties were by Denning in [4]. His
work on program certification represents an efficient form of static program anal-
ysis that can be used to ensure secure information flows. However, this method
offers only intuitive arguments for its correctness, and no formal proof is given.

Recently, a new formal approach has been developed to ensure security prop-
erties of programs by using security-type systems [11]. In this approach, for ev-
ery program component are defined security types, which contain information
about their types and security levels. Programs that are well-typed under these
type systems satisfy certain security properties. Type systems for enforcing non-
interference of programs have been proposed by Volpano and Smith in [16], and

subsequently they have been extended to detect also covert timing channels in
[17]. The main drawback of this approach is its imprecision, since many se-
cure programs are not typable and so are rejected. For example, in the case of
non-interference the secure program: l := h; l := 0, where l and h are low- and
high-security variables respectively, is not typable because there is an insecure
direct flow in its subprogram l := h. One way to address this problem is to use
static (information-flow and control-flow) analysis [3]. However, this approach is
still imprecise due to the over-approximation and rejects many secure programs.

Semantics based models, that formalize security in terms of program behav-
ior, appear to be essential for allowing more precise security analysis of programs.
Security properties can be naturally expressed in terms of end-to-end program
behaviour and, thus, become suitable for reasoning by semantic models of pro-
grams. For example, in [12, 14] programming-language semantics has been used
to rigorously specify and verify the non-interference property.

Game semantics was also previously used for information-flow analysis [13],
but based on approximate representations of game semantics models. This was
considered only as a possible application of the broader approach to develop
program analysis by abstract interpretation in the setting of game semantics.
However, this approach did not result in any practical implementations.

2 The Language

Idealized Algol (IA) [1] is a call-by-name λ-calculus extended with imperative
features and locally-scoped variables. The data types D are finite integers and
booleans (D ::= intn = {0, . . . ,n − 1} | bool = {tt ,ff }). The base types B are
expressions, commands, and variables (B ::= expD | com | varD). In this paper
we work with the second-order fragment of IA, denoted as IA2, where function
types T are restricted to have arguments of base types (T ::= B | B → T).

Well-typed terms are given by typing judgements of the form Γ ` M : T ,
where Γ = x1 : T1, . . . , xk : Tk is a type context consisting of a finite number of
typed free identifiers. Typing rules are standard [1], but the general application
rule is broken up into the linear application and the contraction rule 1.

Γ ` M : B → T ∆ ` N : B
Γ,∆ ` MN : T

Γ, x1 : T , x2 : T ` M : T ′

Γ, x : T ` M [x/x1, x/x2] : T ′

We use these two rules to have control over multiple occurrences of free identi-
fiers in terms during typing. The language also contains a set of constants and
constructs: i : expintn (0 ≤ i < n), tt ,ff : expbool, skip : com, diverge : com,
op : expD → expD → expD ′, ; : com → B → B , if : expbool → B → B → B ,
while : expbool → com → com, := : varD → expD → com, ! : varD → expD ,
newD : (varD → com) → com, mkvarD : (expD → com) → expD → varD . Each
construct represents a different programming feature, which can also be given
in the more traditional form. For example, sequential composition ; (M ,N) ≡
1 M [N /x] denotes the capture-free substitution of N for x in M .

M ; N , branching if(M ,N1,N2) ≡ if M thenN1 elseN2, assignment := (M ,N) ≡
M := N , de-referencing 2 !(M) ≡ M , etc. We say that a term M is closed if
` M : T is derivable. Any input/output operation in a term is done through
global variables (i.e. free identifiers of type varD). So an input is read by de-
referencing a global variable, while an output is written by an assignment to a
global variable.

A type context is called var-context if all identifiers in it have type varD .
Given a var-context Γ , we define a Γ -state s as a (partial) function assigning
data values to the variables in Γ . We write St(Γ) for the set of all such states.
Let s be a Γ -state and s′ be a Γ ′-state such that all variables in Γ and Γ ′ are
distinct. Then, s⊗ s′ is a {Γ, Γ ′}-state, such that s⊗ s′(x) is equal either to s(x)
if x ∈ Γ , or to s′(x) if x ∈ Γ ′. The canonical forms of the language are defined
by V ::= x | v | λ x .M | skip | mkvarDMN , where x ranges over identifiers
and v ranges over data values of D .

The operational semantics is defined by a big-step reduction relation: Γ `
M , s =⇒ V , s′, where Γ is a var-context, and s, s′ represent Γ -states before and
after evaluating the (well-typed) term Γ ` M : T to a canonical form V . Reduc-
tion rules are standard (see [1] for details). Since the language is deterministic,
every term can be reduced to at most one canonical form.

Given a term Γ ` M : com, where Γ is a var-context, we say that M termi-
nates in state s, written M , s ⇓, if Γ ` M , s =⇒ skip, s′ for some state s′. If M
is a closed term then we abbreviate the relation M , ∅ ⇓ with M ⇓. We define
a program context C [−] ∈ Ctxt(Γ,T) to be a term with (several occurrences
of) a hole in it, such that if Γ ` M : T is derivable then ` C [M] : com. We
say that a term Γ ` M : T is an approximate of a term Γ ` N : T , denoted
by Γ ` M @∼ N , if and only if for all program contexts C [−] ∈ Ctxt(Γ,T), if
C [M] ⇓ then C [N] ⇓. If two terms approximate each other they are considered
observationally-equivalent, denoted by Γ ` M ∼= N .

Let Γ,∆ ` M : T be a term where Γ is a var -context and ∆ is an arbitrary
context. Such terms are called split terms, and we denote them as Γ | ∆ ` M : T .
If ∆ is empty, then these terms are called semi-closed. The semi-closed terms
have only some global variables, and the operational semantics is defined only
for them. In the following we fix a context Γ1 = l : varD , h : varD ′, where
l represents a low-security (public) variable and h represents a high-security
(secret) variable. We say that h is non-interfering with l in Γ1 | − ` M : com if
the same values for l and different values for h in a state prior to evaluation of
the term M always result in a state after the evaluation of M where values for
l are the same.

Definition 1. A variable h is non-interfering with l in Γ1 | − ` M : com if

∀ s1, s2 ∈ St(Γ1). s1(l) = s2(l) ∧ s1(h) 6= s2(h) ∧
Γ1 ` M , s1 =⇒ skip, s1

′ ∧ Γ1 ` M , s2 =⇒ skip, s2
′

⇒ s ′1(l) = s ′2(l)
(1)

2 De-referencing is made explicit in the syntax. Thus, !M is a term of type expD
denoting the contents of a term M of type varD .

As it was argued in [2], the formula (1), where two evaluations (computations)
of the same term are considered, can be replaced by an equivalent formula, where
we consider only one evaluation of the sequential composition of the given term
with another its copy, such that the global variables are suitably renamed in the
latter. So sequential composition enables us to place these two evaluations one
after the other. Let Γ1 ` M : com be a term, we define Γ ′1 = l ′ : varD , h ′ : varD ′,
and M ′ = M [l ′/l , h ′/h]. We will use these definitions for Γ ′1 and M ′ in the
rest of the paper. The following can be shown: Γ1 ` M , s1 =⇒ skip, s1

′ ∧ Γ ′1 `
M ′, s2 =⇒ skip, s2

′ iff Γ1, Γ
′
1 ` M ; M ′, s1 ⊗ s2 =⇒ skip, s1

′ ⊗ s2
′. In this way, we

provide an alternative definition to formula (1) as follows. We say that a variable
h is non-interfering with l in a semi-closed term Γ1 | − ` M : com if

∀ s1 ∈ St(Γ1), s2 ∈ St(Γ ′1). s1(l) = s2(l ′) ∧ s1(h) 6= s2(h ′) ∧
Γ1, Γ

′
1 ` M ; M ′, s1 ⊗ s2 =⇒ skip, s1

′ ⊗ s2
′

⇒ s ′1(l) = s ′2(l ′)
(2)

It is easy to show that (1) and (2) are equivalent.

Definition 2. We say that a variable h is non-interfering with l in a split
(open) term Γ1 | ∆ ` M : com, where ∆ = x1 : T1, . . . , xk : Tk , if for all program
contexts C [−] ∈ Ctxt(Γ,T) that do not contain any occurrences of variables h
and l, we have that h is non-interfering with l in Γ1 | − ` C [M] : com.

Finally, we say that a term is secure if all global high-security variables are
non-interfering with any of its global low-security variables.

3 Game Semantics

The game semantics model for IA2 can be represented by regular languages
[9], which we sketch below. In game semantics, a kind of game is played by
two participants: the Player, who represents the term being modeled, and the
Opponent, who represents the context (environment) in which the term is used.
The two alternate to make moves, which can be either a question (a demand for
information) or an answer (a supply of information). Types are interpreted as
arenas in which games are played, computations as plays of a game, and terms
as strategies (sets of plays) for a game. In the regular-language representation,
arenas (types) are expressed as alphabets of moves, plays (computations) as
words, and strategies (terms) as regular-languages over alphabets of moves.

Each type T is interpreted by an alphabet of moves A[[T]], which can be
partitioned into two subsets of questions Q[[T]] and answers A[[T]].

Q[[expD]] = {q} A[[expD]] = D

Q[[com]] = {run} A[[com]] = {done}
Q[[varD]] = {read,write(a) | a ∈ D} A[[varD]] = D ∪ {ok}

For function types, we have A[[B1
1→...→Bk

k→B]] =
∑

1≤i≤k Ai
[[Bi]]

+A[[B]], where +
means a disjoint union of alphabets. We will use superscript tags to keep record

from which type of the disjoint union each move originates. Each move in an
alphabet represents an observable action that a term of the corresponding type
can perform. So for expressions, we have a question move q to request the value
of the expression, and possible responses are taken from the data type D . For
commands, there is a question move run to initiate a command, and an answer
move done to signal successful termination of a command. For variables, we have
moves for writing to the variable: write(a), which is acknowledged by the move
ok, and for reading from the variable: a question move read, and answers are
from D .

Terms in β-normal form are interpreted by regular languages specified by
extended regular expressions R. They are defined inductively over finite alphabets
A using the following operations: the empty language ∅, the empty word ε, the
elements of the alphabet a ∈ A, concatenation R · S , Kleene star R∗, union
R + S , intersection R ∩ S , restriction R |A′ (A′ ⊆ A) which removes from words
of R all letters from A′, substitution R[S/w] which replaces all occurrences of
the subword w in words of R by words of S , composition R o

9 S which is defined
below, and shuffle R ./ S which generates the set of all possible interleavings
w1 ./ w2 for any words w1 of R and w2 of S . Composition of regular expressions
R defined over alphabet A1 + B2 and S over B2 + C3 is given as follows:

R o
9B2 S = {w

[
s1/a2 · b2

]
| w ∈ S , a2 · s1 · b2 ∈ R}

where R is a set of words of the form a2 · s1 · b2, such that a2, b2 ∈ B2 and s
contains only letters from A1. So the composition is defined over A1 + C3, and
all letters of B2 are removed. It is a standard result that any extended regular
expression obtained from the operations above denotes a regular language [9,
pp. 11–12], which can be recognized by a finite automaton.

A term Γ ` M : T is interpreted by a regular expression [[Γ ` M : T]] defined
over the alphabet

A[[Γ`T]] =
(∑
x :T ′∈Γ

Ax
[[T ′]]

)
+A[[T]]

where all moves corresponding to types of free identifiers are tagged with the
names of those free identifiers. Every word in [[Γ ` M : T]] corresponds to a
complete play in the strategy for Γ ` M : T , and it represents the observable
effects of a completed computation of the term.

Free identifiers are interpreted by the so-called copy-cat (identity) strategies,
which contain all possible computations that terms of that type can have. In
this way they provide the most general context in which an open term can be
used. The general definition is:

[[Γ, x : Bx ,1
1 → . . .Bx ,k

k → Bx ` x : B1
1 → . . .Bk

k → B]] =∑
q∈Q[[B]]

q · qx ·
(∑
1≤i≤k

(
∑

q1∈Q[[Bi]]

qx ,i
1 · q i

1 ·
∑

a1∈A[[Bi]]

ai
1 · a

x ,i
1)
)∗ · ∑

a∈A[[B]]

ax · a

So if a first-order non-local function x is called, it may evaluate any of its ar-
guments, zero or more times, in an arbitrary order and then it can return any

allowable answer from A[[B]] as a result. For example, [[Γ, x : expD ` x : expD]] =
q · qx ·

∑
n∈D nx ·n. Here Opponent starts any play (word) by asking what is the

value of this expression with the move q, and Player responds by asking what is
the value of the non-local expression x with the move qx . Then Opponent can
provide an arbitrary value n from D for x , which will be copied by Player as
answer to the first question q.

For the linear application, we have [[Γ,∆ ` M N : T]] = [[∆ ` N : B1]] o
9A1

[[B]]

[[Γ ` M : B1 → T]]. The contraction [[Γ, x : T x ` M [x/x1, x/x2] : T ′]] is obtained
from [[Γ, x1 : T x1 , x2 : T x2 ` M : T ′]], such that the moves associated with x1
and x2 are de-tagged so that they represent actions associated with x .

To represent local variables, we first need to define a (storage) ‘cell’ strategy
cellv which imposes the good variable behaviour on the local variable. So cellv
responds to each write(n) with ok, and plays the most recently written value in
response to read, or if no value has been written yet then answers the read with
the initial value v . Then we have:

cellv = (read · v)∗ ·
(∑
n∈D

write(n) · ok · (read · n)∗
)∗

[[Γ ` newD x := v inM : B]] =
(
[[Γ, x : varD ` M]] ∩ (cellxv ./ A∗[[Γ`B]])

)
|Ax

[[varD]]

Note that all actions associated with x are hidden away in the final model for
new, since x is a local variable and so not visible outside of the term.

Language constants and constructs are interpreted as follows:

[[v : expD]] = {q · v} [[skip : com]] = {run · done} [[diverge : com]]=∅
[[op : expD1 × expD2 → expD ′]] = q · q1 ·

∑
m∈D m1 · q2 ·

∑
n∈D n2 · (m op n)

[[; : com1 → com2 → com]] = run · run1 · done1 · run2 · done2 · done

[[if : expbool1 → com2 → com3 → com]] = run · q1 · tt1 · run2 · done2 · done+

run · q1 · ff 1 · run3 · done3 · done

[[while : expbool1 → com2 → com]] = run · (q1 · tt1 · run2 · done2)∗ · q1 · ff 1 · done

[[:=: varD1 → expD2 → com]] =
∑

n∈D run · q2 · n2 · write(n)1 · ok1 · done

[[! : varD1 → expD]] =
∑

n∈D q · read1 · n1 · n

We can see that any constant v is modeled by a word where the initial question
q is answered by the value of that constant, whereas the “do-nothing” command
skip is modeled by a word where Player immediately responds to the initial
question run with done. The regular expression for any arithmetic-logic operation
op asks for values of the arguments with moves q1 and q2, and after obtaining
them by m and n responds to the initial question q by the value (m opn).

Example 1. Consider the term:

n : exp int2
n , c : comc ` newint2 x := 0 in if (!x = n) then c else skip : com

The model of this term is: run · qn · (0n · runc · donec + 1n) · done.
In the model are represented observable interactions of the term with its en-

vironment, so we can see only the moves associated with the non-local identifiers

n and c as well as with the top-level type com. When the term (Player) asks
for the value of n with the move qn , the environment (Opponent) provides an
answer which can be 0 or 1, because the data type of n is int2 = {0, 1} . If the
value 0 is provided for n, then since x has also initial value 0 the command c is
executed by moves runc and donec . Otherwise, if 1 is provided for n, the term
terminates without running c. Note that all moves associated with the local
variable x are not visible in the final model. ut

3.1 Formal Properties

We first show how this model is related with the operational semantics. In order
to do this, the state needs to be represented explicitly in the model. A Γ -state
s, where Γ = x1 : varD1, . . . , xk : varDk , is interpreted by the following strategy:

[[s : varDx1
1 × . . .× varDxk

k]] = cellx1s(x1) .// cell
xk
s(xk)

So [[s]] is defined over the alphabet Ax1
[[varD1]]

+ . . . + Axk
[[varDk]]

, and words in [[s]]

are such that projections onto xi -component are the same as those of suitable
initialized cells(xi) strategies. The interpretation of Γ ` M : com at state s is:

[[Γ ` M]] ◦ [[s]] =
(
[[Γ ` M]] ∩ ([[s]] ./ A∗[[com]])

)
|A[[Γ]]

which is defined over the alphabet A[[com]]. This interpretation can be studied
more closely by considering the words in which moves associated with Γ are not
hidden. Such words are called interaction sequences. For any interaction sequence
run · t · done from [[Γ ` M]] ◦ [[s]], where t is an even-length word over A[[Γ]], we
say that it leaves the state s′ if the last write moves in each xi -component are
such that xi is set to the value s′(xi). For example, let s = (x 7→ 1, y 7→ 2), then
the interaction sequence, run · write(5)y · oky · readx · 1x · done, leaves the state
s′ = (x 7→ 1, y 7→ 5). The following results are proved in [1] for the full IA, but
they also hold for the fragment we use here.

Lemma 1. If Γ ` M : {com, expD} and Γ ` M , s =⇒ V , s ′, then for each
interaction sequence i · t from [[Γ ` V]]◦ [[s ′]] (i is an initial move) we have some
interaction i · t ′ · t from [[Γ ` M]] ◦ [[s]] such that t ′ is a word over A[[Γ]] which
leaves the state s ′. Moreover, every interaction sequence from [[Γ ` M]] ◦ [[s]] is
of this form.

Theorem 1 (Consistency). If Γ ` M , s =⇒ V , s ′ then [[Γ ` M]] ◦ [[s]] = [[Γ `
V]] ◦ [[s ′]].

Theorem 2 (Computational Adequacy). If [[Γ ` M]]◦ [[s]] = run ·done then
Γ ` M , s =⇒ skip, s ′.

Theorem 3 (Full Abstraction). Γ ` M ∼= N iff [[Γ ` M]] = [[Γ ` N]].

Suppose that there is a special free identifier abort of type comabort in Γ .
We say that a term Γ ` M is safe iff Γ ` M [skip/abort]@∼M [diverge/abort];
otherwise we say that a term is unsafe. Since the game-semantics model is fully
abstract, the following can be shown (see also [5]).

Lemma 2. A term Γ ` M is safe iff [[Γ ` M]] does not contain any play with
moves from Aabort

[[com]], which we call unsafe plays.

For example, [[abort : comabort ` skip ; abort : com]] = run · runabort · doneabort ·
done, so this term is unsafe.

4 Checking Non-interference

We first describe how the game semantics model can be used to check the non-
interference property of a semi-closed term.

Theorem 4. Let Γ1 | − ` M : com be a semi-closed term. We have that 3 4

[[k : expD , k ′ : expD ′, abort : com ` newD l := k in newD′ h := k ′ in
newD l ′ := !l in newD′ h ′ := k ′ in
M ; M ′; if (!l 6=!l ′) then abort : com]]

(3)

contains no unsafe plays Iff h is non-interfering with l in Γ1 | − ` M : com as
defined by (2).

Proof. Let us assume that the term in (3) is safe. Let ∆ = k : expD , k ′ : expD ′,
then we have:

[[∆, abort : com ` newD l := k in newD′ h := k ′ in newD l ′ := !l in newD′ h ′ := k ′ in
M ; M ′; if (!l 6=!l ′) then abort]] =

[[Γ1, Γ
′
1, abort : com ` M ; M ′; if (!l 6=!l ′) then abort]] ◦ [[s1 ⊗ s2]]

where s1 = (l 7→ v1, h 7→ v2) and s2 = (l ′ 7→ v1, h
′ 7→ v ′2), for arbitrary values

v1 ∈ D , v2, v
′
2 ∈ D ′. By assumption [[Γ1, Γ

′
1, abort : com ` M ; M ′; if (!l 6=

!l ′) then abort]] ◦ [[s1 ⊗ s2]] is safe, so any of its interaction sequences leaves the
state s′1 ⊗ s′2, such that s′1(l) = s′2(l ′). Otherwise, we would have unsafe plays.
The last if statement does not change the state, because it does not contain
write moves. So by Theorem 2 and Lemma 1 it follows that the fact (2) holds.

For the opposite direction, we assume that the fact (2) holds. Let consider
[[Γ1, Γ

′
1, abort : com ` M ; M ′]] ◦ [[s1 ⊗ s2]], where s1 = (l 7→ v1, h 7→ v2) and

s2 = (l ′ 7→ v1, h
′ 7→ v ′2), for arbitrary values v1 ∈ D , v2, v

′
2 ∈ D ′. By Theorem 1

and Lemma 1, any interaction sequence in [[Γ1, Γ
′
1, abort : com ` M ; M ′]]◦[[s1⊗s2]]

leaves the state s′1 ⊗ s′2, such that s′1(l) = s′2(l ′). Therefore the last if statement
in [[Γ1, Γ

′
1, abort : com ` M ; M ′; if (!l 6=!l ′) then abort]] ◦ [[s1 ⊗ s2]] is evaluated in

the state s′1 ⊗ s′2, and so its condition always evaluates to false, which implies
that this model has no unsafe plays. Thus, the term in (3) is safe. ut
3 We use the free identifier k in (3) to initialize the variables l and l ′ to an arbitrary

value from D which is the same for both l and l ′, while k ′ is used to initialize the
variables h and h ′ to arbitrary (possibly different) values from D ′.

4 After declaring local variables in the term in (3), we can add the command: if (!h =
!h ′) then diverge, in order to eliminate from the model all redundant computations
for which initial values of h and h ′ are the same.

We can verify the non-interference property of a semi-closed term by checking
safety of the term extended as in the formula (3). If its model is safe, then the
term does satisfy the non-interference property; otherwise a counter-example
(unsafe play) is reported, which shows how high-security information can be
leaked by the term.

Example 2. Consider the term from the Introduction section:

l , h : var int2 ` l := !h : com

To verify that h is non-interfering with l , we need to check the safety of the
following term obtained by (3):

k , k ′ : expint2, abort : com ` newint2 l := k in newint2 h := k ′ in
newint2 l ′ := !l in newint2 h ′ := k ′ in
l := !h; l ′ := !h ′; if (!l 6=!l ′) then abort : com

The game semantics model of this term contains all possible observable inter-
actions of the term with its environment, which contains non-local identifiers k ,
k ′, and abort. The model is represented by the following regular expression:

run · qk · (0k + 1k) · qk ′ ·
(
0k

′ · qk ′ · 0k ′
+ 1k

′ · qk ′ · 1k ′
+

(0k
′ · qk ′ · 1k ′

+ 1k
′ · qk ′ · 0k ′

) · runabort · doneabort
)
· done

where the value for k read from the environment is used to initialize l and l ′,
and the two values read for k ′ are used to initialize h and h ′ respectively.

We can see that this model contains four unsafe plays corresponding to all
possible combinations of initial values (from int2 = {0, 1}) for l , h, l ′, and h ′,
such that the values for l and l ′ are the same and the values for h and h ′ are
different. For example, an unsafe play is:

run · qk · 0k · qk
′
· 0k

′
· qk

′
· 1k

′
· runabort · doneabort · done

corresponding to two computations of the given term with initial values of h: 0
and 1 respectively, which will have two different final values for l . The interaction
sequence corresponding to this unsafe play, where all interactions with local
variables l , h, l ′, and h ′ are not hidden, is the following:

run · qk · 0k · write(0)l · okl · qk ′ · 0k ′ · write(0)h · okh · readl · 0l · write(0)l
′ · okl

′
·

qk
′ · 1k ′ · write(1)h

′ · okh
′
· readh · 0h · write(0)l · okl · readh′

· 1h′ ·
write(1)l

′ · okl
′
· readl · 0l · readl′ · 1l′ · runabort · doneabort · done

It becomes apparent from this interaction sequence that the different initial
values for h and h ′ are propagated as final values for l and l ′ respectively, which
in effect causes the abort to be executed.

Let us check the security of the term:

l , h : var int2 ` l := !h; l := 0 : com

The model of the term extended by using (3) is given by:

run · qk · (0k + 1k) · qk
′
· (0k

′
+ 1k

′
) · qk

′
· (0k

′
+ 1k

′
) · done

This model contains no unsafe plays, and so we can conclude that the corre-
sponding term is secure. ut

To verify non-interference and security of a split (open) term Γ1 | ∆ ` M :
com, where ∆ = x1 : T1, . . . , xk : Tk , we need to check the state after evaluating

Γ1, Γ
′
1 ` C [M];C [M ′], s1 ⊗ s2 (4)

for all contexts C [−] that do not contain any occurrences of variables from Γ1

and Γ ′1, and for all states s1 ∈ St(Γ1), s2 ∈ St(Γ ′1), such that s1(l) = s2(l ′). We
can decompose the term C [M] as follows:

C [M] =
(
λ u : T1 × . . .× Tk → com .C [u]

)
(λ x1 : T1. λ xk : Tk .M)

and its game semantics is: [[Γ1 ` C [M]]] = [[Γ1, ∆ ` M]] o
9 [[u ` C [u]]]. Since

variables from Γ1 and Γ ′1 do not occur in C [−], the state s1 ⊗ s2 in the term in
(4) can be changed only when terms M or M ′ are evaluated in the context C [−].
As for the case of semi-closed terms, we can check the values of l and l ′ in the
state left after evaluating the term M ;M ′. But now terms M and M ′ are run in
the same context C [−], so we are interested in examining only those behaviors
of M ; M ′ in which free identifiers from ∆ behave uniformly in M and M ′. If
we remove these additional constraints, we obtain an over-approximated model
[[Γ1, Γ

′
1, ∆ ` M ; M ′]] in which M and M ′ are run in possibly different contexts,

i.e. all identifiers from ∆ can behave freely in both M and M ′.

Theorem 5. Let Γ1 | ∆ ` M : com be a split (open) term, and ∆ = x1 :
T1, . . . , xk : Tk . If the model

[[k : expD , k ′ : expD ′, abort : com, ∆ ` newD l := k in newD′ h := k ′ in
newD l ′ := !l in newD′ h ′ := k ′ in
M ; M ′; if (!l 6=!l ′) then abort : com]]

(5)

contains no unsafe plays, Then h is non-interfering with l in Γ1 | ∆ ` M : com.

Note that if an unsafe play is found in (5), it does not follow that M is insecure,
i.e. the found counter-example may be spurious introduced due to the over-
approximation in (5). This is the case, since free identifiers of type T are modeled
by copy-cat strategies, which contain all possible behaviours of terms of type T .
So by using game semantics we generate the most general context for the term
M ; M ′ in (5), but we would like the obtained context for M to be the same for
M ′, because we use the term M ;M ′ only to compare two different computations
of the same term M .

Example 3. Consider the term:

l , h : varint2, f : comf ,1 → comf ` f (l := 1) : com

where f is a non-local call-by-name function. The model for this term is:

run · runf · (runf ,1 · write(1)l · okl · donef ,1)∗ · donef · done

It represents all possible computations of the term, i.e. f may evaluate its ar-
gument, zero or more times, and then the term terminates successfully. Notice
that moves tagged with f represent the actions of calling and returning from the
function f , while moves tagged with f , 1 are the actions caused by evaluating
the first argument of f . We can see that whenever f calls its argument, the value
1 is written into l .

We can check that the model corresponding to the extended term obtained
by (5) contains the unsafe play:

run · qk · 0k · qk ′ · 1k ′ · qk ′ · 0k ′ · runf · runf ,1 · donef ,1 · donef ·
runf · donef · runabort · doneabort · done

It shows two computations with the initial value of l set to 0, where the first
one corresponds to evaluating f which calls its argument once, and the second
corresponds to evaluating f which does not call its argument at all. Both will have
two different final values for l : 1 and 0 respectively. But this represents a spurious
counter-example, since f does not behave uniformly in the two computations,
i.e. it calls its argument in the first but not in the second computation. ut

In order to address the above problem, we define an under-approximation of
the required model, which is a regular language and can be used for deciding
insecurity of split terms. Suppose that Γ1 | ∆ ` M is derived without using the
contraction rule for ∆, i.e. any identifier from ∆ occurs at most once in M . We
define a model which runs M and M ′ in the same context as follows:

[[Γ1, Γ
′
1 | ∆ ` M ; M ′]]m = [[Γ1, Γ

′
1 | ∆ ` M ; M ′]] ∩

(deltax1T1,m
.// deltaxkTk ,m

./ A∗[[Γ1,Γ ′
1`com]])

(6)

where m ≥ 0 denotes the number of times that identifiers from ∆ of first-order
function type may evaluate their arguments, and deltaT ,m runs an arbitrary
behaviour of type T zero, once, or two times. It is defined inductively on types
T as follows.

deltaexpD,m = ε+ q ·
∑

n∈D n · (ε+ q · n)
deltacom,m = ε+ run · done · (ε+ run · done)
deltavarD,m = ε+ (read ·

∑
n∈D n · (ε+ read · n)) +

(
∑

n∈D write(n) · ok · (ε+ write(n) · ok))

for any m ≥ 0. In the case of first-order function types T , in order deltaT ,m
to be a regular language, we have to limit the number of times its arguments
can be evaluated. For simplicity, we will only give the definition for com→ com
whose argument can be evaluated at most m times.

deltacom1→com,m =ε+run ·
m∑

r=0

(run1 ·done1)r ·done ·(ε+run ·(run1 ·done1)r ·done)

If T = B1 → . . . → Bk → B , i.e. it has k arguments, we have to remember
not only how many times arguments are evaluated in the first call, but also the
exact order in which arguments are evaluated.

Let some identifier from ∆ occur more than once in M . Let Γ1 | ∆1 ` M1

be derived without using the contraction for ∆1, such that Γ1 | ∆ ` M is
obtained from it by applying one or more times the contraction rule for identifiers
from ∆. In this case, [[Γ1, Γ

′
1 | ∆ ` M ; M ′]]m is generated by first computing

[[Γ1, Γ
′
1 | ∆1 ` M1; M ′

1]]m as described above, and then by suitable tagging all
moves associated with several occurrences of the same identifier from ∆. So we
have that [[Γ1, Γ

′
1, ∆ ` M ; M ′]]m , for any m ≥ 0, is an under-approximation of

the required model where M and M ′ are run in the same context. Thus, we can
use it to check (in)security of split terms.

Theorem 6. Let Γ1 |∆ ` M be a split (open) term, and ∆ = x1 :T1, . . . , xk :Tk .
If the model

[[k : expD , k ′ : expD ′, abort : com, ∆ ` newD l := k in newD′ h := k ′ in
newD l ′ := !l in newD′ h ′ := k ′ in
M ; M ′; if (!l 6=!l ′) then abort : com]]m

(7)

is unsafe (contains unsafe plays), Then Γ1 | ∆ ` M does not satisfy the non-
interference property between l and h.

In the above definition of deltaT ,m we allow an arbitrary behavior of type
T to be played zero, once, or two times, since it is possible that a term does
not evaluate an occurrence of a free identifier. In our case, this means that it is
possible an occurrence of a free identifier from ∆ to be evaluated only by M , or
only by M ′, or by none of them.

Example 4. Consider the term:

Γ1 | z ,w : exp int2 ` if (!h > 0) then l := z else l := w : com

This term is not secure, and the counter-example witnessing this contains one
computation where l is updated by z , and another one where l is updated by
w . So this counter-example will be captured by the model defined in (7), only if
deltaT ,m is defined as above, i.e. it may run exactly once a behaviour of T . ut

We can combine results in Theorems 5 and 6 to obtain a procedure for
verifying the non-interference between l and h in Γ1 |∆ ` M as follows. First, we
generate the model in (7) for some m > 0 and check its safety. If an unsafe play
is found, then it witnesses that the non-interference property is not satisfied.
Otherwise, if the model in (7) is safe, we generate the model in (5) and check
its safety. If no unsafe plays are found, then h is non-interfering with l in M .

5 Applications

The game semantics model presented here can be also given concrete representa-
tion by using the CSP process algebra [6]. The verification tool in [6] automati-
cally converts an IA term into a CSP process that represents its game semantics.

Safety of terms is then verified by calls to the FDR tool, which is a model checker
for the CSP process algebra. In the input syntax, we use simple type annotations
to indicate what finite sets of integers will be used to model free identifiers and
local variables of type integer. An operation between values of types intn1 and
intn2

produces a value of type intmax{n1,n2}. The operation is performed modulo
max{n1,n2}. The tool in [6] was used to practically check the security of the
following terms.

We first analyse an introductory (semi-closed) term M1:

l , h : varint3 ` newint3 x := 0 in newint3 y :=!h in
while (!x <!y) do x :=!x + 1;
if (!x > 0) then l := 1 : com

whose model is given by: run · readh ·
(
0h + (1h + 2h) · write(1)l · okl

)
· done.

We can see that if the value of h read from the environment is 0 then the
guards of while and if commands are both false causing the term to terminate
immediately. Otherwise, if the value of h is 1 or 2, then the body of while where
x is increased will be run once or two times respectively, which makes the guard
of if command to evaluate to true and subsequently the value 1 is written into l .

If the term M1 is extended by using formula (3), we obtain a counter-example
(unsafe play) corresponding to two computations with initial values of l set to
0 and the initial value of h set to 0 in the first and to 1 (or 2) in the second
computation.

Let us consider the term M2 defined as:

l , h : varint2, f : comf ,1 → comf ` f (if (!h 6= 0) then l := 1) : com

run

done

runf runf,1
readh

1h

0h
donef,1

f done

write(1)
l

okl

Fig. 1. The model for M2

The model representing this term is shown in Fig. 1. When f calls its argu-
ment, the term asks for the value of h by readh . If the value provided from the
environment is different from 0, the value 1 is written into l .

Insecurity of this term can be established by checking safety of the extended
term obtained by the formula (7) for any m ≥ 1. For example, if m = 1 the
following genuine unsafe play is found:

run · qk · 0k · qk ′ · 1k ′ · qk ′ · 0k ′ · runf · runf ,1 · donef ,1 · donef ·
runf · runf ,1 · donef ,1 · donef · runabort · doneabort · done

This unsafe play corresponds to one computation where l is set to 0, h is set
to 1, and the argument of f is evaluated once; and another computation where
initial values of l and h are both 0, and f also calls its argument once. The final
value of l will be 1 in the first case and 0 in the second.

Consider the term M3 which implements the linear-search algorithm:

l , h : varint2, x [k] : varint2 `
newintk+1

i := 0 in newint2 y := !h in
newbool present := ff in
while (i < k) do { if (!x [i] =!y) then present := tt ; i :=!i + 1; }
if (¬ !present) then l := 1 : com

The meta variable k > 0 represents the array size. The term first copies the
input value of h into a local variable y . The linear-search algorithm is then used
to find whether the value stored in y is in the array x . If the the value is not
found, l is updated to 1.

done

run readh 1h

0
h

readx[0]

readx[0]

1
x[0]

0 x[0]

0x[0]

1
x[0]

readx[1]

readx[1]

readx[1]

0,1
x[1]

1
x[1]

0 x[1] 0 x[1]

write(1)
l

okl1
x[1]

Fig. 2. The model for M3 with k=2

In Fig. 2 is shown the model for this term with k = 2. If the value read from
the environment for h is not present in any element of the array x , then the value
1 is written into l . Otherwise, the term terminates without writing into l . We can
analyse this term with different values of k and different finite sets of integers
used to model global variables l , h, and the array x , by generating the model
in (7) for m = 0. We obtain that this term is insecure, with a counter-example
corresponding to two computations, such that initial values of h are different,
the initial value of l is 0, and the search succeeds in the one and fails in the other
computation, thus they are leaving two different final values for l .

6 Conclusion

We presented a game semantics based approach for verifying security properties
of closed and open sequential programs. The applicability of this approach was
illustrated with several examples.

This work also has the potential to be applied to problems such as security of
terms with infinite data types and verifying various types of security properties.

If we want to verify security of terms with infinite data types, such as integers,
we can use some of the existing methods based on game semantics for verifying
safety of such terms, such as counter-example guided abstraction refinement
procedure (ARP) [5] or symbolic representation of game semantics [8]. In [7],
game semantics based approach is used to verify some other security properties,
such as timing and termination leaks. To detect such leaks, slot-game semantics
[10] for a quantitative analysis of programs is used.

References

1. Abramsky, S., and McCusker, G: Game Semantics. In Proceedings of the 1997
Marktoberdorf Summer School: Computational Logic , (1998), 1–56. Springer.

2. Barthe, G., D’Argenio, P.R., Rezk, T: Secure information flow by self-composition.
In: IEEE CSFW 2004. pp. 100–114. IEEE Computer Society Press, (2004).

3. Clark, D., Hankin, C., and Hunt, S: Information flow for Alogol-like languages. In
Computer Languages 28(1), pp. 3–28, (2002).

4. Denning, D.E: Cryptography and Data Security. Addison-Wesley, Reading, MA,
1982.

5. Dimovski, A., Ghica, D. R., Lazić, R. Data-Abstraction Refinement: A Game
Semantic Approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS vol. 3672,
pp. 102–117. Springer, Heidelberg (2005).

6. Dimovski, A., Lazić, R: Compositional Software Verification Based on Game Se-
mantics and Process Algebras. In Int. Journal on STTT 9(1), pp. 37–51, (2007).

7. Dimovski, A: Slot Games for Detecting Timing Leaks of Programs. In: Puppis, G.,
Villa, T. (eds.) GandALF 2013. EPTCS vol. 119, pp. 166–179. Open Publishing
Association, (2013).

8. Dimovski, A: Program Verification Using Symbolic Game Semantics. In Theoretical
Computer Science (TCS), (01/2014).

9. Ghica, D. R., McCusker, G: The Regular-Language Semantics of Second-order
Idealized Algol. Theoretical Computer Science 309 (1–3), pp. 469–502, (2003).

10. Ghica, D. R. Slot Games: a quantitative model of computation. In Palsberg, J.,
Abadi, M. (eds.) POPL 2005. ACM, pp. 85–97. ACM Press, New York (1998).

11. Heintze, N., Riecke, J.G: The SLam calculus: programming with secrecy and
integrity. In: MacQueen, D.B., Cardelli, L. (eds.) POPL 1998. ACM, pp. 365–
377. ACM, New York (1998).

12. Joshi, R., and Leino, K.R.M: A semantic approach to secure information flow. In
Science of Computer Programming 37, pp. 113–138, (2000).

13. Malacaria, M., and Hankin, C: Non-deterministic games and program analysis:
An application to security. In: LICS 1999, pp. 443–452. IEEE Computer Society
Press, Los Alamitos (1999).

14. McLean, J: Proving noninterference and functional correctness using traces. In: J.
Computer Security, vol. 1, no. 1, pp. 3758, (1992).

15. Sabelfeld, A., and Myers, A.C: Language-based information-flow security. In IEEE
Journal on Selected Areas in Communications 21(1), (2003), 5–19.

16. Volpano, D., Smith, G., and Irvine, C: A sound type system for secure flow analysis.
In Journal of Computer Security 4(2/3), (1996), 167–188.

17. Volpano, D., Smith, G: Eliminating covert flows with minimum typings. In:
IEEE Computer Security Foundations Workshop (CSFW), 1997, 156–169. IEEE
Computer Society Press, (1997).

