111 research outputs found

    Современные представления о НСV−инфекции

    Get PDF
    Рассмотрены достижения в изучении этиологии, патогенеза и клиники НСV−инфекции. Описаны современные возможности лабораторной и инструментальной диагностики заболевания, основные принципы лечения в зависимости от тяжести течения и активности патологического процесса в печени.The achievements in the study of the etiology, pathogenesis and clinical manifestations of HCV infection are discussed. Contemporary capabilities of laboratory and instrumental diagnosis of the disease as well as main principles of treatment depending on the severity of the course and activity of the pathological process in the liver are described

    Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation.</p> <p>Results</p> <p>In Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences were tissue-specific, and the differential methylation at specific loci were little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication.</p> <p>Conclusions</p> <p>Our results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.</p

    Does Prenatal Stress Shape Postnatal Resilience? – An Epigenome-Wide Study on Violence and Mental Health in Humans

    Get PDF
    Stress during pregnancy widely associates with epigenetic changes and psychiatric problems during childhood. Animal studies, however, show that under specific postnatal conditions prenatal stress may have other, less detrimental consequences for the offspring. Here, we studied mental health and epigenome-wide DNA methylation in saliva following intimate partner violence (IPV) during pregnancy in São Gonçalo, a Brazilian city with high levels of violence. Not surprisingly, mothers exposed to pregnancy IPV expressed elevated depression, PTSD and anxiety symptoms. Children had similar psychiatric problems when they experienced maternal IPV after being born. More surprisingly, when maternal IPV occurred both during (prenatal) and after pregnancy these problems were absent. Following prenatal IPV, genomic sites in genes encoding the glucocorticoid receptor (NR3C1) and its repressor FKBP51 (FKBP5) were among the most differentially methylated and indicated an enhanced ability to terminate hormonal stress responses in prenatally stressed children. These children also showed more DNA methylation in heterochromatin-like regions, which previously has been associated with stress/disease resilience. A similar relationship was seen in prenatally stressed middle-eastern refugees of the same age as the São Gonçalo children but exposed to postnatal war-related violence. While our study is limited in location and sample size, it provides novel insights on how prenatal stress may epigenetically shape resilience in humans, possibly through interactions with the postnatal environment. This translates animal findings and emphasizes the importance to account for population differences when studying how early life gene–environment interactions affects mental health

    Transmission of Stress-Induced Learning Impairment and Associated Brain Gene Expression from Parents to Offspring in Chickens

    Get PDF
    BACKGROUND: Stress influences many aspects of animal behaviour and is a major factor driving populations to adapt to changing living conditions, such as during domestication. Stress can affect offspring through non-genetic mechanisms, but recent research indicates that inherited epigenetic modifications of the genome could possibly also be involved. METHODOLOGY/PRINCIPAL FINDINGS: Red junglefowl (RJF, ancestors of modern chickens) and domesticated White Leghorn (WL) chickens were raised in a stressful environment (unpredictable light-dark rhythm) and control animals in similar pens, but on a 12/12 h light-dark rhythm. WL in both treatments had poorer spatial learning ability than RJF, and in both populations, stress caused a reduced ability to solve a spatial learning task. Offspring of stressed WL, but not RJF, raised without parental contact, had a reduced spatial learning ability compared to offspring of non-stressed animals in a similar test as that used for their parents. Offspring of stressed WL were also more competitive and grew faster than offspring of non-stressed parents. Using a whole-genome cDNA microarray, we found that in WL, the same changes in hypothalamic gene expression profile caused by stress in the parents were also found in the offspring. In offspring of stressed WL, at least 31 genes were up- or down-regulated in the hypothalamus and pituitary compared to offspring of non-stressed parents. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, in WL the gene expression response to stress, as well as some behavioural stress responses, were transmitted across generations. The ability to transmit epigenetic information and behaviour modifications between generations may therefore have been favoured by domestication. The mechanisms involved remain to be investigated; epigenetic modifications could either have been inherited or acquired de novo in the specific egg environment. In both cases, this would offer a novel explanation to rapid evolutionary adaptation of a population

    Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended ‘male sex drive’ hypothesis

    Get PDF
    The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time

    Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens

    Get PDF
    Background: Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Methodology/Principal Findings: Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12:12 h light:dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. Conclusions/Significance: Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment. Citation: Nätt D, Lindqvist N, Stranneheim H, Lundeberg J, Torjesen PA, et al. (2009) Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens. PLoS ONE 4(7): e6405. doi:10.1371/journal.pone.0006405 Editor: Tom Pizzari, University of Oxford, United Kingdom Received: March 26, 2009; Accepted: June 30, 2009; Published: July 28, 2009 Copyright: © 2009 Nätt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This project was funded by the Swedish Research Council (VR; www.vr.se; grant nrs 50280101 and 50280102) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas; www.formas.se; grant no 221-2005-270). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the mauscript. Competing interests: The authors have declared that no competing interests exist.  Original Publication:Daniel Nätt, Niclas Lindqvist, Henrik Stranneheim, Joakim Lundeberg, Peter A. Torjesen and Per Jensen, Inheritance of Acquired Behaviour Adaptions and Brain Gene Expression in Chickens, 2009, PLoS ONE, (4), 7, e6405.http://dx.doi.org/10.1371/journal.pone.0006405Copyright: Author

    Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression

    Get PDF
    Background&nbsp; Due to selective breeding, domesticated and wild Atlantic salmon are genetically diverged, which raises concerns about farmed escapees having the potential to alter the genetic composition of wild populations and thereby disrupting local adaptation. Documenting transcriptional differences between wild and domesticated stocks under controlled conditions is one way to explore the consequences of domestication and selection. We compared the transcriptomes of wild and domesticated Atlantic salmon embryos, by using a custom 44k oligonucleotide microarray to identify perturbed gene pathways between the two stocks, and to document the inheritance patterns of differentially-expressed genes by examining gene expression in their reciprocal hybrids.&nbsp; Results&nbsp; Data from 24 array interrogations were analysed: four reciprocal cross types (W♀&times;W♂, D♀&times;W♂; W♀&times;D♂, D♀&times;D♂)&times;six biological replicates. A common set of 31,491 features on the microarrays passed quality control, of which about 62% were assigned a KEGG Orthology number. A total of 6037 distinct genes were identified for gene-set enrichment/pathway analysis. The most highly enriched functional groups that were perturbed between the two stocks were cellular signalling and immune system, ribosome and RNA transport, and focal adhesion and gap junction pathways, relating to cell communication and cell adhesion molecules. Most transcripts that were differentially expressed between the stocks were governed by additive gene interaction (33 to 42%). Maternal dominance and over-dominance were also prevalent modes of inheritance, with no convincing evidence for a stock effect.&nbsp; Conclusions&nbsp; Our data indicate that even at this relatively early developmental stage, transcriptional differences exist between the two stocks and affect pathways that are relevant to wild versus domesticated environments. Many of the identified differentially perturbed pathways are involved in organogenesis, which is expected to be an active process at the eyed egg stage. The dominant effects are more largely due to the maternal line than to the origin of the stock. This finding is particularly relevant in the context of potential introgression between farmed and wild fish, since female escapees tend to have a higher spawning success rate compared to males
    corecore