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Abstract 14 

Interbreeding between hatchery-reared and wild fish, through deliberate stocking or escapes 15 

from fish farms, can result in rapid phenotypic and gene expression changes in hybrids, but 16 

the underlying mechanisms are unknown. We assessed if one generation of captive breeding 17 

was sufficient to generate inter- and/or transgenerational epigenetic modifications in Atlantic 18 

salmon. We found that the sperm of wild and captive-reared males differed in methylated 19 

regions consistent with early epigenetic signatures of domestication. Some of the epigenetic 20 

marks that differed between hatchery and wild males affected genes related to transcription, 21 

neural development, olfaction and aggression, and were maintained in the offspring beyond 22 

developmental reprogramming. Our findings suggest that rearing in captivity may trigger 23 

epigenetic modifications in the sperm of hatchery fish that could explain the rapid phenotypic 24 

and genetic changes observed among hybrid fish. Epigenetic introgression via fish sperm 25 

represents a previously unappreciated mechanism that could compromise locally adapted fish 26 

populations. 27 

  28 



Captive rearing can cause rapid phenotypic and genetic changes in fish after just one 29 

generation (Araki, et al. 2007; Stringwell, et al. 2014), and interbreeding between captive-30 

reared and wild fish can lead to maladaptation to natural conditions (McGinnity, et al. 2003) 31 

and reduced fitness of hybrids (Araki, et al. 2007; Araki and Schmid 2010). Genome-wide 32 

analyses have explained the molecular basis of phenotypic variation associated with 33 

domestication in many species (Rubin, et al. 2010; Wilkinson, et al. 2013; Carneiro, et al. 34 

2014) but have failed to identify common loci or strong signals of selection associated with 35 

fish domestication (Ozerov, et al. 2013; Mäkinen, et al. 2015).  36 

Captive-rearing in fish can result in epigenetic (methylation) changes in immune and stress-37 

related genes (Le Luyer, et al. 2017). Such epigenetic changes can respond to environmental 38 

stimuli and generate phenotypic variation by modulating gene expression and function. For 39 

epigenetic changes to be adaptive and evolutionary relevant, they would need to be 40 

transmitted to the offspring (Bossdorf, et al. 2008; Youngson and Whitelaw 2008) and persist 41 

across generations (Charlesworth, et al. 2017) to enable selection to act (Bollati and 42 

Baccarelli 2010).  43 

Epigenetic signatures in the sperm of zebrafish are maintained in the embryo until the mid-44 

blastula stage (Jiang, et al. 2013). If the same is true for other fish, epigenetic changes in the 45 

sperm could facilitate adaptation to captivity. This would be relevant for salmonids which are 46 

farmed for food or reared in hatcheries for supportive breeding programmes (Consuegra, et 47 

al. 2005; Kostow 2009), and for which captive rearing causes epigenetic changes in sperm 48 

(Gavery, et al. 2018). Wild salmon affected by accidental escapes from fish farms or the 49 

deliberate stocking of hatchery fish often display genetic changes (Ciborowski, et al. 2007; 50 

Glover, et al. 2013), altered age and size at maturation (Bolstad, et al. 2017), behavioural 51 



mismatch (Houde, et al. 2010) and lower reproductive success (Theriault, et al. 2011). 52 

Whether epigenetic changes also arise is not known. 53 

We compared genome-wide DNA methylation profiles in the sperm of wild and hatchery-54 

reared Atlantic salmon males and their offspring to identify potentially heritable hatchery-55 

induced epigenetic modifications. Three groups of wild and hatchery-reared salmon from the 56 

River Allier (France) were analysed (Tables S1-S3). Wild anadromous males (W) were 57 

caught in April 2015. Hatchery H1 males were mature parr (0+) (2014 cohort) produced from 58 

re-conditioned wild males and females maintained in the hatchery for two consecutive 59 

seasons, and hatchery H2 males were mature parr (0+) (2014 cohort) from crossing females 60 

hatched and reared in the hatchery with wild re-conditioned males. Both H1 and H2 were 61 

reared under identical conditions. Sperm from three males of each group was used to 62 

independently fertilise groups of pooled eggs of the same three wild females (Figure 1).   63 

Differentially methylated regions among parental groups  64 

The results from MethylAction and MEDIPS concurred in the identification of differentially 65 

methylated regions (DMRs) and the loci affected by them. In total, 165,597 of the DMRs 66 

identified among all groups coincided between MethylAction and MEDIPs. Of the loci 67 

affected by those DMRs, 19,510 out of the 21,195 identified by MethylAction were also 68 

identified using MEDIPS (92.05%). 69 

Pairwise methylome differences using MEDIPS identified 55 significant DMRs between W 70 

and H1, 22,563 between H1 and H2, and 298,980 between W and H2 (Figure 2), after 71 

applying a q- value ≤0.05, and merging neighbouring significant windows. These DMRs 72 

were overlapping or neighbouring at 47, 11,567 and 38,253 loci between W and H1, H1 and 73 

H2, and W and H2, respectively (Figure S4).  74 



Using MethylAction, DMRs identified from the simultaneous comparison between the three 75 

parental groups were classified as ‘frequent’ if all the samples within each group had a 76 

consistent methylation status (hyper or hypomethylated), or as ‘other’ if they lacked within-77 

group consistency (Bhasin, et al. 2015). Only methylation patterns of frequent and 78 

statistically significant DMRs were considered further. Several of those DMRs (46,293) were 79 

consistently hypermethylated in H2 compared to W and H1 individuals (Figure 1B). In total, 80 

21,195 loci were affected (overlapping or neighbouring) by the +50,000 ‘frequent’ DMRs 81 

identified among all groups.  82 

Of the 55 DMRs identified by MEDIPS between W and H1, 43 (78%) occurred between W 83 

and H2. Of these, 35 completely overlapped with DMRs identified by Methylaction, and the 84 

rest were between 2 and 1000 bp distance, all affecting the same loci. These 43 DMRs, 85 

shared by both hatchery groups and different from wild individuals, appear to be distinctive 86 

signatures of hatchery reared fish.  87 

Methylation comparison between parental and offspring groups 88 

Parents and offspring (mature male parr) showed significant differences in global sperm 89 

methylation enrichment scores only between H2 to W males (W=1.14±0.05; H1=1.25±0.10; 90 

H2=1.44±0.08; ANOVA F2, 6=7.683, p=0.0221; Tukey HSD test W-H1; p=0.42; H2-H1; 91 

p=0.10; W-H2; p=0.02) (Table S1). Pairwise correlation coefficients of genome-wide 92 

coverage were on average r~0.60 within groups (Figure S3).  93 

The first two components of a PCA of normalized total read counts of 1000 bp sliding 94 

windows explained 96.49% of the variance (Figure S5). PC1 explained 91.32%, and allowed 95 

differentiation between parents and offspring (F1,12=17.258; p=0.001), and groups within 96 

generations (F4,12=3.576; p=0.038) (Figure S5). PC1 scores differed significantly between the 97 



sperm of wild parents and their offspring (post hoc Tukey HSD test; p=0.02), but not between 98 

the sperm of hatchery parents and their offspring (post hoc Tukey HSD test; H1-H1off=0.98; 99 

H2-H2off=0.19). This suggests that the hatchery environment (e.g. diet, confinement) had an 100 

impact on the methylation status of the wild offspring sperm, born and raised under those 101 

conditions. The comparisons of genetic diversity among parental groups and between parents 102 

and offspring based on 927 SNPs indicated that there were no significant genetic differences 103 

among groups (Fisher’s exact test, P=1.00), suggesting that differences in the genetic 104 

background are not responsible for the methylation differences observed. 105 

For the 43 DMRs between wild and hatchery parents, all hatchery individuals (parents and 106 

offspring) clustered together with the wild offspring and separately from the wild parents 107 

(Figure 3 A-B) (PC1 score Kruskal-Wallis χ2=11.99, df=5; p=0.034). Of the DMRs involved, 108 

12 overlapped with genes or putative promoters, and the remaining with distal inter-genic 109 

regions (Table S2a). Affected genes showing differential methylation between W and H1 110 

included the transcription factor SOX-13-like (Pevny and Lovell-Badge 1997), the neuronal 111 

migration protein doublecortin-like, expressed in fish olfactory bulb and optic tectum (Tozzini, 112 

et al. 2012) and the small G protein signalling modulator 2-like, related to neural development 113 

in human and mice (Yang, et al. 2007). Some of the DMRs differentiating parental groups 114 

maintained the same methylation pattern in the offspring and may not have been erased during 115 

early reprogramming (Table S2b). Of these, two were maintained between W and H1, 167 116 

DMRs between W and H2 (overlapping genes or promoters of 73 genes), and 105 DMRs 117 

between H1 and H2, affecting 24 genes (Figure S6).  These results provide evidence that 118 

captive rearing induces rapid epigenetic (methylation) changes in salmon sperm, some of which 119 

can persist for at least one generation.  120 



Variation in life history strategies (anadromous males versus mature resident males) may 121 

account for some observed methylation differences between the sperm of wild and hatchery 122 

males (Morán and Pérez-Figueroa 2011). However, some of these likely characterise 123 

hatchery rearing, as methylation signatures among the offspring of wild fish reared under 124 

hatchery conditions were more similar to those of hatchery fish than to their wild parents.  125 

Furthermore, differences between parental H1 and H2 fish were stronger than those between 126 

the wild and H1 groups. The regions affected include genes encoding for coiled coil-type and 127 

PH domain proteins that regulate intracellular signalling networks and gene expression 128 

(Kutzleb, et al. 1998) and changes to the PcG protein L3MBTL4 that regulates transcription 129 

and chromatin structure, and could underlie heritable changes in gene expression (Holoch and 130 

Margueron 2017). Also include  the TATA-binding protein like (tbpl1), related to 131 

spermiogenesis and embryonic development (Akhtar and Veenstra 2011), that displays 132 

differential methylation between hatchery and wild coho salmon as well (Le Luyer, et al. 133 

2017). 134 

In the parental groups, several regions differentially methylated between the W and H2 135 

parents also differed between H1 and H2, with a high degree of conservation in their 136 

functions (i.e. ion transport, metabolic process, methylation; Figure S7). Even if the hatchery 137 

parents (H1 and H2) had been born and raised under the same hatchery conditions, their 138 

parents had spent different time in captivity (the mothers of the H2 group were born in the 139 

hatchery, whereas both parents of the H1 group had a reconditioned origin, i.e. were born in 140 

the wild). Thus, as the main difference between the H1 and H2 groups was the origin of their 141 

mothers, the methylation signature shared between W and H1 fish, that differed from H2 142 

salmon, could be the result of their maternal environment (Marshall and Uller 2007).  This 143 

supports a role for, potentially transgenerational, maternal effects during fish domestication 144 

(Christie, et al. 2016). 145 



The sperm of parents and offspring displayed distinctive methylation profiles, suggesting that 146 

salmon PGCs could undergo a second reprogramming, as in mammals (Hackett and Surani 147 

2013). However, some methylation marks can escape such resetting and result in epigenetic 148 

transgenerational inheritance, even if only for a small number of epialleles (Daxinger and 149 

Whitelaw 2012). Here, six of the common DMRs shared between W/H2 and H1/H2 were 150 

maintained in the next generation, including the transcription factor EB-like, expressed 151 

during embryo development (Lister, et al. 2011), the SPT20 protein, part of the SAGA 152 

complex (Nagy, et al. 2009), and the corticotropin-releasing factor receptor 1-like, involved 153 

in social stress and aggression (Backström, et al. 2015). This indicates a potential mechanism 154 

for heritable phenotypic responses to captive rearing, although further confirmation of the 155 

functional relevance of these methylation changes, including more populations, is warranted.  156 

Given the important contribution that mature male parr make to the reproduction of Atlantic 157 

salmon in the wild (Garcia-Vazquez, et al. 2001; Garant, et al. 2003), interbreeding of 158 

hatchery-reared mature parr with wild females could potentially result in epigenetic changes 159 

in wild populations.  160 

Our findings suggest that at least part of the sperm epigenetic modifications associated with 161 

captive-rearing remain in the offspring beyond developmental reprogramming and could 162 

affect embryo fitness and performance. Hatchery-reared males could cause epigenetic 163 

introgression into wild populations after just one generation if they interbred with wild 164 

females, potentially disrupting local adaptation (Garcia de Leaniz, et al. 2007). The 165 

importance of this mechanism in adaptation can be better advanced by further analyses of the 166 

candidate genes/DMRs identified and by analysing the reversibility of these changes 167 

following the cessation of hatchery rearing. 168 



Gene expression changes appear associated with captive-rearing (Christie, et al. 2016), but 169 

the role of epigenetics is only starting to be considered (Nätt, et al. 2012). Epigenetic 170 

modifications induced by captive-rearing can influence fitness in first-generation hatchery 171 

salmonids, but their inter- or transgenerational persistence has not been resolved (Le Luyer, 172 

et al. 2017). Here we provide the first evidence of stability of these epigenetic modifications 173 

between generations and suggest that sperm-mediated epigenetic introgression could explain 174 

the rapid changes experienced by wild fish when they interbreed with hatchery-reared fish 175 

(Araki, et al. 2009).  176 

Material and methods 177 

Sperm from three randomly chosen individuals from each of the male groups (W, H1 and H2) 178 

was used to fertilize batches of 300 ova pooled from three wild females (100 ova/female) 179 

(Supplementary methods). 125 µl of sperm from each male were pipetted onto Whatman 180 

FTA Classic cards for methylation analyses. The remaining sperm was used for sperm quality 181 

assessment (Caldeira, et al. 2018). Fertilised eggs from each of the parental crosses were 182 

reared under identical hatchery conditions for 8 months until maturity, when sperm from 8 183 

random juvenile males from each of the offspring groups was analysed for DNA methylation.  184 

DNA was extracted from 6 mm pieces of each FTA card with a GenSolve kit (GenTegra 185 

LLC, Pleasanton, USA), using QIAamp Blood Mini kit (QIAGEN Group) for DNA 186 

purification, and the re-extracted to increase DNA recovery. 187 

Methylated DNA enrichment and analyses 188 

DNA was fragmented to <1000 bp by incubating dsDNA with NEBNext® dsDNA 189 

Fragmentase® (New England BioLabs Inc.) for 30 min. Fragmented DNA was cleaned-up 190 

using QIAquick spin columns (QIAGEN Group). Methylated DNA was isolated from 191 



fragmented whole genomic DNA using MethylMiner™ kit from Invitrogen (CA, USA). 192 

Methylated fragments were eluted using a high salinity elution buffer (2000 mM NaCl). As a 193 

control, gDNA was spiked with 1 pg of synthetic methylated and non-methylated DNA 194 

fragments (Methyl Miner kit, Invitrogen) before MBD-enrichment. Enriched (MBD2- 195 

captured) and unbound DNA fractions were amplified using specific primers for each spike-196 

in control (Figure S1). Additional enrichment quality checks were performed (Figure S2). 197 

Methylated-enriched DNA was quantified (Qubit), diluted to 0.2 ng ml-1 and used for library 198 

preparation using Nextera-XT kit (Illumina Inc., CA, USA). Libraries were indexed for 199 

multiplexed paired-end sequencing (2x125 bp read length) on an Illumina HiSeq 2500 200 

platform (Illumina Inc., CA, USA).  201 

After quality check using FastQC/0.11.2. and adaptor trimming (Trimmomatic/0.33, Bolger 202 

et al., 2014), reads were aligned to the Atlantic salmon genome (ICSASG_v2) using Bowtie2 203 

(Langmead and Salzberg 2012). MEDIPS (Lienhard, et al. 2013) was used for quality 204 

control, genomic coverage estimation and to detect pairwise DMRs among and between 205 

groups.  We used MethylAction R (Bhasin, et al. 2015) to further assess sperm methylome 206 

differences among groups. In both cases, a window size of 50 bp, and q-value cutoffs of 0.05 207 

after FDR multitest correction was applied (p value (Benjamini-Hochberg) <0.05). BAM files 208 

were imported to SeqMonk v1.37.1 (Andrews 2015) for visualization of mapped regions and 209 

PCA. To compare the results of MethylAction and MEDIPS, adjacent 50 bp significant 210 

windows were merged. BEDTools (Quinlan and Hall 2010) intersect was used to assess 211 

overlapping DMRS and enable the comparison between tools. Loci affected consisted of 212 

those with DMRs overlapping or neighbouring them. 213 

BAM files the genome-wide MBD enrichment sequencing for a total of 9 parental male fish 214 

were processed using the AddOrReplaceReadGroups utility in Picard Toolkit (Picard 2018). 215 



Indel targets were identified using Target Creator in GATK 4.0.11.0 (DePristo et al. 2011) 216 

and variants were exported into Golden Helix SNP & Variation Suite 8.3.3. SNPs were 217 

filtered using the LD pruning utility in Golden Helix using default options (Supplementary 218 

material). Genepop 4.7.0 (Rousset 2008) was used to test for global genotypic differentiation, 219 

using Fisher’s exact test.  220 

 221 

  222 
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Figure legends 368 

Figure 1. Outline of the experimental design. Parental origin of wild (W) and hatchery (H1 369 

and H2) groups and their offspring. Wild adult salmon were captured from the river Allier on 370 

their return to the spawning grounds, H1 salmon originated from crosses between re-371 

conditioned males and females (wild origin fish recovered and maintained in the hatchery for 372 

more than 1 year after spawning) and H2 salmon originated from crosses between re-373 

conditioned males and hatchery-born females (details in supplementary material). Sperm of 374 

the three groups of parents (W, H1 and H2) was used to fertilise the eggs of three wild 375 

females to create the offspring. Sperm sampling points for methylation are indicated by a red 376 

asterisk. 377 

Figure 2. Differentially methylated regions (DMRs). (A) DMRs found using MEDIPS 378 

showing unique and shared DMRs among groups comparisons. (B) DMRs found using 379 

Methylaction. Table: Number of DMRs detected for all possible patterns of hyper- (black 380 

squares) and hypomethylation (white squares). (**) Patterns with FDR <0.01; (*)   Patterns 381 

with FDR <0.1. ‘Frequent’ DMRs correspond to those where the methylation status of all the 382 

samples within a group agrees (3/3). Heatmap: Heatmap of normalized read count 383 

distributions for all ‘frequent’ DMRs detected. Columns represent samples, and rows DMRs. 384 

Figure 3. Clustering of parents and offspring targeting those regions that were DM 385 

between hatchery and wild individuals in the parental group (‘hatchery reared fish 386 

distinctive signatures’). (A) PCA using normalized total read counts of 1000 bp sliding 387 

windows genome wide for the target regions. (B) Clustering and Heatmap of normalized read 388 

counts (log transformed) of ‘hatchery reared fish distinctive signatures’. Columns represent 389 

samples, and rows DMRs (the name of the closest/overlapping loci was assigned to each 390 

DMR).  391 
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