641 research outputs found

    Microhabitat competition between Iberian fish species and the endangered Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866)

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Ecohydraulics on 24-01-2017, available online: https://www.tandfonline.com/doi/full/10.1080/24705357.2016.1276417"[EN] Competition with invasive species is recognized as having a major impact on biodiversity conservation. The upper part of the Cabriel River (Eastern Iberian Peninsula) harbours the most important population of the Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866), a fish species in imminent danger of extinction. Currently, this species cohabits with several non-native species, such as the Iberian nase (Pseudochondrostoma polylepis; Steindachner, 1864) and the bermejuela (Achondrostoma arcasii; Steindachner, 1866). The potential habitat competition with these species was studied by analysing the spatial and temporal overlapping of suitable microhabitats. Generalized Additive Mixed Models (GAMMs) were developed to model microhabitat selection and these GAMMs were used to assess the habitat suitability (i.e. probability of presence) under several flows simulated with River2D. The Júcar nase will compete, spatially and temporally, for the few suitable microhabitats with bermejuela and, to a lesser extent, with small Iberian nase; conversely, large Iberian nase was of minor concern, due to increased differences in habitat preferences. This study represents an important assessment of potential competition and, therefore, these results might assist to better define future management practices in the upper part of the Cabriel River.This study was funded by the Spanish Ministry of Economy and Competitiveness through the SCARCE project (Consolider Ingenio 2010 CSD2009 00065); the Universitat Politècnica de València, through the project UPPTE/2012/294 [PAID 06 12]; it was also partially funded by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and FEDER funds. The authors would like to thank the help of the Conselleria de Territori i Vivenda (Generalitat Valenciana) and the Confederación Hidrográfica del Júcar (Spanish government), which provided environmental data to Alfredo Ollero, and the two anonymous reviewers who first suggested the submission of the paper to a regular journal. Finally, we would like to thank TECNOMA S.A. for the development of the hydraulic model.Muñoz Mas, R.; Soares Costa, RM.; Alcaraz-Hernández, JD.; Martinez-Capel, F. (2017). Microhabitat competition between Iberian fish species and the endangered Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866). Journal of Ecohydraulics. 2(1):3-15. https://doi.org/10.1080/24705357.2016.1276417S31521Alcaraz, C., Carmona-Catot, G., Risueño, P., Perea, S., Pérez, C., Doadrio, I., & Aparicio, E. (2014). Assessing population status of Parachondrostoma arrigonis (Steindachner, 1866), threats and conservation perspectives. Environmental Biology of Fishes, 98(1), 443-455. doi:10.1007/s10641-014-0274-3ALMEIDA, D., & GROSSMAN, G. D. (2012). Utility of direct observational methods for assessing competitive interactions between non-native and native freshwater fishes. Fisheries Management and Ecology, 19(2), 157-166. doi:10.1111/j.1365-2400.2012.00847.xAlmeida, D., Merino-Aguirre, R., Vilizzi, L., & Copp, G. H. (2014). Interspecific Aggressive Behaviour of Invasive Pumpkinseed Lepomis gibbosus in Iberian Fresh Waters. PLoS ONE, 9(2), e88038. doi:10.1371/journal.pone.0088038Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null Hypothesis Testing: Problems, Prevalence, and an Alternative. The Journal of Wildlife Management, 64(4), 912. doi:10.2307/3803199Aparicio, E., Vargas, M. J., Olmo, J. M., & de Sostoa, A. (2000). Environmental Biology of Fishes, 59(1), 11-19. doi:10.1023/a:1007618517557Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1-2), 1-19. doi:10.1016/j.ecolmodel.2006.07.005Baltz, D. M., Vondracek, B., Brown, L. R., & Moyle, P. B. (1991). Seasonal Changes in Microhabitat Selection by Rainbow Trout in a Small Stream. Transactions of the American Fisheries Society, 120(2), 166-176. doi:10.1577/1548-8659(1991)1202.3.co;2Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. doi:10.1111/j.2041-210x.2011.00172.xBeakes, M. P., Moore, J. W., Retford, N., Brown, R., Merz, J. E., & Sogard, S. M. (2012). EVALUATING STATISTICAL APPROACHES TO QUANTIFYING JUVENILE CHINOOK SALMON HABITAT IN A REGULATED CALIFORNIA RIVER. River Research and Applications, 30(2), 180-191. doi:10.1002/rra.2632BROOK, B., SODHI, N., & BRADSHAW, C. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453-460. doi:10.1016/j.tree.2008.03.011Brosse, S., Laffaille, P., Gabas, S., & Lek, S. (2001). Is scuba sampling a relevant method to study fish microhabitat in lakes? Examples and comparisons for three European species. Ecology of Freshwater Fish, 10(3), 138-146. doi:10.1034/j.1600-0633.2001.100303.xCLAVERO, M. (2011). Assessing the risk of freshwater fish introductions into the Iberian Peninsula. Freshwater Biology, 56(10), 2145-2155. doi:10.1111/j.1365-2427.2011.02642.xCollares-Pereira, M. J., & Coelho, M. M. (1983). Biometrical analysis of Chondrostoma polylepis x Rutilus arcasi natural hybrids (Osteichthyes-Cypriniformes-Cyprinidae). Journal of Fish Biology, 23(5), 495-509. doi:10.1111/j.1095-8649.1983.tb02930.xCosta, R. M. S., Martínez-Capel, F., Muñoz-Mas, R., Alcaraz-Hernández, J. D., & Garófano-Gómez, V. (2011). HABITAT SUITABILITY MODELLING AT MESOHABITAT SCALE AND EFFECTS OF DAM OPERATION ON THE ENDANGERED JúCAR NASE, PARACHONDROSTOMA ARRIGONIS (RIVER CABRIEL, SPAIN). River Research and Applications, 28(6), 740-752. doi:10.1002/rra.1598Dal Pozzolo A, Caelen O, Bontempi G. 2015. unbalanced: Racing for unbalanced methods selection. R package version 2.0.Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677-697. doi:10.1146/annurev.ecolsys.110308.120159Elvira, B., & Almodovar, A. (2001). Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. Journal of Fish Biology, 59(sa), 323-331. doi:10.1111/j.1095-8649.2001.tb01393.xElvira, B., & Almodóvar, A. (2006). Threatened fishes of the world: Chondrostoma arrigonis (Steindachner, 1866) (Cyprinidae). Environmental Biology of Fishes, 81(1), 27-28. doi:10.1007/s10641-006-9172-7Friedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J., & Mouton, A. M. (2013). Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environmental Modelling & Software, 47, 1-6. doi:10.1016/j.envsoft.2013.04.005Girard, V., Monti, D., Valade, P., Lamouroux, N., Mallet, J.-P., & Grondin, H. (2013). HYDRAULIC PREFERENCES OF SHRIMPS AND FISHES IN TROPICAL INSULAR RIVERS. River Research and Applications, 30(6), 766-779. doi:10.1002/rra.2675Gozlan, R. E., Britton, J. R., Cowx, I., & Copp, G. H. (2010). Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology, 76(4), 751-786. doi:10.1111/j.1095-8649.2010.02566.xGuay, J. C., Boisclair, D., Rioux, D., Leclerc, M., Lapointe, M., & Legendre, P. (2000). Development and validation of numerical habitat models for juveniles of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 57(10), 2065-2075. doi:10.1139/f00-162Guisan, A., Graham, C. H., Elith, J., & Huettmann, F. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332-340. doi:10.1111/j.1472-4642.2007.00342.xHeggenes, J., Brabrand, Åg., & Saltveit, S. (1990). Comparison of Three Methods for Studies of Stream Habitat Use by Young Brown Trout and Atlantic Salmon. Transactions of the American Fisheries Society, 119(1), 101-111. doi:10.1577/1548-8659(1990)1192.3.co;2Jowett, I. G., & Davey, A. J. H. (2007). A Comparison of Composite Habitat Suitability Indices and Generalized Additive Models of Invertebrate Abundance and Fish Presence–Habitat Availability. Transactions of the American Fisheries Society, 136(2), 428-444. doi:10.1577/t06-104.1Jowett, I. G., & Duncan, M. J. (2012). Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river. Ecological Engineering, 48, 92-100. doi:10.1016/j.ecoleng.2011.06.036Laurikkala, J. (2001). Improving Identification of Difficult Small Classes by Balancing Class Distribution. Lecture Notes in Computer Science, 63-66. doi:10.1007/3-540-48229-6_9Leunda, P. (2010). Impacts of non-native fishes on Iberian freshwater ichthyofauna: current knowledge and gaps. Aquatic Invasions, 5(3), 239-262. doi:10.3391/ai.2010.5.3.03Lin, X., & Zhang, D. (1999). Inference in generalized additive mixed modelsby using smoothing splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 381-400. doi:10.1111/1467-9868.00183Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385-393. doi:10.1111/j.0906-7590.2005.03957.xMaceda-Veiga, A. (2012). Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Reviews in Fish Biology and Fisheries, 23(1), 1-22. doi:10.1007/s11160-012-9275-5Maggini, R., Lehmann, A., Zimmermann, N. E., & Guisan, A. (2006). Improving generalized regression analysis for the spatial prediction of forest communities. Journal of Biogeography, 33(10), 1729-1749. doi:10.1111/j.1365-2699.2006.01465.xMarr, S. M., Olden, J. D., Leprieur, F., Arismendi, I., Ćaleta, M., Morgan, D. L., … García-Berthou, E. (2013). A global assessment of freshwater fish introductions in mediterranean-climate regions. Hydrobiologia, 719(1), 317-329. doi:10.1007/s10750-013-1486-9MARTÍNEZ-CAPEL, F., GARCÍA DE JALÓN, D., WERENITZKY, D., BAEZA, D., & RODILLA-ALAMÁ, M. (2009). Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain). Fisheries Management and Ecology, 16(1), 52-60. doi:10.1111/j.1365-2400.2008.00645.xMouton, A. M., Alcaraz-Hernández, J. D., De Baets, B., Goethals, P. L. M., & Martínez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. doi:10.1016/j.envsoft.2010.12.001Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017Muñoz-Mas, R., Fukuda, S., Vezza, P., & Martínez-Capel, F. (2016). Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon ( Gobio lozanoi ; Doadrio and Madeira, 2004). Ecological Informatics, 34, 22-34. doi:10.1016/j.ecoinf.2016.04.011Muñoz-Mas, R., Lopez-Nicolas, A., Martínez-Capel, F., & Pulido-Velazquez, M. (2016). Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios. Science of The Total Environment, 544, 686-700. doi:10.1016/j.scitotenv.2015.11.147Muñoz-Mas, R., Martínez-Capel, F., Garófano-Gómez, V., & Mouton, A. M. (2014). Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling & Software, 59, 30-43. doi:10.1016/j.envsoft.2014.05.003Muñoz-Mas, R., Martínez-Capel, F., Schneider, M., & Mouton, A. M. (2012). Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of The Total Environment, 440, 123-131. doi:10.1016/j.scitotenv.2012.07.074Muñoz-Mas, R., Papadaki, C., Martínez-Capel, F., Zogaris, S., Ntoanidis, L., & Dimitriou, E. (2016). Generalized additive and fuzzy models in environmental flow assessment: A comparison employing the West Balkan trout (Salmo farioides; Karaman, 1938). Ecological Engineering, 91, 365-377. doi:10.1016/j.ecoleng.2016.03.009Olaya-Marín, E. J., Martínez-Capel, F., Soares Costa, R. M., & Alcaraz-Hernández, J. D. (2012). Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain). Science of The Total Environment, 440, 95-105. doi:10.1016/j.scitotenv.2012.07.093Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., & Andreu, J. (2014). Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59(3-4), 878-889. doi:10.1080/02626667.2013.821573Platts, P. J., McClean, C. J., Lovett, J. C., & Marchant, R. (2008). Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty. Ecological Modelling, 218(1-2), 121-134. doi:10.1016/j.ecolmodel.2008.06.028Reyjol, Y., Hugueny, B., Pont, D., Bianco, P. G., Beier, U., Caiola, N., … Virbickas, T. (2007). Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16(1), 65-75. doi:10.1111/j.1466-8238.2006.00264.xRibeiro, F., Elvira, B., Collares-Pereira, M. J., & Moyle, P. B. (2007). Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions, 10(1), 89-102. doi:10.1007/s10530-007-9112-2RIBEIRO, F., & LEUNDA, P. M. (2012). Non-native fish impacts on Mediterranean freshwater ecosystems: current knowledge and research needs. Fisheries Management and Ecology, 19(2), 142-156. doi:10.1111/j.1365-2400.2011.00842.xRincon, P. A., Correas, A. M., Morcillo, F., Risueno, P., & Lobon-Cervia, J. (2002). Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. Journal of Fish Biology, 61(6), 1560-1585. doi:10.1111/j.1095-8649.2002.tb02498.xRobalo, J. I., Almada, V. C., Levy, A., & Doadrio, I. (2007). Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Molecular Phylogenetics and Evolution, 42(2), 362-372. doi:10.1016/j.ympev.2006.07.003Romão, F., Quintella, B. R., Pereira, T. J., & Almeida, P. R. (2011). Swimming performance of two Iberian cyprinids: the Tagus nase Pseudochondrostoma polylepis (Steindachner, 1864) and the bordallo Squalius carolitertii (Doadrio, 1988). Journal of Applied Ichthyology, 28(1), 26-30. doi:10.1111/j.1439-0426.2011.01882.xShiroyama, R., & Yoshimura, C. (2016). Assessing bluegill (Lepomis macrochirus) habitat suitability using partial dependence function combined with classification approaches. Ecological Informatics, 35, 9-18. doi:10.1016/j.ecoinf.2016.06.005Thomas, J. A., & Bovee, K. D. (1993). Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regulated Rivers: Research & Management, 8(3), 285-294. doi:10.1002/rrr.3450080307Vezza, P., Muñoz-Mas, R., Martinez-Capel, F., & Mouton, A. (2015). Random forests to evaluate biotic interactions in fish distribution models. Environmental Modelling & Software, 67, 173-183. doi:10.1016/j.envsoft.2015.01.005Vilizzi, L., Copp, G. H., & Roussel, J.-M. (2004). Assessing variation in suitability curves and electivity profiles in temporal studies of fish habitat use. River Research and Applications, 20(5), 605-618. doi:10.1002/rra.767Wood, S. N. (2004). Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models. Journal of the American Statistical Association, 99(467), 673-686. doi:10.1198/016214504000000980Wood, S. N. (2006). Generalized Additive Models. doi:10.1201/9781420010404Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. doi:10.1007/978-0-387-87458-

    Soft X-ray emission from the inner disk of M33

    Full text link
    We present a study, based on archival XMM-Newton observations, of the extended X-ray emission associated with the inner disk of M33. After the exclusion of point sources with L_X > 2 x 10^{35} erg/s (0.3-6 keV), we investigate the morphology and spectrum of the residual X-ray emission. This residual emission has a soft X-ray spectrum which can be fitted with a two-temperature thermal model, with kT = 0.2 keV and 0.6 keV. The soft X-ray surface brightness distribution shows a strong correlation with FUV emission, indicative of a close connection between recent star-formation activity and the production of soft X-rays. Within 3.5 kpc of the nucleus of M33, the soft X-ray and FUV surface brightness distributions exhibit similar radial profiles. This implies that the ratio of the soft X-ray luminosity (0.3-2.0 keV) to the star formation rate (SFR) per unit disk area remains fairly constant within this inner disk region. We derive a value for this ratio of 1-1.5 x 10^{39} (erg/s)/(M_sun/yr), consistent with previous studies. In the same region, the ratio of soft X-ray luminosity to stellar mass (derived from K-band photometry) is 4 x 10^{28} erg/s/M_sun, a factor of 5-10 higher than is typical of dwarf elliptical galaxies, suggesting that 10-20% of the unresolved emission seen in M33 may originate in its old stellar population. The remainder of the soft X-ray emission is equally split between two spatial components, one which closely traces the spiral arms of the galaxy and the other more smoothly distributed across the inner disk of M33. The former must represent a highly clumped low-filling factor component linked to sites of recent or ongoing star formation, whereas the distribution of the latter gives few clues as to its exact origin.Comment: 13 pages, 4 figures, 5 tables. Accepted for publication in MNRA

    Enhanced covalent p-phenylenediamine crosslinked graphene oxide membranes: towards superior contaminant removal from wastewaters and improved membrane reusability

    Get PDF
    The increasing depletion of freshwater necessitates the re-use and purification of wastewaters. Among the existing separation membrane materials, graphene oxide (GO) is a promising candidate, owing to its tunable physicochemical properties. However, the widening of GO membranes pore gap in aqueous environments is a major limitation. Crosslinking agents can be incorporated to alleviate this problem. This study describes a comparative analysis of uncrosslinked and p-Phenylenediamine (PPD) crosslinked GO membranes’ water purification performance. Dip-coating and dip-assisted layer-by-layer methods were used to fabricate the uncrosslinked and crosslinked membranes respectively. The covalent interaction between GO and PPD was confirmed by Fourier Transform Infra-Red and X-ray Photoelectron Spectroscopy. The excellent membrane topographical continuity and intactness was assessed by means of Scanning Electron Microscopy, while water contact angle measurements were undertaken to evaluate and confirm membrane hydrophilicity. The improvement impact of the crosslinker was manifested on the enhancement of the stability and performance of the membranes during nanofiltration tests of aqueous solutions of methylene blue in a homemade nanofiltration cell operated at 1 bar

    X-ray emission from the extended disks of spiral galaxies

    Full text link
    We present a study of the X-ray properties of a sample of six nearby late-type spiral galaxies based on XMM-Newton observations. Since our primary focus is on the linkage between X-ray emission and star formation in extended, extranuclear galactic disks, we have selected galaxies with near face-on aspect and sufficient angular extent so as to be readily amenable to investigation with the moderate spatial resolution afforded by XMM-Newton. After excluding regions in each galaxy dominated by bright point sources, we study both the morphology and spectral properties of the residual X-ray emission, comprised of both diffuse emission and the integrated signal of the fainter discrete source populations. The soft X-ray morphology generally traces the inner spiral arms and shows a strong correlation with the distribution of UV light, indicative of a close connection between the X-ray emission and recent star formation. The soft (0.3-2 keV) X-ray luminosity to star formation rate (SFR) ratio varies from 1-5 x 10^39 erg/s(/Msun/yr), with an indication that the lower range of this ratio relates to regions of lower SFR density. The X-ray spectra are well matched by a two-temperature thermal model with derived temperatures of typically ~0.2 keV and ~0.65 keV, in line with published results for other normal and star-forming galaxies. The hot component contributes a higher fraction of the soft luminosity in the galaxies with highest X-ray/SFR ratio, suggesting a link between plasma temperature and X-ray production efficiency. The physical properties of the gas present in the galactic disks are consistent with a clumpy thin-disk distribution, presumably composed of diffuse structures such as superbubbles together with the integrated emission of unresolved discrete sources including young supernova remnants.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 17 pages, 6 figures, 7 table

    Correlated optical, X-ray, and $-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2015 ESO.After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20th, 15:50 UTC to June 25th, 4:05 UTC, from the optical V-band, up to the soft γ-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20--40 keV) within 3 days. The flare recurrence can be as short as ∼ 20~min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A simple 10--400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.Peer reviewe

    Evolving and Sustaining Ocean Best Practices to Enable Interoperability in the UN Decade of Ocean Science for Sustainable Development

    Get PDF
    The UN Decade of Ocean Science for Sustainable Development (Ocean Decade) challenges marine science to better inform and stimulate social and economic development while conserving marine ecosystems. To achieve these objectives, we must make our diverse methodologies more comparable and interoperable, expanding global participation and foster capacity development in ocean science through a new and coherent approach to best practice development. We present perspectives on this issue gleaned from the ongoing development of the UNESCO Intergovernmental Oceanographic Commission (IOC) Ocean Best Practices System (OBPS). The OBPS is collaborating with individuals and programs around the world to transform the way ocean methodologies are managed, in strong alignment with the outcomes envisioned for the Ocean Decade. However, significant challenges remain, including: (1) the haphazard management of methodologies across their lifecycle, (2) the ambiguous endorsement of what is "best" and when and where one method may be applicable vs. another, and (3) the inconsistent access to methodological knowledge across disciplines and cultures. To help address these challenges, we recommend that sponsors and leaders in ocean science and education promote consistent documentation and convergence of methodologies to: create and improve context-dependent best practices; incorporate contextualized best practices into Ocean Decade Actions; clarify who endorses which method and why; create a global network of complementary ocean practices systems; and ensure broader consistency and flexibility in international capacity development
    corecore