14 research outputs found

    Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    Full text link
    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation conference proceeding

    Moving forward in global‐change ecology: capitalizing on natural variability

    Get PDF
    Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way. In this manuscript, we describe several underutilized approaches and techniques to address the study of short‐term species and ecosystem responses to climate change and highlight why these approaches are particularly valuable for generating information relevant for conservation practices and predictive models. These methods optimize the use of available information and can improve the reliability of our predictions by better exploring the range of potential outcomes of species and ecosystem responses to climate change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96312/1/ece3433.pd
    corecore