235 research outputs found
Understanding biological mechanisms underlying adverse birth outcomes in developing countries: Protocol for a prospective cohort (AMANHI bio-banking) study
Objectives: The AMANHI study aims to seek for biomarkers as predictors of important pregnancy-related outcomes, and establish a biobank in developing countries for future research as new methods and technologies become available.Methods: AMANHI is using harmonised protocols to enrol 3000 women in early pregnancies (8-19 weeks of gestation) for population-based follow-up in pregnancy up to 42 days postpartum in Bangladesh, Pakistan and Tanzania, with collection taking place between August 2014 and June 2016. Urine pregnancy tests will be used to confirm reported or suspected pregnancies for screening ultrasound by trained sonographers to accurately date the pregnancy. Trained study field workers will collect very detailed phenotypic and epidemiological data from the pregnant woman and her family at scheduled home visits during pregnancy (enrolment, 24-28 weeks, 32-36 weeks & 38+ weeks) and postpartum (days 0-6 or 42-60). Trained phlebotomists will collect maternal and umbilical blood samples, centrifuge and obtain aliquots of serum, plasma and the buffy coat for storage. They will also measure HbA1C and collect a dried spot sample of whole blood. Maternal urine samples will also be collected and stored, alongside placenta, umbilical cord tissue and membrane samples, which will both be frozen and prepared for histology examination. Maternal and newborn stool (for microbiota) as well as paternal and newborn saliva samples (for DNA extraction) will also be collected. All samples will be stored at -80°C in the biobank in each of the three sites. These samples will be linked to numerous epidemiological and phenotypic data with unique study identification numbers.Importance of the study: AMANHI biobank proves that biobanking is feasible to implement in LMICs, but recognises that biobank creation is only the first step in addressing current global challenges
Get Your Foes Fooled: Proximal Gradient Split Learning for Defense Against Model Inversion Attacks on IoMT Data
The past decade has seen a rapid adoption of Artificial Intelligence (AI), specifically the deep learning networks, in Internet of Medical Things (IoMT) ecosystem. However, it has been shown recently that the deep learning networks can be exploited by adversarial attacks that not only make IoMT vulnerable to the data theft but also to the manipulation of medical diagnosis. The existing studies consider adding noise to the raw IoMT data or model parameters which not only reduces the overall performance concerning medical inferences but also is ineffective to the likes of deep leakage from gradients method. In this work, we propose proximal gradient split learning (PSGL) method for defense against the model inversion attacks. The proposed method intentionally attacks the IoMT data when undergoing the deep neural network training process at client side. We propose the use of proximal gradient method to recover gradient maps and a decision-level fusion strategy to improve the recognition performance. Extensive analysis show that the PGSL not only provides effective defense mechanism against the model inversion attacks but also helps in improving the recognition performance on publicly available datasets. We report 14.0 % , 17.9 % , and 36.9 % gains in accuracy over reconstructed and adversarial attacked images, respectively
Do mutual funds have consistency in their performance?
Using a comprehensive data set of 714 Chinese mutual funds from 2004 to 2015, the study investigates these funds’ performance persistence by using the Capital Asset Pricing model, the Fama-French three-factor model and the Carhart Four-factor model. For persistence analysis, we categorize mutual funds into eight octiles based on their one year lagged performance and then observe their performance for the subsequent
12 months. We also apply Cross-Product Ratio technique to assess the performance
persistence in these Chinese funds. The study finds no significant evidence of persis- tence in the performance of the mutual funds. Winner (loser) funds do not continue to be winner (loser) funds in the subsequent time period. These findings suggest that future performance of funds cannot be predicted based on their past performance.info:eu-repo/semantics/publishedVersio
Evolution of pulmonary hypertension in interstitial lung disease: a journey through past, present, and future
Interstitial lung diseases (ILD) are a spectrum of disorders often complicated by pulmonary hypertension (PH) in its course. The pathophysiologic mechanism of WHO group 3 PH is different to other forms of PH. The advent of PH is a harbinger for adverse events like mortality and morbidity, implying that the PH component of disease expedites deteriorated clinical outcomes. In fact, WHO group 3 PH due to ILD has the worse prognosis among all groups of PH. Hence, early detection of PH by a comprehensive screening method is paramount. Given considerable overlap in clinical manifestations between ILD and PH, early detection of PH is often elusive. Despite, the treatment of PH due to ILD has been frustrating until recently. Clinical trials utilizing PAH-specific pulmonary vasodilators have been ongoing for years without desired results. Eventually, the INCREASE study (2018) demonstrated beneficial effect of inhaled Treprostinil to treat PH in ILD. In view of this pioneering development, a paradigm shift in clinical approach to this disease phenotype is happening. There is a renewed vigor to develop a well validated screening tool for early detection and management. Currently inhaled Treprostinil is the only FDA approved therapy to treat this phenotype, but emergence of a therapy has opened a plethora of research toward new drug developments. Regardless of all these recent developments, the overall outlook still remains grim in this condition. This review article dwells on the current state of knowledge of pre-capillary PH due to ILD, especially its diagnosis and management, the recent progresses, and future evolutions in this field
Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins.
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S Typhi clone in Sindh, Pakistan. The XDR S Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S Typhi observed here adds urgency to the need for typhoid prevention measures
Randomized Trial of Early Detection and Treatment of Postpartum Hemorrhage
Background: Delays in the detection or treatment of postpartum hemorrhage can result in complications or death. A blood-collection drape can help provide objective, accurate, and early diagnosis of postpartum hemorrhage, and delayed or inconsistent use of effective interventions may be able to be addressed by a treatment bundle.Methods: We conducted an international, cluster-randomized trial to assess a multicomponent clinical intervention for postpartum hemorrhage in patients having vaginal delivery. The intervention included a calibrated blood-collection drape for early detection of postpartum hemorrhage and a bundle of first-response treatments (uterine massage, oxytocic drugs, tranexamic acid, intravenous fluids, examination, and escalation), supported by an implementation strategy (intervention group). Hospitals in the control group provided usual care. The primary outcome was a composite of severe postpartum hemorrhage (blood loss, ≥1000 ml), laparotomy for bleeding, or maternal death from bleeding. Key secondary implementation outcomes were the detection of postpartum hemorrhage and adherence to the treatment bundle.Results: A total of 80 secondary-level hospitals across Kenya, Nigeria, South Africa, and Tanzania, in which 210,132 patients underwent vaginal delivery, were randomly assigned to the intervention group or the usual-care group. Among hospitals and patients with data, a primary-outcome event occurred in 1.6% of the patients in the intervention group, as compared with 4.3% of those in the usual-care group (risk ratio, 0.40; 95% confidence interval [CI], 0.32 to 0.50; P<0.001). Postpartum hemorrhage was detected in 93.1% of the patients in the intervention group and in 51.1% of those in the usual-care group (rate ratio, 1.58; 95% CI, 1.41 to 1.76), and the treatment bundle was used in 91.2% and 19.4%, respectively (rate ratio, 4.94; 95% CI, 3.88 to 6.28).Conclusions: Early detection of postpartum hemorrhage and use of bundled treatment led to a lower risk of the primary outcome, a composite of severe postpartum hemorrhage, laparotomy for bleeding, or death from bleeding, than usual care among patients having vaginal delivery
Randomized Trial of Early Detection and Treatment of Postpartum Hemorrhage
Background: Delays in the detection or treatment of postpartum hemorrhage can result in complications or death. A blood-collection drape can help provide objective, accurate, and early diagnosis of postpartum hemorrhage, and delayed or inconsistent use of effective interventions may be able to be addressed by a treatment bundle.Methods: We conducted an international, cluster-randomized trial to assess a multicomponent clinical intervention for postpartum hemorrhage in patients having vaginal delivery. The intervention included a calibrated blood-collection drape for early detection of postpartum hemorrhage and a bundle of first-response treatments (uterine massage, oxytocic drugs, tranexamic acid, intravenous fluids, examination, and escalation), supported by an implementation strategy (intervention group). Hospitals in the control group provided usual care. The primary outcome was a composite of severe postpartum hemorrhage (blood loss, ≥1000 ml), laparotomy for bleeding, or maternal death from bleeding. Key secondary implementation outcomes were the detection of postpartum hemorrhage and adherence to the treatment bundle.Results: A total of 80 secondary-level hospitals across Kenya, Nigeria, South Africa, and Tanzania, in which 210,132 patients underwent vaginal delivery, were randomly assigned to the intervention group or the usual-care group. Among hospitals and patients with data, a primary-outcome event occurred in 1.6% of the patients in the intervention group, as compared with 4.3% of those in the usual-care group (risk ratio, 0.40; 95% confidence interval [CI], 0.32 to 0.50; P<0.001). Postpartum hemorrhage was detected in 93.1% of the patients in the intervention group and in 51.1% of those in the usual-care group (rate ratio, 1.58; 95% CI, 1.41 to 1.76), and the treatment bundle was used in 91.2% and 19.4%, respectively (rate ratio, 4.94; 95% CI, 3.88 to 6.28).Conclusions: Early detection of postpartum hemorrhage and use of bundled treatment led to a lower risk of the primary outcome, a composite of severe postpartum hemorrhage, laparotomy for bleeding, or death from bleeding, than usual care among patients having vaginal delivery
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
- …