8 research outputs found
Flow chamber staining modality for real-time inspection of dynamic phenotypes in multiple histological stains.
Traditional histological stains, such as hematoxylin-eosin (HE), special stains, and immunofluorescence (IF), have defined myriads of cellular phenotypes and tissue structures in a separate stained section. However, the precise connection of information conveyed by the various stains in the same section, which may be important for diagnosis, is absent. Here, we present a new staining modality-Flow chamber stain, which complies with the current staining workflow but possesses newly additional features non-seen in conventional stains, allowing for (1) quickly switching staining modes between destain and restain for multiplex staining in one single section from routinely histological preparation, (2) real-time inspecting and digitally capturing each specific stained phenotype, and (3) efficiently synthesizing graphs containing the tissue multiple-stained components at site-specific regions. Comparisons of its stains with those by the conventional staining fashions using the microscopic images of mouse tissues (lung, heart, liver, kidney, esophagus, and brain), involving stains of HE, Periodic acid-Schiff, Sirius red, and IF for Human IgG, and mouse CD45, hemoglobin, and CD31, showed no major discordance. Repetitive experiments testing on targeted areas of stained sections confirmed the method is reliable with accuracy and high reproducibility. Using the technique, the targets of IF were easily localized and seen structurally in HE- or special-stained sections, and the unknown or suspected components or structures in HE-stained sections were further determined in histological special stains or IF. By the technique, staining processing was videoed and made a backup for off-site pathologists, which facilitates tele-consultation or -education in current digital pathology. Mistakes, which might occur during the staining process, can be immediately found and amended accordingly. With the technique, a single section can provide much more information than the traditional stained counterpart. The staining mode bears great potential to become a common supplementary tool for traditional histopathology
Hypertonic saline- and detergent-accelerated EDTA-based decalcification better preserves mRNA of bones
Abstract Ethylenediaminetetraacetic acid (EDTA), a classically used chelating agent of decalcification, maintains good morphological details, but its slow decalcification limits its wider applications. Many procedures have been reported to accelerate EDTA-based decalcification, involving temperature, concentration, sonication, agitation, vacuum, microwave, or combination. However, these procedures, concentrating on purely tissue-outside physical factors to increase the chemical diffusion, do not enable EDTA to exert its full capacity due to tissue intrinsic chemical resistances around the diffusion passage. The resistances, such as tissue inner lipids and electric charges, impede the penetration of EDTA. We hypothesized that delipidation and shielding electric charges would accelerate EDTA-based penetration and the subsequent decalcification. The hypothesis was verified by the observation of speedy penetration of EDTA with additives of detergents and hypertonic saline, testing on tissue-mimicking gels of collagen and adult mouse bones. Using a 26% EDTA mixture with the additives at 45°C, a conventional 7-day decalcification of adult mouse ankle joints could be completed within 24 h while the tissue morphological structure, antigenicity, enzymes, and DNA were well preserved, and mRNA better retained compared to using 15% EDTA at room temperature. The addition of hypertonic saline and detergents to EDTA decalcification is a simple, rapid, and inexpensive method that doesn't disrupt the current histological workflow. This method is equally or even more effective than the currently most used decalcification methods in preserving the morphological details of tissues. It can be highly beneficial for the related community
Recombinant GPVI-Fc added to single or dual antiplatelet therapy in vitro prevents plaque-induced platelet thrombus formation
The efficiency of current dual antiplatelet therapy might be further improved by its combination with a glycoprotein (GP) VI-targeting strategy without increasing bleeding. GPVI-Fc, a recombinant dimeric fusion protein binding to plaque collagen and concealing binding sites for platelet GPVI, acts as a lesion-focused antiplatelet drug, and does not increase bleeding in vivo. We investigated, whether GPVI-Fc added in vitro on top of acetylsalicylic acid (ASA), the P2Y(12) antagonist ticagrelor, and the fibrinogen receptor antagonist abciximab alone or in combination would increase inhibition of platelet activation by atherosclerotic plaque. Under static conditions, GPVI-Fc inhibited plaque-induced platelet aggregation by 53%, and increased platelet inhibition by ASA (51%) and ticagrelor (64%) to 66% and 80%, respectively. Under arterial flow, GPVI-Fc inhibited plaque-induced platelet aggregation by 57%, and significantly increased platelet inhibition by ASA (28%) and ticagrelor (47%) to about 81% each. The triple combination of GPVI-Fc, ASA and ticagrelor achieved almost complete inhibition of plaque-induced platelet aggregation (93%). GPVI-Fc alone or in combination with ASA or ticagrelor did not increase closure time measured by the platelet function analyzer (PFA)-200. GPVI-Fc added on top of abciximab, a clinically used anti fibrinogen receptor antibody which blocks platelet aggregation, strongly inhibited total (81%) and stable (89%) platelet adhesion. We conclude that GPVI-Fc added on top of single or dual antiplatelet therapy with ASA and/or a P2Y12 antagonist is likely to improve anti-atherothrombotic protection without increasing bleeding risk. In contrast, the strong inhibition of platelet adhesion by GPVI-Fc in combination with GPIIb/Illa inhibitors could be harmful.</p
Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study
To provide a global, up-to-date picture of the prevalence, treatment, and outcomes of Candida bloodstream infections in intensive care unit patients and compare Candida with bacterial bloodstream infection.
DESIGN:
A retrospective analysis of the Extended Prevalence of Infection in the ICU Study (EPIC II). Demographic, physiological, infection-related and therapeutic data were collected. Patients were grouped as having Candida, Gram-positive, Gram-negative, and combined Candida/bacterial bloodstream infection. Outcome data were assessed at intensive care unit and hospital discharge.
SETTING:
EPIC II included 1265 intensive care units in 76 countries.
PATIENTS:
Patients in participating intensive care units on study day.
INTERVENTIONS:
None.
MEASUREMENT AND MAIN RESULTS:
Of the 14,414 patients in EPIC II, 99 patients had Candida bloodstream infections for a prevalence of 6.9 per 1000 patients. Sixty-one patients had candidemia alone and 38 patients had combined bloodstream infections. Candida albicans (n = 70) was the predominant species. Primary therapy included monotherapy with fluconazole (n = 39), caspofungin (n = 16), and a polyene-based product (n = 12). Combination therapy was infrequently used (n = 10). Compared with patients with Gram-positive (n = 420) and Gram-negative (n = 264) bloodstream infections, patients with candidemia were more likely to have solid tumors (p < .05) and appeared to have been in an intensive care unit longer (14 days [range, 5-25 days], 8 days [range, 3-20 days], and 10 days [range, 2-23 days], respectively), but this difference was not statistically significant. Severity of illness and organ dysfunction scores were similar between groups. Patients with Candida bloodstream infections, compared with patients with Gram-positive and Gram-negative bloodstream infections, had the greatest crude intensive care unit mortality rates (42.6%, 25.3%, and 29.1%, respectively) and longer intensive care unit lengths of stay (median [interquartile range]) (33 days [18-44], 20 days [9-43], and 21 days [8-46], respectively); however, these differences were not statistically significant.
CONCLUSION:
Candidemia remains a significant problem in intensive care units patients. In the EPIC II population, Candida albicans was the most common organism and fluconazole remained the predominant antifungal agent used. Candida bloodstream infections are associated with high intensive care unit and hospital mortality rates and resource use